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Abstract

The average number of (1) antichains, (2) maximal antichains, (3) chains, (4) infima closed sets,
(5) connected sets, (6) independent sets, (7) maximal independent sets, (8) brooms, (9) matchings,
(10) maximal matchings, (11) linear extensions, and (12) drawings in (of) a rooted plane tree on
n vertices is investigated. Using generating functions we determine the asymptotics and give some
explicit formulae and identities. In conclusion we discuss the extremal values of the above quantities
and pose some problems.

1 Rooted plane trees

A rooted plane tree, a classical enumerative structure, is a quadruple T = (r, V,E, L) such that

• (V,E) is a nonempty finite directed tree, as usual V is the vertex set and E is the edge set ,

• where all edges are directed away from the root r ∈ V ,

• and L = {({w : vw ∈ E}, <v) : v ∈ V } is a collection of |V | linear orders.

We call the elements of the set ch(v) = {w : vw ∈ E} children of v, v is their parent . A leaf is a vertex
with no child. Rooted plane trees will be called shortly trees. A tree T is visualized by embedding it
in the plane (see Figure 1) so that the root is at the lowest position, all edges are straight segments
directed up, and the orders <v coincide with the natural left-right order.

By T we denote the collection of all substantially different trees and by Tn the collection of those
having n vertices. The aim of the paper is, given a weight w : T → {0, 1, 2, . . .}, to count the total
weight w(n) =

∑
T∈Tn

w(T ) of trees on n vertices. We consider twelve combinatorial weights w and
for the first ten of them we determine the generating function

Fw(x) =
∑
T

w(T )x|V (T )| =
∑
n≥1

w(n)xn.

For the eleventh and twelfth weight n stands for |E| and the exponential generating function will be
determined.

For instance, setting w(T ) = 1 for all T one gets the celebrated Catalan function

C = C(x) =
∑
n≥1

|Tn|xn =
∑
n≥1

cn−1x
n =

1
2

(
1−

√
1− 4x

)
= x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + . . .
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counting the number of trees on n vertices. cn = 1
n+1

(2n
n

)
is the nth Catalan number . Catalan function

satisfies the quadratic equation C2 − C + x = 0.
What are the weights? Mostly the numbers of subsets of V or E with special properties. The

first four of them appear by understanding a tree T as a poset. The standard partial ordering (V,≤)
is defined by u ≤ v iff u lies on the path joining r and v. A chain in T is then a subset X ⊂ V
of pairwise comparable vertices. On the contrary an antichain X consists of mutually incomparable
vertices. A tree with n vertices may have as many as 2n − 1 nonempty chains and as few as 2n − 1.
As for the antichains, there may be as few as n and as many as 2n−1 of them. These are extremes but
what is going on in average? One would expect that in average antichains are much more numerous
than chains, is this really the case? How fast the average numbers grow? Seeking answers to this sort
of questions and led by the joy of counting by generating functions we investigated twelve weights of
this kind. Our arguments are more or less standard but, except for w8 and w11 which we discuss later,
we failed to find any reference to results of this type in [5], [8], and [12], or to localize the sequences
{w(n)}n≥1 in [11].

We need to review some more definitions. We say that X ⊂ V is infima closed (in a tree T ) if X
contains with any two vertices u, v ∈ X also the merging point of the paths joining r and u, and r and
v (i.e., the infimum u ∧ v). Six weights arise from graph-theoretical considerations. A set X ⊂ V is
independent if uv ∈ E for no two u, v ∈ X. A set X ⊂ V is connected if any two vertices of X can be
joined by an undirected path lying completely in X. A matching X ⊂ E is a set of pairwise disjoint
edges. A broom X ⊂ E is a set of pairwise intersecting edges, all directed up. Single vertex is also a
broom. Two more weights arise from the concept of drawing trees. Suppose T = (r, V,E, L) is a tree.
A simple drawing of T is a permutation of edges (e1, e2, . . . , e|E|) of T such that r ∈ e1 and, for any
i = 2, . . . , |E|, ei intersects some of the edges e1, e2, . . . , ei−1. A drawing of T is a sequence of trees
(T1, T2, . . . , Tn), n = |V |, such that Tn = T and Ti−1 arises from Ti by deleting a leaf of Ti.

Now we list the weights. Maximality is meant to inclusion and maximal sets are nonempty by
definition. For a given tree T , w1(T ) is the number of nonempty antichains in T , w2(T ) is the
number of maximal antichains, w3(T ) is the number of nonempty chains, w4(T ) counts the number
of nonempty infima closed sets, w5(T ) counts nonempty connected sets, w6(T ) counts all independent
sets (including ∅), w7(T ) counts maximal independent sets, w8(T ) counts the number of brooms in
T , w9(T ) counts matchings (including ∅), w10(T ) counts maximal matchings, w11(T ) is the number
of simple drawings of T , and w12(T ) is the number of drawings of T .

The paper is organized as follows. In the next section we summarize the results — explicit formulae
or equations for generating functions, asymptotics — for the first ten weights. In Section 3 we give
proofs or sketches of proofs to these results. Applications of the Lagrange inversion formula to the
weights w6, w7, and w9 are given in Section 4. In particular, we derive a closed formula for w6(n).
Weights w11 and w12 are handled in Section 5. In Section 6 we give some concluding comments and
open problems, and we determine maxT∈Tn w2(T ).

2 Subset countings — results

First we list the closed formulae for the generating functions F1, F2, F3, F4, F5, and F8, Fi(x) =∑
n≥1 wi(n)xn.

