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a problem in enumeration of graphs:

P = (51,52,...),
Sp is a set of (simple, labeled) graphs on [n] = {1,2,...,n};
the counting function:
fp(n) = |Sn| = #G € Sn.

The sets S, are usually given as sections of an infinite universe
of graphs U, by means of size functions and relations on U.

Example. Let U be all simple graphs with finite vertex sets
V c{1,2,...} =N and (U, <) be the induced subgraph relation.
We set

Sn ={G e U|V(G) =[n], Ki2 A G, K3 AG}.

Thus G € Sy, iff G is a partial matching, a collection of isolated
vertices and disjoint edges. How many graphs in S,7
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We have
fp(n) =15a] = 3 (20) - (2k — 11!
P ,go (2k>

where (2k—1)'=1-3-5---(2k—1), because the numbers m;, of
perfect matchings on [2k] satisfy recurrence my, = (2k —1)my_1,
mq = 1.

e [he set

P={GeU|KizAGC, K3 AGC)

IS a hereditary class, class of graphs closed to isomorphism and
induced subgraphs; fp(n) = #G € P,V(G) = [n].

e The set S, consists exactly of the graphs G on [n] with A(G) <
1, i.e., every vertex degreeis O or 1. Also, we have the recurrence
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fp(1) =1, fp(2) =2 and, for n > 3,

fp(n) = fp(n—-1)+(n—-1)- fp(n—2)

—again delete the first vertex. Thus

n /1234 |5 |6 |7 |8 |9 |..
fp(n) | 1]2|4|10|26 |76 |232|764 | 2620 |
e Modular behavior: fp(n), n=1,2,..., modulo
2is 1,0,0,0,0,0,0,0,0,... =1,0
3is1,2,1,1,2,1,1,2,1,... =1,2,1,1
4is1,2,0,2,2,0,0,0,0,... =1,2,0,2,2,0
5is1,2,4,0,1,1,2,4,0,... =1,2,4,0,1

Exercise. fp(n) modulo m is ultimately periodic for any m.

5



We extend this simple example into the three indicated direc-
tions: speed of hereditary (and other) graph classes, counting
regular graphs, and ultimate modular periodicity of (the numbers
of) combinatorial structures.

Scheme of a general result on enumeration of graphs. The
counting function fp(n) of every problem P in a class C belongs
to the class of functions F:

{fp|P€C}Cf.

The larger C is and the more specific the functions in F are,
the stronger the result. Exact results: functions in F explic-
itly given (polynomials, recurrences, algorithms). Asymptotic
results: functions in F given by asymptotic relations. Often
mixture of both.
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Hereditary and other classes

A class of graphs P is hereditary if it is closed to isomorphism
and to induced subgraphs. The speed or growth of P is the
function fp(n) = # of graphs in P with the vertex set [n].

Theorem. Let P be a hereditary class of graphs. Then

1. fp(n) =p1(n) - 1"+ -+ pr(n) - k" for n > ng (p; € Q[z]) or
2. fp(n) = n(1-1/k)nto(n) (k€ 7 and k > 2) or

3. nton) < fp(n) < 20(n?) or

4. fp(n) = 2(0=1/kn?/2+0(n®) (1 ¢ 7. and k > 2) or

5. fp(n) = 2n(n=1)/2,



1-3 are due to Balogh, Bollobas and Weinreich (2000) and 4-5
to Alekseev (1992) and Bollobas and Thomason (1995). Partial
matchings belong to group 2, with speed nn/2+o(n)

Oscillations in region 3 (BBW 2001): forany ¢> 1 and e > 1/c
there is a hereditary (in fact monotone) class P with
fp(n) = ncn—l—o(n) and fp(n) = 2(1—|—o(1))n2—5’

both for infinitely many n. Lower boundary of region 3:
Theorem (BBW 2005). Let P be a hereditary class. Then
1. fp(n) < n(1=1/k)nto(n) (ke N) or

2. fp(n) > B, for n > ng, where B, are the Bell numbers. This
lower bound is best possible.
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Bell numbers: B, is the number of partitions of an n-element
set,

2n>0 b =1+ 10+ a0 T o230 T

B, = nn(l—loglogn/logn+O(1/logn))
(compare to n! = nn(1-1/lognto(1l/logn))y,

Theorem (Norine, Seymour, Thomas and Wollan 2006). If

P is a minor-closed class then either fp(n) < c™n! or fp(n) =
on(n—1)/2

Note that the results on speeds of hereditary and other classes
often have form of jumps in growth — certain regions of speed
are jumped over, i.e., are not realized by any fp(n).
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What about unlabeled graphs?

Theorem (Balogh, Bollobas, Saks and S6s 2007). If P is
hereditary and gp(n) counts non-isomorphic graphs in P, then

1. gp(n) is for n > ng constantly 0,1 or 2, or
2. gp(n) =enfF4+0nF 1) (keN, ceQ, ¢>0) or

3. gp(n) > pp, for n > ng, where p, are the partition numbers.
This lower bound is best possible.

