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a problem in enumeration of graphs:

P = (S1, S2, . . . ),

Sn is a set of (simple, labeled) graphs on [n] = {1,2, . . . , n};
the counting function:

fP (n) = |Sn| = #G ∈ Sn.

The sets Sn are usually given as sections of an infinite universe
of graphs U , by means of size functions and relations on U .

Example. Let U be all simple graphs with finite vertex sets
V ⊂ {1,2, . . . } = N and (U,≺) be the induced subgraph relation.
We set

Sn = {G ∈ U | V (G) = [n], K1,2 6≺ G, K3 6≺ G}.
Thus G ∈ Sn iff G is a partial matching, a collection of isolated
vertices and disjoint edges. How many graphs in Sn?
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We have

fP (n) = |Sn| =
∑

k≥0

( n

2k

)

· (2k − 1)!!

where (2k−1)!! = 1 ·3 ·5 · · · (2k−1), because the numbers mk of

perfect matchings on [2k] satisfy recurrence mk = (2k−1)mk−1,

m1 = 1.

• The set

P = {G ∈ U |K1,2 6≺ G, K3 6≺ G}

is a hereditary class, class of graphs closed to isomorphism and

induced subgraphs; fP (n) = #G ∈ P, V (G) = [n].

• The set Sn consists exactly of the graphs G on [n] with ∆(G) ≤
1, i.e., every vertex degree is 0 or 1. Also, we have the recurrence
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fP (1) = 1, fP (2) = 2 and, for n ≥ 3,

fP (n) = fP (n − 1) + (n − 1) · fP (n − 2)

—again delete the first vertex. Thus

n 1 2 3 4 5 6 7 8 9 . . .
fP (n) 1 2 4 10 26 76 232 764 2620 . . .

• Modular behavior: fP (n), n = 1,2, . . . , modulo

2 is 1,0,0,0,0,0,0,0,0, . . . = 1,0

3 is 1,2,1,1,2,1,1,2,1, . . . = 1,2,1,1

4 is 1,2,0,2,2,0,0,0,0, . . . = 1,2,0,2,2,0

5 is 1,2,4,0,1,1,2,4,0, . . . = 1,2,4,0,1

Exercise. fP (n) modulo m is ultimately periodic for any m.
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We extend this simple example into the three indicated direc-

tions: speed of hereditary (and other) graph classes, counting

regular graphs, and ultimate modular periodicity of (the numbers

of) combinatorial structures.

Scheme of a general result on enumeration of graphs. The

counting function fP (n) of every problem P in a class C belongs

to the class of functions F:

{fP | P ∈ C} ⊂ F .

The larger C is and the more specific the functions in F are,

the stronger the result. Exact results: functions in F explic-

itly given (polynomials, recurrences, algorithms). Asymptotic

results: functions in F given by asymptotic relations. Often

mixture of both.
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Hereditary and other classes

A class of graphs P is hereditary if it is closed to isomorphism

and to induced subgraphs. The speed or growth of P is the
function fP (n) = # of graphs in P with the vertex set [n].

Theorem. Let P be a hereditary class of graphs. Then

1. fP (n) = p1(n) · 1n + · · · + pk(n) · kn for n > n0 (pi ∈ Q[x]) or

2. fP (n) = n(1−1/k)n+o(n) (k ∈ Z and k ≥ 2) or

3. nn+o(n) < fP (n) < 2o(n2) or

4. fP (n) = 2(1−1/k)n2/2+o(n2) (k ∈ Z and k ≥ 2) or

5. fP (n) = 2n(n−1)/2.
7



1–3 are due to Balogh, Bollobás and Weinreich (2000) and 4–5

to Alekseev (1992) and Bollobás and Thomason (1995). Partial

matchings belong to group 2, with speed nn/2+o(n).