F1(x) =
1 +

√
1− 4x−

√
2
√√

1− 4x + 1− 10x

4
(1)
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F2(x) =
3− 2x−

√
1− 4x−

√
2
√

(1 + 2x)
√

1− 4x + 1− 8x + 2x2

4
(2)

F3(x) =
x
(
1 + 3

√
1− 4x

)
4
(
1− 9

2x
) F4(x) =

(
1 +

√
1− 4x

)(
1−

√
3− 2/

√
1− 4x

)
4

(3)

F5(x) =
x

x− C2(x)
F1(x) =

1
8

(
1 +

1√
1− 4x

)(
1 +

√
1− 4x−

√
2
√

1 +
√

1− 4x− 10x

)
(4)

F8(x) =
x

2(1− 4x)
+

x

2
√

1− 4x
(5)

The four functions F6, F7, F9, and F10 satisfy the following algebraic equations.

F 3
6 − 2F 2

6 + (1 + 2x)F6 + x2 − 2x = 0 (6)

F 4
7 − 3F 3

7 + (3 + x)F 2
7 − (1 + x)2F7 − x3 + x2 + x = 0 (7)

F 4
9 − 3F 3

9 + (3 + x)F 2
9 − (1 + 2x)F9 + x2 + x = 0 (8)

F 7
10 − (6 + x)F 6

10 + (15 + 6x)F 5
10 + (x2 − 15x− 20)F 4

10 − (2x2 − 20x− 15)F 3
10− (9)

−(15x + 6)F 2
10 + (2x2 + 6x + 1)F10 + x4 − x2 − x = 0

In the first order asymptotics we use the notation f(n) ∼ g(n) for limn→∞ f(n)/g(n) = 1.

w1(n) ∼ 1√
15π

1
n
√

n

(
25
4

)n

w2(n) ∼ 0.16584 n−3/2 (4.80261)n w3(n) ∼ 1
9

(
9
2

)n

(10)

w4(n) ∼ 5
16

√
5
6π

1
n
√

n

(
36
5

)n

w5(n) ∼ 4
3

w1(n) ∼ 4
3
√

15π

1
n
√

n

(
25
4

)n

(11)

w6(n) ∼ 4
9
√

3π

1
n
√

n

(
27
4

)n

w7(n) ∼

√
5731− 4635/

√
17

256
√

π

1
n
√

n

(
107 + 51

√
17

64

)n

(12)

w8(n) ∼ 1
8

4n (13)

w9(n) ∼

√
5− 1/

√
13

4
√

6π

1
n
√

n

(
70 + 26

√
13

27

)n

w10(n) ∼ 0.12075 n−3/2 (5.22159)n (14)

The constants in the asymptotics of w2 and w10 are just approximations but, as we shall see in the
next section, in principle we can give closed algebraic expressions for them as well. Numerically the
asymptotics read as follows. w1(n) ∼ 0.14567 n−3/2 6.25n, w2(n) ∼ 0.16584 n−3/2 4.80261n, w3(n) ∼
0.11111 4.5n, w4(n) ∼ 0.16095 n−3/2 7.2n, w5(n) ∼ 0.19423 n−3/2 6.25n, w6(n) ∼ 0.14477 n−3/2 6.75n,
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w7(n) ∼ 0.14958 n−3/2 4.95747n, w8(n) ∼ 0.125 4n, w9(n) ∼ 0.12514 n−3/2 6.06460n, w10(n) ∼
0.12075 n−3/2 5.22159n. A remarkable fact is that all the ten linear constants lie in the interval
(0.1, 0.2).

In the left table below we list the first eight values wi(n), n = 1, 2, . . . , 8, for each i = 1, 2, . . . , 10.
For this and other heavy calculations we used MATHEMATICA and MAPLE. For i = 1, 2, 3, 4, 5, 8
we took directly the generating function. For i = 6, 7, 9, 10 we started with Fi(0) = 0 and then,
differentiating the equation, we applied the relations wi(n) = F

(n)
i (0)/n!. For i = 6, 7, 9 one can apply

alternatively the Lagrange inversion formula — see Section 4. In the right table we sort the weights
by their exponential growth rates.

w1 1 2 7 19 131 625 3099 15818
w2 1 2 5 15 50 178 663 2553
w3 1 3 12 51 222 978 4338 19323
w4 1 3 13 63 326 1769 9964 57843
w5 1 3 12 52 236 1109 5366 26639
w6 2 3 10 42 198 1001 5304 29070
w7 1 2 4 13 44 164 636 2559
w8 1 3 11 42 163 638 2510 9908
w9 1 2 6 23 98 447 2134 10530
w10 1 1 4 12 44 175 718 3052

w8 brooms 4n

w3 chains 4.5n

w2 max. antichains 4.80261n

w7 max. ind. sets 4.95747n

w10 max. matchings 5.22159n

w9 matchings 6.06460n

w1 antichains 6.25n

w5 connected sets 6.25n

w6 independent sets 6.75n

w4 infima closed sets 7.2n

We conclude the section with a few comments. Note the relation between w1 and w5. From (5) it
follows at once a closed formula for w8(n), see (24). In Section 4 we derive a closed formula (29) for
w6(n) and a nice recurrent formula (30) for w7(n). Expressions and equations (1)–(9) yield effective
procedures calculating for a given n the numbers wi(n), 1 ≤ i ≤ 10. A natural question is whether
one can calculate effectively, given a tree T , the numbers wi(T ). This turns out to be possible for each
of the weights, in the next section we give the corresponding recurrent relations.

Thus, indeed, the average tree has asymptoticly much more antichains than chains in spite the
tendency shown by the first nine values. For n ≥ 10 we have, in accordance with the asymptotics,
w1(n) > w3(n). Even maximal antichains beat asymptoticly chains but now w2(n) < w3(n) for
n = 2, 3, . . . , 99. Only from 100 vertices on the asymptotics prevails and the average tree starts to
have more maximal antichains than chains.