The partition numbers: p, is the number of integer partitions
n=mi+my+---+m m >2mpy>--->mp=>1 SO
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S n>0Pn” = [Ig>1(1 —2®) ™1 and pn ~ (e1/n) - exp(eav/n ).

What about ordered graphs? For G = (V,E), V C N, the iso-
morphism and the (induced) subgraph relation are required to
respect the linear order (V, <) inherited from N.

Theorem (Klazar 2000). Let P be a hereditary class of ordered
graphs such that in G € P all components are cliques and the
number of components is bounded. Then

fp(n) =p1(n) - 1" + -+ pr(n) - k", n>ng (p; € Q[x]).
For example, the number of such graphs with exactly k¥ com-
ponents and n vertices is

2 ; (k—2)"
S(n k) = 7;0(_1) il(k —4)!
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(note that }°7_; S(n, k) = By, the Bell number) and the number
of all such graphs with < k components, which is a hereditary
class, is S(n,1) + S(n,2) +---+ S(n, k).

If the number of components may be unbounded, we get many
other counting functions. For example, for the hereditary class
of ordered graphs, with all components cliques,

P ={G|{13,24} Ao G}
(i.e., no two edges in GG cross), we get
1 2n
fP(n) — ?(

) (the Catalan number).
n

n
Same if components are not restricted to cliqgues. But for speeds
< 2™ one has the following general result.
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Theorem (Balogh, Bollobas and Morris 2006). If P is a
hereditary class of ordered graphs, then

1. fp(n) is for n > ng constant or

2. fp(n) = a0(8’> 4.t ak(Z) for n > ng (a; € Z, a;, > 0), and
fp(n) > n for every n, or

3. F,, < fp(n) <n°F, (€N, k>2and c>0), where F,, ,, are
the generalized Fibonacci numbers, or

4. fp(n) >2n~1.

(This generalizes an analogous result of Kaiser and Klazar (2003)
for hereditary classes of permutations.)
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Fn,k' k> 2: Fn,k = 0 for n <O, FO,k =1 and

Fn,k':Fn—l,k+Fn—2,k+”‘+Fn—k,ka n > 0.

F, o are the ordinary Fibonacci numbers; F, > ~ 1.618", F, 3 ~
1.839", I, 4 =~ 1.927", ...

Corollary. For hereditary classes of ordered graphs one has the
poly-exp jump: either fp(n) < n¢ or fp(n) > F, ~1.618".

Problems. 1. Go above 21, (Accomplished by Vatter for per-
mutations.) 2. Turn case 3 in an exact result, that is, determine
the form of functions fp(n).

Speeds of hereditary classes were investigated for many other
structures: permutations, tournaments, posets, words, hyper-
graphs, relational structures.
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Counting regular graphs

GG is k-regular: every vertex has degree k, i.e., is incident with
k edges. We will be interested in exact numbers of k-regular
graphs with the vertex set [n] = {1,2,...,n}. (Asymptotics,
be it obtained classically or by the theory of random graphs, is
another story.)

Already 1-regular graphs are of some interest. From the example
on partial matchings we know that their number is

mi(2n) = 2n—-1) - m(2n—-2) = 2n— D!, m(2n—-1) = 0.
Let mi(n) = # k-regular G on [n] and, for I C Ng ={0,1,2,...},
let my(n) = # G on [n] with every vertex degree in I; so
m{k}(n) = mi(n). All graphs considered are simple, loopless
and labelled.
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A sequence f(n),n=1,2,..., of numbers is P-recursive (or holo-
nomic) if, for some 2k polynomials a;(x) and b;(x), for every
n > ngo,

ag(n) ai(n) ap_1(n)
bo(n)f(n)+ bl(n)f(n+ D+---+ b1 ()
Examples. 1. Fibonacci numbers: F,4o = Fj,41 + Fn.
2. Factorials: n!'=n-(n—1)!.

3. Catalan numbers: ¢, = n+—1(2nn
4. Numbers of partial matchings:

fn+k) = fn+k—1).

) satisfies ¢, 41 = 345 - on.

m{ojl}(n) = m{071}(n -1+ (n-1)- m{071}(n — 2).

The last example is a special case of the following remarkable
general result.
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Theorem (Gessel, 1990). For any finite set I C N, the se-
quence my(n), n = 1,2,..., of numbers of graphs with vertex
set [n] and all vertex degrees in I is P-recursive.