Oscillations in region 3 (BBW 2001): for any c > 1 and ε > 1/c

there is a hereditary (in fact monotone) class P with

fP (n) = ncn+o(n) and fP (n) = 2(1+o(1))n2−ε
,

both for infinitely many n. Lower boundary of region 3:

Theorem (BBW 2005). Let P be a hereditary class. Then

1. fP (n) < n(1−1/k)n+o(n) (k ∈ N) or

2. fP (n) ≥ Bn for n > n0, where Bn are the Bell numbers. This

lower bound is best possible.
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Bell numbers: Bn is the number of partitions of an n-element

set,

∑

n≥0 Bnxn = 1 + x
1−x + x2

(1−x)(1−2x)
+ x3

(1−x)(1−2x)(1−3x)
+ · · ·

Bn = nn(1−log logn/ logn+O(1/ logn))

(compare to n! = nn(1−1/ logn+o(1/ logn))).

Theorem (Norine, Seymour, Thomas and Wollan 2006). If

P is a minor-closed class then either fP (n) < cnn! or fP (n) =

2n(n−1)/2.

Note that the results on speeds of hereditary and other classes

often have form of jumps in growth — certain regions of speed

are jumped over, i.e., are not realized by any fP (n).
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What about unlabeled graphs?

Theorem (Balogh, Bollobás, Saks and Sós 200?). If P is

hereditary and gP (n) counts non-isomorphic graphs in P , then

1. gP (n) is for n > n0 constantly 0,1 or 2, or

2. gP (n) = cnk + O(nk−1) (k ∈ N, c ∈ Q, c > 0) or

3. gP (n) ≥ pn for n > n0, where pn are the partition numbers.

This lower bound is best possible.

The partition numbers: pn is the number of integer partitions

n = m1 + m2 + · · · + mk, m1 ≥ m2 ≥ · · · ≥ mk ≥ 1. So
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∑

n≥0 pnxn =
∏

k≥1(1 − xk)−1 and pn ∼ (c1/n) · exp(c2
√

n ).

What about ordered graphs? For G = (V, E), V ⊂ N, the iso-

morphism and the (induced) subgraph relation are required to

respect the linear order (V, <) inherited from N.

Theorem (Klazar 2000). Let P be a hereditary class of ordered

graphs such that in G ∈ P all components are cliques and the

number of components is bounded. Then

fP (n) = p1(n) · 1n + · · · + pk(n) · kn, n > n0 (pi ∈ Q[x]).

For example, the number of such graphs with exactly k com-

ponents and n vertices is

S(n, k) =
k

∑

i=0

(−1)i (k − i)n

i!(k − i)!
(the Stirling number)
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(note that
∑n

k=1 S(n, k) = Bn, the Bell number) and the number

of all such graphs with ≤ k components, which is a hereditary

class, is S(n,1) + S(n,2) + · · · + S(n, k).

If the number of components may be unbounded, we get many

other counting functions. For example, for the hereditary class

of ordered graphs, with all components cliques,

P = {G | {13,24} 6≺o G}

(i.e., no two edges in G cross), we get

fP (n) =
1

n + 1

(2n

n

)

(the Catalan number).

Same if components are not restricted to cliques. But for speeds

< 2n one has the following general result.
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Theorem (Balogh, Bollobás and Morris 2006). If P is a

hereditary class of ordered graphs, then

1. fP (n) is for n > n0 constant or

2. fP (n) = a0

(

n
0

)

+ · · · + ak

(

n
k

)

for n > n0 (ai ∈ Z, ak > 0), and

fP (n) ≥ n for every n, or

3. Fn,k ≤ fP (n) ≤ ncFn,k (k ∈ N, k ≥ 2 and c > 0), where Fn,k are

the generalized Fibonacci numbers, or

4. fP (n) ≥ 2n−1.

(This generalizes an analogous result of Kaiser and Klazar (2003)

for hereditary classes of permutations.)
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Fn,k, k ≥ 2: Fn,k = 0 for n < 0, F0,k = 1 and

Fn,k = Fn−1,k + Fn−2,k + · · · + Fn−k,k, n > 0.

Fn,2 are the ordinary Fibonacci numbers; Fn,2 ≈ 1.618n, Fn,3 ≈
1.839n, Fn,4 ≈ 1.927n, . . .