3 Subset countings — proofs

Let T = (r, V,E, L) be a tree and v ∈ V be a vertex. A subtree Tv of T rooted in v is the subtree
spanned by the upset {x ∈ V : x ≥ v}. A degree deg(v) of v is the number |ch(v)| of children of
v. A principal subtree of T is a subtree Tv such that v ∈ ch(r). T is determined uniquely by the list
ps(T ) = (Tv : v ∈ ch(r)) of its principal subtrees. A singleton s is the trivial one vertex tree. Let us
remind the Catalan function C satisfying C2 − C + x = 0, see Section 1.

To determine the generating function Fw we use arguments of two kinds. In the recurrence ar-
gument we take the decomposition ps(T ) = (T1, T2, . . . , Tk) and find, for a weight w, the recurrent
relation that transforms the list (w(T1), w(T2), . . . , w(Tk)) into the number w(T ). The relation can be
often translated to an equation for Fw. This way we obtain both the individual count (the recurrence
for w(T )) and the collective count (the function Fw that counts w(n)). An alternative approach via
another decomposition is indicated in the concluding section.
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The extension argument is basically counting in two ways. We count the number of extensions of
a fixed set X ⊂ V with a special property to a tree. See Figure 1. Draw a tree T = (r, V,E, L) in the
plane. The gaps of v ∈ V are the wedge-shaped areas into which the edges incident with v split v’s
neighborhood. Thus v has deg(v) + 1 gaps. All gaps of all vertices form the set g(T ) with 2|V | − 1
elements. In the gap extension we take a tree T ∈ Tm and into each gap g ∈ g(T ) we insert a tree
Tg. The root r(Tg) and the vertex of g are identified. A moment of thought reveals that the number
of choices for which a tree from Tn arises is the coefficient at xn in xm(C(x)/x)2m−1. In the edge
extension we mark on a fixed oriented edge e ∈ T2 from top to bottom k ≥ 0 points p1, . . . , pk and we
put a tree Ti to the left and a tree Ui to the right of pi, identifying pi with the roots r(Ti) and r(Ui). A
tree from Tn (we do not count the endpoints of e) is obtained for [xn]

∑
k≥0(C

2/x)k = [xn] x/(x−C2)
choices. Here and further on [xn] f denotes the coefficient at xn in the power series f . In the l edges
extension we extend this way independently l edges. While saying nothing about the individual count
this method is usually more elegant than the recurrence argument.

gap extension edge extension

Figure 1: Extensions.

1 Antichains by extension. Consider an antichain X ⊂ V (T ) and the tree T ∗ spanned by the
downset {v ∈ V (T ) : v ≤ x ∈ X}. Obviously T is a gap extension of T ∗ and therefore

F1(x) =
∑
m≥1

cm−1x
m
(

C(x)
x

)2m−1

=
x

C(x)

∑
m≥1

cm−1

(
C2(x)

x

)m

=
C(C2(x)/x)

C(x)/x
.

The rest is a matter of simplifications.
Antichains by recurrence. For singleton we have w1(s) = 1. For a nonsingleton T with

ps(T ) = (T1, T2, . . . , Tk) we have the recurrence

w1(T ) =
k∏

i=1

(1 + w1(Ti)) (15)

whose proof is immediate. It translates to F1 = x
∑

k≥0(F1 + C)k = x/(1− F1 − C) which simplifies
to F 2

1 + (C − 1)F1 + x = 0. Solving this we get again the formula (1).
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2 Maximal antichains by recurrence. Similarly to (15) we get w2(s) = 1 and, ps(T ) =
(T1, T2, . . . , Tk),

w2(T ) = 1 +
k∏

i=1

w2(Ti). (16)

This translates to F2 = C + x
∑

k≥1 F k
2 = C + xF2/(1− F2), i.e. to F 2

2 + (x−C − 1)F2 + C = 0. The
quadratic formula yields (2).

3 Chains by extension. Consider a chain X = (x1, . . . , xm) ⊂ V in T and think of the xi−1–xi

path as an edge, i = 1, . . . ,m, x0 = r. Then T is a gap extension and m edges extension of X. Hence

F3(x) =
∑
m≥1

xm
(

C(x)
x

)2m−1 ( x

x− C2(x)

)m

=
xC(x)

x− 2C2(x)
.

After further simplifications we obtain the formula for F3 in (3).
Chains by recurrence. The recurrence for chains is w3(s) = 1, ps(T ) = (T1, T2, . . . , Tk),

w3(T ) = 1 + 2
k∑

i=1

w3(Ti). (17)

Consider the generating function

G(x, y) =
∑
T

xw3(T )y|V (T )|.

Then (17) reads as
G(x, y) = xy

∑
k≥0

G(x2, y)k =
xy

1−G(x2, y)
.

Clearly G(1, y) = C(y) and F3(y) = Gx(1, y). Taking the partial derivative by x of the equation for
G and evaluating it at (1, y) we find

F3(y) = y
1− C(y) + 2F3(y)

(1− C(y))2
that solves as F3(y) = y

1− C(y)
(1− C(y))2 − 2y

.

Simplifications lead again to the formula in (3).
4 Infima closed sets by extension. Consider a nonempty infima closed set X ⊂ V (T ), |X| = m.

By replacing all u–v paths, u, v ∈ X, not containing other vertices of X by an edge we produce a tree
T ∗ on m vertices. Clearly T is a gap and m edges extension of T ∗, in the same way as for chains.
Only now we are extending all trees on m vertices, not only the path. Thus

F4(x) =
∑
m≥1

cm−1x
m
(

C(x)
x

)2m−1 ( x

x− C2(x)

)m

=
x

C(x)
C
(
C2(x)/(x− C2(x))

)
.

Simplifications lead to the formula in (3).
For the sake of completeness we mention the recurrent formula. Let ps(T ) = (T1, . . . , Tk). Then

w4(s) = 1,

w4(T ) =
k∑

i=1

w4(Ti) +
k∏

i=1

(1 + w4(Ti)). (18)

5 Connected sets by extension. Consider a connected set X ⊂ V . It is easy to see that T is a
gap and (one) edge extension of X. The edge corresponds to the path r(T )–r(X). Thus the additional
factor x/(x− C2(x)) in (4) compared to antichains.
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Again, given a T , we can effectively calculate w5(T ):

w5(T ) =
∑
v∈V

w1(Tv) (19)

where Tv is the subtree rooted in v.
6 Independent sets by recurrence. We need an auxiliary weight z(T ) counting ∅ and the

independent sets in T not containing r. Let ps(T ) = (T1, . . . , Tk). A moment of thought reveals that
z(s) = 1, w6(s) = 2,

z(T ) =
k∏

i=1

w6(Ti) and w6(T ) =
k∏

i=1

w6(Ti) +
k∏

i=1

z(Ti). (20)

Translated to generating functions,

Fz = x
∑
k≥0

F k
6 =

x

1− F6
and F6 = x

∑
k≥0

F k
z + x

∑
k≥0

F k
6 =

x

1− Fz
+

x

1− F6
. (21)

Eliminating Fz from the system we get the cubic equation (6).
7 Maximal independent sets by recurrence. So far we always calculated the number at a

vertex from the numbers at its children, now we need to consider also the numbers at grandchildren.
We define two auxiliary weights t and q. Let t(T ) = # of ind. sets in T not containing r which are
maximal or extendable only by the root r. Further q(s) = 1, and q(T ) = t(T1)t(T2) . . . t(Tk) where
ps(T ) = (T1, . . . , Tk). Then w7(s) = t(s) = q(s) = 1 and, ps(T ) = (T1, . . . , Tk),

t(T ) =
k∏

i=1

w7(Ti) and w7(T ) =
k∏

i=1

t(Ti) +
k∏

i=1

w7(Ti)−
k∏

i=1

(w7(Ti)− q(Ti)). (22)

The first equality is easy — to take an r-free ind. set in T extendable at most by r is the same as to
take a max. ind. set in each Ti. In the second equality in (22) we count first by the product

∏
t(Ti)

the number of max. ind. sets containing the root. To take a max. ind. set in T not containing r is the
same as to take a max. ind. set in each Ti, not all of them avoiding r(Ti). There are q(Ti) max. ind.
sets in Ti containing r(Ti). This gives the rest of the second equation. (22) expressed in generating
functions is

Ft =
x

1− F7
and F7 =

x

1− Ft
+

x

1− F7
− x

1− F7 + x/(1− Ft)
(23)

because the generating function corresponding to q is x/(1 − Ft). The elimination of Ft yields the
quartic (7).

8 Brooms by extension. Fix a broom B with m vertices in a tree T . T is a gap extension and
one edge extension (as for connected sets) of B and therefore

F8(x) =
x

x− C2(x)

∑
m≥1

xm
(

C(x)
x

)2m−1

=
x2

C.(x− C2)
C2/x

1− C2/x
=

x2C

(x− C2)2
=

x2C

(2x− C)2
=

=
1

1− 4x

x2C

C − x
=

x

1− 4x

x

C
=

x

1− 4x

1 +
√

1− 4x

2
=

x

2(1− 4x)
+

x

2
√

1− 4x
.

It is easy to extract the coefficient by the binomial formula. On the other hand clearly w8(T ) =∑
v∈V 2deg(v) and we have the identity

w8(n) =
∑

T∈Tn

∑
v∈V (T )

2deg(v) =
4n−1 +

(2n−2
n−1

)
2

. (24)
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In our derivation we used only that for any m ≥ 1 there is exactly one broom on m vertices. Thus
more generally:

Theorem 3.1 Suppose S ⊂ T is a family of trees such that |S ∩ Tn| = 1 for any n ≥ 1. Let w(T )
count the total number of ways to embed a member of S into T . Then w(n) =

∑
T∈Tn

w(T ) = w8(n) =
(4n−1 +

(2n−2
n−1

)
)/2.

If S is the family of all paths we obtain the identity∑
T∈Tn

|{(u, v) ∈ V (T )× V (T ) : u and v are comparable in T}| = 4n−1

because the left hand side is 2w8(n) − ncn−1. We remark that a quantity similar to w8, namely the
average vertex altitude, was counted by D. E. Knuth, see [8].

9 Matchings by recurrence. We set z(T ) to be the number of matchings in T not covering the
root, the empty set included. Let ps(T ) = (T1, . . . , Tk). Then z(s) = w9(s) = 1,

z(T ) =
k∏

i=1

w9(Ti) and w9(T ) =
k∏

i=1

w9(Ti).

(
1 +

k∑
i=1

z(Ti)
w9(Ti)

)
. (25)

The first relation follows from the fact that a matching in T avoiding r arises simply by taking in each
Ti either a matching or the empty set. In the second relation we add the numbers of matchings using
the edge r(T )r(Ti). To translate this to generating functions we use the identity

∑
k≥0(k + 1)xk =

1/(1− x)2. Thus

Fz =
x

1− F9
and F9 =

x

1− F9
+

xFz

(1− F9)2
.

Eliminating Fz we obtain the quartic equation (8).
10 Maximal matchings by recurrence. From technical reasons we set w10(s) = 1. Consider

two auxiliary weights z and q. z(s) = 0 and z(T ) counts the number of max. matchings in T covering
the root, q(s) = 1 and q(T ) = w10(T1)w10(T2) . . . w10(Tk) where ps(T ) = (T1, . . . , Tk). Then z(s) = 0
and q(s) = w10(s) = 1,

z(T ) =
k∏

i=1

w10(Ti).
k∑

i=1

q(Ti)
w10(Ti)

and w10(T ) = z(T ) +
k∏

i=1

z(Ti). (26)

In the first relation we count the number of max. matchings using the edge r(T )r(Ti). Those arise
by taking a max. matching in each Tj , j 6= i, (or ∅ if Tj = s, that’s why we set w10(s) = 1) and
an r(Ti)-free matching in Ti (or ∅ if Ti = s) extendable eventually only by some edge going up from
r(Ti). Such matchings are counted by q(Ti). In the second relation we add to z(T ) the number of
max. matchings avoiding r(T ). Algebraicly,

Fz =
xFq

(1− F10)2
and F10 = Fz +

x

1− Fz
where Fq =

x

1− F10
.

From this one obtains the relation F10 = x2/(1−F10)3 +x/(1−x2/(1−F10)3) which simplifies to the
equation of degree 7 in (9).

The asymptotics of the numbers w1(n), . . . ,w10(n). We start with the simple cases and
proceed to more complicated ones. Catalan numbers have the asymptotics

cn ∼
4n

n
√

πn
. (27)
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This follows by Stirling formula.
w8(n). The asymptotics (13) for w8(n) is immediate from (24).
When Fi is given by square roots the next theorem of Bender, p. 496 in [2], is useful. We need

also binomial and Stirling formulae and basic concepts of analytic functions.

Theorem 3.2 Let A(x) =
∑

anxn, B(x) =
∑

bnxn, and C(x) = A(x)B(x) =
∑

dnxn be three power
series, and let A and B have radii of convergence α > β ≥ 0. Suppose bn−1/bn → β as n → ∞, and
A(β) 6= 0. Then

dn ∼ A(β)bn.

w3(n). For F3(x) we use Theorem 3.2 with A(x) = x(1 + 3
√

1− 4x)/4, B(x) = 1/(1 − 9x/2),
α = 1/4, β = 2/9, and A(2/9) = 1/9. The asymptotics (10) for w3(n) follows.

w4(n). To obtain the asymptotics (11) for w4(n) we write F4(x) = (1 +
√

1− 4x)/4 − A(x)B(x)
where

A(x) =
√

5
4

1 +
√

1− 4x√
(3
√

1− 4x + 2)
√

1− 4x
and B(x) =

√
1− 36x

5
.

Theorem 3.2 is applied with α = 1/4, β = 5/36, and A(5/36) = (5/8)
√

5/6. The coefficient bn in
B(x) =

∑
bnxn = (1− 36x/5)1/2 can be estimated by means of binomial and Stirling formulae.

w1(n). We observe that the expresion under the big radical in (1) determines a function that is
analytic in the 1/4 circle and that is nonzero there except for the simple zero 4/25. Thus we can write
F1(x) = (1 +

√
1− 4x)/4 − A(x)B(x) with B(x) =

√
1− 25x/4 and A(x) a function analytic in the

1/4 circle. Further, A(4/25) = 2/
√

15. Theorem 3.2 implies the first asymptotics in (10).
w5(n). Here A(x) = (1/2)(1+1/

√
1− 4x), B(x) = F1(x), α = 1/4, β = 4/25, and A(4/25) = 4/3.

The second asymptotics in (11) follows.
w2(n). The expression under the big radical in (2) is analytic in the 1/4 circle and is nonzero

there except for the simple zero β = 0.20821 . . . (the only real root of x3 − 4x2 + 20x − 4). Thus we
have again F5(x) = (3 − 2x −

√
1− 4x)/4 − A(x)B(x) with B(x) =

√
1− x/β and A(x) a function

analytic in the 1/4 circle. One can calculate that

A(β) =

√
β

2

√
3β√

1− 4β
− β + 2.

The second asymptotics in (10) is obtained.
To resolve the remaining cases when Fi satisfies an equation of degree > 2 we use the following

result, found on p. 502 in [2].

Theorem 3.3 A power series f(x) =
∑

anxn with nonnegative coefficients satisfying F (x, f(x)) = 0
and two real numbers α > 0 and β > a0 are given. Suppose that

(a) for some δ > 0, F (x, y) is analytic whenever |x| < α + δ, |y| < β + δ,

(b) F (α, β) = Fy(α, β) = 0,

(c) Fx(α, β) 6= 0 and Fyy(α, β) 6= 0, and

(d) if (κ, λ) is another solution of the system in (b) then |κ| > α or |λ| > β.

Then

an ∼
√

αFx(α, β)
2πFyy(α, β)

1
n
√

n

(
1
α

)n

. (28)
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This is exactly what we need but the difficulty is that the theorem is incorrect, as pointed out by
Canfield [3]. However, the conclusion (28) still holds if we can present positive reals (α, β), f(α) = β,
such that (01) (α, β) lies inside the analyticity domain of F (i.e., (a) holds), (02) the condition (c)
holds, (03) α is the radius of convergence of f(x), and (04) f(x) has no other singularity on the
boundary than α.

We know, by implicit function theorem, that the pair (α, β) we look for (as well as and any other
singularity on the boundary) is hidden among the solutions of the simultaneous equations (b). In
general it may be difficult to determine which solution is the right one or even to find all solutions.
Therefore several conditions for F making (α, β) unique or localizing it among the solutions were
proposed, see [9] and [10], p. 1162–3.

For the four functions F6, F7, F9, and F10 we can always find (α, β) meeting the conditions (01)–
(04). Indeed, F (x, y) is a bivariate polynomial, thus analytic everywhere, and it is not too difficult to
find all solutions of the algebraic system (b). Notice that cn−1 ≤ wi(n) ≤ 2ncn−1. By (27) we know
that the radius of convergence of any Fi(x), i = 1 . . . 10, lies in [1/8, 1/4]. In all four cases there is
only one (complex) solution (α, β) such that 1/8 ≤ |α| ≤ 1/4. Thus (01)–(04) holds and (28) is true.

w6(n). F6(x) satisfies the cubic equation (6). The system (b) has four solutions: (0, 1) (with
multiplicity 3) and (α, β) = (4/27, 5/9). Plugging in the formula (28) we obtain the first bound in
(12).

w7(n). The equation for F7(x) is given by (7). The solutions of (b) are: (0, 1) (with multiplicity
4), ((−51

√
17−107)/512, (33−7

√
17)/128), and (α, β) = ((51

√
17−107)/512, (33+7

√
17)/128). The

second bound in (12) follows.
w9(n). The equation for F9(x) is (8). The solutions of (b) are: (0, 1) (multiplicity 2), ((−13

√
13−

35)/72, (1−
√

13)/12), and (α, β) = ((13
√

13− 35)/72, (1+
√

13)/12). The first bound in (14) follows.
w10(n). F10(x) satisfies (9). The system (b) has 12 solutions: (0, 1) (multiplicity 8), (−0.26689±

0.51782i, 0.01231±0.40950i), (11.67188, 8.47407), and (α, β) = (0.19151, 0.38840). The four y solutions
different from 1 are roots of the quartic 248y4−2204y3+912y2−389y+137. x appears in Fyy(x, y) = 0
only in the second degree. Thus α and β still express in radicals. The second bound in (14) follows.

4 Applications of the LIF

The generating functions F6, F7, F9, and F10 satisfy an algebraic equation of degree > 2. Such an
equation is often very hard, if not impossible, to solve explicitly. Nevertheless, sometimes we can find
easily the inverse to the solution. Then the Lagrange inversion formula applies.

Theorem 4.1 (LIF) Suppose f(x) is a power series with [x0]f = 0 and [x1]f 6= 0. Then

[xn]f(x)<−1> = n−1[xn−1](f(x)/x)−n.

For more details see [14], [10] (p. 1106), and [7] (p. 1032).

Theorem 4.2 Let n ≥ 1. Recall that w6(n) is the total number of all independent sets in all T ∈ Tn

(the empty set counted) and z(n) is the number of those avoiding the root. Then

w6(n) =
1

n− 1

(
3n− 3

n

)
and z(n) =

1
n

(
3n− 2
n− 1

)
. (29)

Proof. We start with z(n). Eliminating F6 from (21) we obtain Fz(1−Fz)2 = x. Thus Fz(x)<−1> =
x(1− x)2. The formula for z(n) follows readily by the LIF.
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To determine w6(n) we observe that

3xF ′
6 − 2F6 − 4xF ′

z + 2Fz = 0.

This is not difficult to check by means of the relations (21). We leave the straightforward calculations
to the reader as an exercise. In terms of coefficients:

(3n− 2)w6(n) = (4n− 2)z(n).

Substituting the formula for z(n) we finish the proof. 2

Theorem 4.3 Let n ≥ 1. Recall that w7(n) is the total number of all maximal independent sets in
all T ∈ Tn and t(n) is the number of independent sets avoiding the root and extendable at most by it.
Then

t(n) =
1
n

n−1∑
k=0

(−1)k

(
n + k − 1

k

)(
3n− k − 2
n− k − 1

)
=

1
n

b(n−1)/2c∑
k=0

(
2n− 2− 2k

n− 1− 2k

)(
n + k − 1

k

)

and

w7(n) = t(n + 1)−
n∑

k=2

t(k).w7(n− k + 1). (30)

Proof. Eliminating F7 from (23) we find that Ft(1 − Ft)(1 − F 2
t ) = Ft(1 + Ft)(1 − Ft)2 = x. Thus

Ft(x)<−1> = x(1−x)(1−x2) = x(1+x)(1−x)2. The LIF yields the formula for t(n). The recurrence
for w7(n) follows from the relation Ft(1− F7) = x. 2

As to the values of w9, the LIF helps here too. F9(x)<−1> is easily found by solving (8) for x. We
obtain a more comfortable way to calculate w9(n) (instead of taking derivatives) but no nice explicit
formula seems to arise here. The details are omitted. We did not succed in applying the LIF to w10.

5 Drawing countings

The calculations for the weights w11 and w12 are more elegant when the main parameter n is |E|
rather than |V |. We use exponential instead of ordinary generating function. We determine

Fi(x) =
∑
n≥0

wi(n)
n!

xn

where i = 11, 12 and in wi(n) =
∑

T wi(T ) we sum over the trees with n edges.
A simple drawing (e1, e2, . . . , en) of a tree T with n edges is a way of planting T from the root. To

look on it differently consider the vertices (v1, v2, . . . , vn) where vi is the endpoint of ei. Obviously,
(r, v1, . . . , vn) is a linear extension of the tree as a poset. And vice versa, any linear extension deter-
mines a simple drawing of T . Thus w11(T ) is the number of linear extensions of T . This notion and
the results below (Theorems 5.1 and 5.2) seem be frequently rediscovered, as we learned after proving
the theorems.

Theorem 5.2 is close in statement and proof to Lemma 2.1 in [1]. Theorem 5.1 is proved, in a more
complicated manner, in [13]. Another proof of Theorem 5.1, much the same as the one below, can
be found in [6]. There the authors point to the thesis [4] as to an older reference for this result and
mention that R. P. Stanley proved it before as well. We join in and include, for the readers convenience,
our (independent) proofs. As to the notation, (2n − 1)!! stands, as usual, for 1.3.5 . . . (2n − 1). For
triple and quadruple factorials see [6]!!
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Theorem 5.1 Let n > 0. Then

w11(0) = 1, w11(n) = (2n− 1)!! and F11(x) =
1√

1− 2x
. (31)

Proof. So w11(T ) counts the labelings of vertices by 0, 1, . . . , n such that the label of u is smaller
than that of v whenever u < v. Thus r is always labeled by 0. Clearly w11(0) = 1. For T ∈ Tn+1,
n ≥ 1, in any of the labelings n sits at a leaf l and deleting l we get a proper labeling of a T ∗ ∈ Tn.
From each labeled T ∗ we can get, adding l back, exactly 2n− 1 different labeled T ’s since each T ∗ has
2n − 1 gaps to place l. Hence w11(n) = (2n − 1).w11(n − 1) and we obtain the first formula in (31).
The second formula follows from the first one after rewriting (2n− 1)!! as n!

(2n
n

)
/2n. 2

The asymptotics

w11(n) ∼
√

2
(

2n

e

)n

follows by Stirling formula.
We show now how to perform for w11 the individual count.

Theorem 5.2 Recall that Tv stands for the subtree of T rooted in v ∈ V . We abbreaviate |V (Tv)| by
|Tv|. Then, for a tree T with |V | = n + 1 vertices,

w11(T ) =
(n + 1)!∏
v∈V |Tv|

=
n!∏

v∈V,v 6=r |Tv|
. (32)

Proof. By induction on the height of T . Clearly w11(s) = 1. For a nonsingleton tree T with
ps(T ) = (T1, T2, . . . , Tk) we have

w11(T ) =

(
n

|T1| |T2| . . . |Tk|

)
k∏

i=1

w11(Ti)

because for each of the choices {1, 2, . . . , n} = X1 ∪X2 ∪ . . .∪Xk, |Xi| = |Ti|, Xi mutually disjoint, of
the sets of labels for vertices V (Ti) (r is labeled by 0) we have exactly

∏
w11(Ti) labelings. Plugging

in the formulae for w11(Ti) and canceling the factorials we get (32). 2

The counting of w12(n) is more interesting. Note that w12(T ) counts different ways to plant T from
its root too but ”different” has other meaning compared to w11. For instance, if T0 is the V-shaped
tree on 5 vertices then w11(T0) = 6 but w12(T0) = 4. The key fact is that the insertion of a new leaf
in T in different gaps may produce the same tree. More precisely:

Lemma 5.3 Suppose T has n ≥ 1 edges and l leaves. Adding the new leaf in all 2n + 1 gaps yields
2n+1− l new different trees with n+1 edges, l of them have l leaves and 2n+1−2l have l+1 leaves.

Proof. Consider the trees X = {Tg : g ∈ g(T )} where Tg arises by adding the new leaf in the gap g.
Tg and Th coincide iff g and h share the same vertex v and all edges between g and h going up from
v lead to leaves. Thus |X| = 2n + 1− c where c is the number of gaps whose left edge leads to a leaf.
Clearly c = l. The number of leaves does not change iff we add the new leaf to a leaf and then we
produce l new trees. Otherwise the number of leaves increases by one. 2
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Theorem 5.4

F12(x) =
∑
T

w12(T )
|E(T )|!

x|E(T )| =
∑
n≥0

w12(n)
n!

xn =
1√

2e−x − 1
. (33)

Proof. Consider the bivariate exp. gen. function (l(T ) is the number of leaves of T )

F ∗(x, y) =
∑
T∈T

w12(T )
|E(T )|!

x|E(T )|yl(T ) = 1 + xy +
x2y

2
+

x2y2

2
+ . . .

Lemma 5.3 translates to generating functions as∫
x

(y
∂

∂y
+ 2xy

∂

∂x
+ y − 2y2 ∂

∂y
) F ∗ = F ∗ − 1.

This yields the partial differential equation

(
1
y
− 2x)

∂F ∗

∂x
+ (2y − 1)

∂F ∗

∂y
= F ∗. (34)

(34) is of the type a(x, y)Fx + b(x, y)Fy = f(x, y, F ) that reduces to two ordinary diff. equations. We
review briefly the standard resolution and apply it to (34). First one solves the equation

dy

dx
=

b(x, y)
a(x, y)

(35)

which gives the system of characteristic curves {yc(x) : c ∈ D} (D is a set of real parameters). Along
each of the curves F turns into a univariate function Fc(x) = F (x, yc(x)) that satisfies

dFc

dx
=

f(x, yc(x), Fc(x))
a(x, yc(x))

(36)

(this follows by the chain rule for partial derivatives). The value of F at a point p = (x0, y0) is then
Fc(x0) where c = c(p) is chosen so that yc goes through p.

The equation (35) becomes for (34)

dy

dx
=

2y − 1
1/y − 2x

which is an exact equation (1/y − 2x)dy + (1 − 2y)dx = 0. Solving it in a standard way we get the
following equation for characteristic curves:

y e(1−2y)x = c. (37)

(36) turns into a separated variables equation

dF ∗
c

dx
=

y′c
2yc − 1

F ∗
c

whose solution is F ∗
c (x) = d(c).

√
2yc(x)− 1. From (37) we have yc(0) = c and from F ∗

c (0) = 1 we get
d(c) = 1/

√
2c− 1. Thus F ∗

c (x) =
√

2yc(x)− 1/
√

2c− 1 and, using (37),

F ∗(x, y) =

√
2y − 1

2y.ex(1−2y) − 1
.
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Specializing y = 1 we obtain (33). 2

Setting in (34) y = 1/2 we get for g(x) = F ∗(x, 1/2) the ord. diff. equation 2(1 − x)g′ = g, thus
(g(0) = 1) g(x) = 1/

√
1− x. Hence

2n
∑

T∈Tn+1

w12(T )
(

1
2

)l(T )

= (2n− 1)!!. (38)

Let k(T ) stand for the number of nonleaves of T . By (38) the sum
∑

w12(T ).2k(T )−1 over all trees
with n edges gives the same result as the sum

∑
w11(T ).

The function F12(x) satisfies F12(x)′.(2−ex) = F12(x). This provides us with the simple recurrence
w12(0) = 1,

w12(n + 1) = w12(n) +
n∑

i=1

w12(i).

(
n

i− 1

)
. (39)

The first few numbers are

{w12(n)}n≥0 = {1, 1, 2, 7, 35, 226, 1787, 16717, 180560, 2211181, . . .}.