Examples. 1. A non-example: for infinite I = Ng, numbers
my(n) are not P-recursive, because then mj(n) = 2n(n=1)/2 (3]
graphs) and these numbers grow too fast. (f(n) P-recursive =
£(n)| < nen)

2. Let us count 2-regular graphs, I = {2}. The # of connected
2-reg. graphson [n] is (n—1)!/2, n > 3. Thus, by the exponential
formula for EGF,

n n
Py = Y, "2 ep(Ge)), Gy = 3 oD
n>0 n! n>3 2-nl
=>.,>32"/2n. So G'=(logF) = F'/F and G'- F = F’/, that is,
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3 x’ 3 mo(n)x™ -3 mo(n + 1)z"

| |
n>2 2 130 n: n>0 n:

. S mo(n)x" —o(1-2) % mo(n + 1)x™

I I

mo(n —2)/(n—2)! =2my(n+1)/n! —2mo(n)/(n — 1)!
therefore m->(1) = m>(2) = 0,m>(3) = 1 and

n+2)(n+1
ma(n+3) = "FT2ED )+ (0 +2) - ma(n+2), 0> 1.
So mo(4) = 3, mo(5) = 12, mo(6) = 70, mo(7) = 465, ....
Alternatively, considering the component containing 1, we get
directly for mo(n) the recurrent expression
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k!

ma(n) = ) (n; 1>5-m2(n—k— 1)

which can be inductively verified to satisfy the P-recurrence of
order 3.

Gessel proved his theorem by means of symmetric functions and
the generating function in infinitely many variables

d
F(zy,z2,...) = ] QA4zz;)= > m(dl,...,dn)xll...wg”
1<i< di,....dn>0

where the coefficient m(dq,...,dn) is the # of graphs G on [n]
such that degg(i) =d; for i =1,2,...,n.
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Ultimate modular periodicity

Fibonacci numbers (Fy),>1 = (1,2,3,5,8,13,...), where F,,4 » =
Fy4+1 + Fn, are ultimately periodic modulo m for any m. By the
pigeonhole, (Fy, Fy41) = (F}, Fj41) mod m for some k < I, which
implies that for 0 <1 <1 —k,

Running the recurrence backwards, we see that F,, mod m are
in fact fully periodic, with period [ — k.

Recall that the numbers f(n) of partial matchings on [n] satisfy

the P-recurrence f(n+2)=(n4+1)f(n)+ f(n+1). Again, f(n)

mod m are ultimately periodic for any m: (k+1, f(k), f(k4+1)) =

I+ 1, (), f(I4+ 1)) mod m for some k <[ and so on. However,
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there are preperiods and f(n) mod m is in general not fully pe-
riodic, as its P-recurrence cannot be run backwards.

And this is the reason why P-recursive sequences in general are
not ultimately periodic mod m. Let us look at the Catalan

numbers ¢, = _1_(2n , satisfying the P-recurrence
n+1\n
4n — 2
Cn41 — n+ 1 " Cn-

Modulo m we divide by O infinitely often. In fact, it is not hard
to show that ¢, =1 mod 2 iff n = 2" —1, which is not ultimately
periodic.

What about the Bell numbers?
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2 3

Yn>0Bne" =1+t yaon T a3 T

2 .3 A 25
1+t + (1—x2)2 T (1—x)?2 + (1—z)3 T mod 2

R D D A—
o v nZl(l—x)n_l—x—xQ.

So (1 —z —22)Y,>0Bnz™ =1 mod 2 and

B’n,—|—2 — B’n,—|—l + B, mod 2.
Thus B,, are periodic mod 2 and
B,=1,2,5,1552,... mod 2 =1,0,1.

Similarly, By is periodic mod m for any m.
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Theorem (Blatter and Specker, 1981). Let ¢ be a closed
formula in the MSOL, using only unary and binary predicates
(i.e., symbols for relations), and fs(n) be the number of models
of ¢ on [n] (i.e., relational systems on [n] in which ¢ holds).
Then the sequence

fe(n) mod m, n=1,2,...,

is ultimately periodic for any m.

As an example, with variables a, b, c and one binary predicate ~,
we may take this ¢:

Va,b,c: (a~a)& (a~b=b~a)& ((a~b&b~c)=a~c).

The models of ¢ on [n] are exactly the equivalence relations,
thus fy(n) = Bp. This ¢ is in fact even FOL formula.
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MSOL = monadic second order logic: the language of FOL
(predicates, no functions) + variables S for sets of elements,
which can be quantified by V,d;, atomic formulas of the type
x €5S.

Examples. Gives ultimate modular periodicity for sequences of
numbers of many classes of labelled graphs on [n], for example

e triangle-free graphs (FOL definable)

e graphs avoiding finitely many forbidden induced subgraphs

(FOL definable)

e k-regular graphs (FOL definable)

e k-colorable graphs (MSOL definable)

e planar graphs (MSOL definable, via Kuratowski's theorem)
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Fischer (2003) showed that the theorem does not hold for qua-
ternary relations.

Problem. Does it hold for ternary relations?
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T hank you for your attention!