Corollary. For hereditary classes of ordered graphs one has the

poly-exp jump: either fP (n) < nc or fP (n) ≥ Fn ≈ 1.618n.

Problems. 1. Go above 2n−1. (Accomplished by Vatter for per-

mutations.) 2. Turn case 3 in an exact result, that is, determine

the form of functions fP (n).

Speeds of hereditary classes were investigated for many other

structures: permutations, tournaments, posets, words, hyper-

graphs, relational structures.
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Counting regular graphs

G is k-regular: every vertex has degree k, i.e., is incident with

k edges. We will be interested in exact numbers of k-regular

graphs with the vertex set [n] = {1,2, . . . , n}. (Asymptotics,

be it obtained classically or by the theory of random graphs, is

another story.)

Already 1-regular graphs are of some interest. From the example

on partial matchings we know that their number is

m1(2n) = (2n − 1) · m1(2n − 2) = (2n − 1)!!, m1(2n − 1) = 0.

Let mk(n) = # k-regular G on [n] and, for I ⊂ N0 = {0,1,2, . . . },
let mI(n) = # G on [n] with every vertex degree in I; so

m{k}(n) = mk(n). All graphs considered are simple, loopless

and labelled.
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A sequence f(n), n = 1,2, . . . , of numbers is P-recursive (or holo-

nomic) if, for some 2k polynomials ai(x) and bi(x), for every

n > n0,

f(n+k) =
a0(n)

b0(n)
f(n)+

a1(n)

b1(n)
f(n+1)+ · · ·+ ak−1(n)

bk−1(n)
f(n+k−1).

Examples. 1. Fibonacci numbers: Fn+2 = Fn+1 + Fn.

2. Factorials: n! = n · (n − 1)!.

3. Catalan numbers: cn = 1
n+1

(

2n
n

)

satisfies cn+1 = 4n−2
n+1 · cn.

4. Numbers of partial matchings:

m{0,1}(n) = m{0,1}(n − 1) + (n − 1) · m{0,1}(n − 2).

The last example is a special case of the following remarkable

general result.
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Theorem (Gessel, 1990). For any finite set I ⊂ N0, the se-

quence mI(n), n = 1,2, . . . , of numbers of graphs with vertex

set [n] and all vertex degrees in I is P-recursive.

Examples. 1. A non-example: for infinite I = N0, numbers

mI(n) are not P-recursive, because then mI(n) = 2n(n−1)/2 (all

graphs) and these numbers grow too fast. (f(n) P-recursive ⇒
|f(n)| < ncn.)

2. Let us count 2-regular graphs, I = {2}. The # of connected

2-reg. graphs on [n] is (n−1)!/2, n ≥ 3. Thus, by the exponential

formula for EGF,

F(x) =
∑

n≥0

m2(n)xn

n!
= exp(G(x)), G(x) =

∑

n≥3

(n − 1)! · xn

2 · n!
=

=
∑

n≥3 xn/2n. So G′ = (logF)′ = F ′/F and G′ · F = F ′, that is,
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∑

n≥2

xn

2
·

∑

n≥0

m2(n)xn

n!
=

∑

n≥0

m2(n + 1)xn

n!

x2
∑

n≥0

m2(n)xn

n!
= 2(1 − x)

∑

n≥0

m2(n + 1)xn

n!

m2(n − 2)/(n − 2)! = 2m2(n + 1)/n! − 2m2(n)/(n − 1)!

therefore m2(1) = m2(2) = 0, m2(3) = 1 and

m2(n +3) =
(n + 2)(n + 1)

2
·m2(n) + (n +2) ·m2(n +2), n ≥ 1.

So m2(4) = 3, m2(5) = 12, m2(6) = 70, m2(7) = 465, . . . .

Alternatively, considering the component containing 1, we get

directly for m2(n) the recurrent expression
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m2(n) =
n−1
∑

k=2

(n − 1

k

)k!

2
· m2(n − k − 1)

which can be inductively verified to satisfy the P-recurrence of

order 3.