To determine the asymptotics we proceed as in Section 3. The function 2e−x − 1 is entire and
nonzero, except for the simple zeros log 2+2kπi. Thus we write F12(x) = (1−x/ log 2)−1/2A(x) where
A(x) is analytic in the ((log 2)2 + 4π2)1/2 circle and A(log 2) = 1/

√
log 2. By Theorem 3.2

w12(n) = n! [xn]F12(x) ∼ n!
1√

πn log 2

(
1

log 2

)n

∼
√

2
log 2

(
n

e log 2

)n

. (40)

6 Concluding remarks

1 An alternative decomposition. In all recurrence arguments we used the decomposition ps(T ) =
(T1, T2, . . . , Tk). However, one can use the decomposition T = (T1, T

∗) where T1 is the subtree rooted
in the leftmost child of r and T ∗ is the rest. In some cases this leads to easier derivations of equations
for generating functions. On the other hand this decomposition is not well suited to do the indiviual
count.

We advice the reader to try some individual counts by the formulae (15)–(20), (22), (25), (26),
and (32). For instance, to calculate w1(T ) one writes 1 to each leaf of T and then, by (15), recursively
assignes to each vertex v the product of by 1 increased numbers assigned to v’s children. Then w1(T )
is the number assigned to r. By such calculations we were motivated to some of the problems stated
below.

2 The weight w12. The individual count for the weights wi, i = 1, 2, . . . , 11 can be done by the
(recurrent) formulae (15)–(20), (22), (25), (26), and (32) (w8(T ) can be easily calculated from the
definition). The question is how to calculate efficiently for any given T the number w12(T ). It would
be also interesting to give direct combinatorial proofs and interpretations to (39) and (38).

3 Extremal weight values. We define, for i = 1, 2, . . . , 12,

mi(n) = min wi(T ) and Mi(n) = maxwi(T )

where for i = 1, 2, . . . , 10 the extremum is taken over Tn and for i = 11, 12 over Tn+1. In many
cases it is easy to determine the extremal value. It is trivial that m1(n) = n (path), M1(n) = 2n−1

(broom), m2(n) = 2 (broom), m3(n) = 2n − 1 (broom), M3(n) = 2n − 1 (path), M4(n) = 2n − 1
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(path), m7(n) = 2 (broom), m8(n) = 2n− 1 (path), M8(n) = 2n−1 (broom), m9(n) = n− 1 (broom),
m11(n) = 1 (path), M11(n) = n! (broom), and m12(n) = 1 (path).

It is not difficult to show that m5(n) =
(n
2

)
+n (path), M5(n) = 2n−1+n−1 (broom), M6(n) = 2n−1

(broom), and (n ≥ n0) m10(n) = n− 1 (broom). Now we determine M2(n).

Theorem 6.1 Let n = 1+3m+ i > 2, i ∈ {0, 1, 2}. Denote by Un ⊂ Tn the set of trees whose nonroot
vertices have only the degrees 1 or 0 and which have only the branches with 3 edges and either 0, 1 or
2 branches with 2 edges or 1 branch with 4 edges. Then

w2(T ) = M2(n) for any T ∈ Un and w2(T ) < M2(n) for any T ∈ Tn\Un where

M2(n) = 1 + 3m for i = 0, = 1 + 3m + 3m−1 for i = 1, and = 1 + 2.3m for i = 2.

Proof. Suppose T has a nonroot vertex v with deg(v) = l ≥ 2. Denote by u the parent of v and by
xi the children of v. The tree T ∗ arises from T by cutting the edge joining v and xl and joining xl

to u. We write ai for w2(Txi), a for the product of ai’s, and b for the product
∏

w2(Tt) where t runs
through the children of u different from v (b = 1 if there is no such child). By (16)

w2(Tu) = 1 + (1 + a)b = 1 + b + ab ≤ 1 + alb + ab = 1 + (1 + a1 . . . al−1)alb = w2(T ∗
u ).

Thus w2(T ) ≤ w2(T ∗), the equality holds iff xl is a leaf. Applying repeatedly the transformation we
change T into a tree U with the same number of vertices, with no nonroot vertex of degree > 1, and
with w2 at least as large. Let d1, d2, . . . , dk stand for the number of edges of the branches of U . It
holds w2(U) = 1 + d1d2 . . . dk and d1 + d2 + . . . + dk = |V (T )| − 1. We reduced our problem to a well
known riddle asking what is the maximum product of a collection of positive integers with fixed sum.
The answer follows by easy splitting arguments and is described above — the maximum is achieved
exactly when all di’s equal to 2 or 3 and there is as many 3’s as possible, two 2’s may be traded for one
4. The trees U with such di’s form the set Un. We see that w2(T ) = w2(U) implies T = U or di = 1
for some i. But di = 1 implies that the maximum product is not attained. Therefore the inequality is
strict for the trees outside Un. 2

The problem is to determine the remaining extremal values m4(n),m6(n),M7(n),M9(n),M10(n),
and M12(n) or to give some bounds on them. To single some of them out: what is m4(n) and what are
the trees with few infima closed sets? What is M12(n) and what are the trees with many drawings?
For ε > 0 fixed and n large we have the bounds

1− ε

4
√

log 2
1
n

(
1

log 16

)n

n! < M12(n) ≤ n!

The upper bound is trivial and the lower bound follows by the averaging argument from (27) and
(40). The problem is how to improve these bounds. The remaining undetermined extremal values can
be estimated in a similar way.

4 Two more problems. Is there any tree T different from s for which w1(T ) = w3(T ), i.e., has
the same number of chains and antichains? Are there infinitely many of them? We define the height
of a positive integer m as the minimum height of a tree T such that w1(T ) = m. Are there numbers
with arbitrary large height? Similarly for w2.
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