Gessel proved his theorem by means of symmetric functions and

the generating function in infinitely many variables

F(x1, x2, . . . ) =
∏

1≤i<j

(1+xixj) =
∑

d1,...,dn≥0

m(d1, . . . , dn)x
d1
1 . . . xdn

n

where the coefficient m(d1, . . . , dn) is the # of graphs G on [n]

such that degG(i) = di for i = 1,2, . . . , n.
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Ultimate modular periodicity

Fibonacci numbers (Fn)n≥1 = (1,2,3,5,8,13, . . . ), where Fn+2 =

Fn+1 + Fn, are ultimately periodic modulo m for any m. By the

pigeonhole, (Fk, Fk+1) ≡ (Fl, Fl+1) mod m for some k < l, which

implies that for 0 ≤ i < l − k,

Fk+i ≡ Fk+(l−k)+i ≡ Fk+2(l−k)+i ≡ . . . mod m.

Running the recurrence backwards, we see that Fn mod m are

in fact fully periodic, with period l − k.

Recall that the numbers f(n) of partial matchings on [n] satisfy

the P-recurrence f(n+2) = (n+1)f(n)+ f(n+1). Again, f(n)

mod m are ultimately periodic for any m: (k+1, f(k), f(k+1)) ≡
(l + 1, f(l), f(l + 1)) mod m for some k < l and so on. However,
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there are preperiods and f(n) mod m is in general not fully pe-

riodic, as its P-recurrence cannot be run backwards.

And this is the reason why P-recursive sequences in general are

not ultimately periodic mod m. Let us look at the Catalan

numbers cn = 1
n+1

(

2n
n

)

, satisfying the P-recurrence

cn+1 =
4n − 2

n + 1
· cn.

Modulo m we divide by 0 infinitely often. In fact, it is not hard

to show that cn ≡ 1 mod 2 iff n = 2m−1, which is not ultimately

periodic.

What about the Bell numbers?
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∑

n≥0 Bnxn = 1 + x
1−x + x2

(1−x)(1−2x)
+ x3

(1−x)(1−2x)(1−3x)
+ · · ·

≡ 1 + x
1−x + x2

1−x + x3

(1−x)2
+ x4

(1−x)2
+ x5

(1−x)3
+ · · · mod 2

= 1 + (1 + x−1)
∑

n≥1

x2n

(1 − x)n
=

1

1 − x − x2
.

So (1 − x − x2)
∑

n≥0 Bnxn ≡ 1 mod 2 and

Bn+2 ≡ Bn+1 + Bn mod 2.

Thus Bn are periodic mod 2 and

Bn = 1,2,5,15,52, . . . mod 2 ≡ 1,0,1.

Similarly, Bn is periodic mod m for any m.
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Theorem (Blatter and Specker, 1981). Let φ be a closed

formula in the MSOL, using only unary and binary predicates

(i.e., symbols for relations), and fφ(n) be the number of models

of φ on [n] (i.e., relational systems on [n] in which φ holds).

Then the sequence

fφ(n) mod m, n = 1,2, . . . ,

is ultimately periodic for any m.

As an example, with variables a, b, c and one binary predicate ∼,

we may take this φ:

∀a, b, c : (a ∼ a) & (a ∼ b ⇒ b ∼ a) & ((a ∼ b & b ∼ c) ⇒ a ∼ c).

The models of φ on [n] are exactly the equivalence relations,

thus fφ(n) = Bn. This φ is in fact even FOL formula.
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MSOL = monadic second order logic: the language of FOL

(predicates, no functions) + variables S for sets of elements,

which can be quantified by ∀,∃; atomic formulas of the type

x ∈ S.

Examples. Gives ultimate modular periodicity for sequences of

numbers of many classes of labelled graphs on [n], for example

• triangle-free graphs (FOL definable)

• graphs avoiding finitely many forbidden induced subgraphs

(FOL definable)

• k-regular graphs (FOL definable)

• k-colorable graphs (MSOL definable)

• planar graphs (MSOL definable, via Kuratowski’s theorem)
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Fischer (2003) showed that the theorem does not hold for qua-

ternary relations.

Problem. Does it hold for ternary relations?
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Thank you for your attention!


