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Abstract

Let S(n, k) be the classical Stirling numbers of the second kind,
d > 1 be an integer, and P,Q,R ∈ Q[X1, . . . , Xm] be nonconstant
polynomials such that P does not divide Q and R is not a dth power.
We prove that if k1, . . . , km are any sufficiently large distinct positive
integers then, setting Si = S(n, ki),

Q(S1,...,Sm)
P (S1,...,Sm) ∈ Z for only finitely

many n ∈ N and R(S1, . . . , Sm) = xd for only finitely many pairs
(n, x) ∈ N2. We extend the latter finiteness result to all triples
(n, x, d) ∈ N3, x, d > 1. Our proofs are based on the results of
Corvaja and Zannier. We give similar but more particular results on
the more general Stirling-like numbers T (n, k).
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1 Introduction

Stirling numbers of the second kind S(n, k), where k, n ∈ N = {1, 2, . . .},
count partitions of the set [n] = {1, 2, . . . , n} into k nonempty disjoint sets.
For example, S(n, 1) = 1 and S(n, 2) = 2n−1 − 1 for every n ∈ N. More
generally,

S(n, k) =
k∑

i=1

(−1)k−i

(k − i)! · i!
· in.(1)

The proof of this well-known expansion can be found in Stanley [19, p. 34]
or many other sources.

S(n, k) belong to the most popular combinatorial numbers and as such
are subject of many articles. A small sample is [2, 3, 5, 10, 11, 17, 20, 21].
Here we are inspired by the following questions. For a fixed k ∈ N, are there
infinitely many squares in the sequence (S(n, k))n≥1? What about higher
powers? And what about taking instead of S(n, k) a polynomial expression
in it or in several Stirling numbers S(n, k1), S(n, k2), . . . , S(n, km)? The only
results known to us dealing with these or related diophantine problems on
S(n, k) were obtained by Brindza and Pintér [4] and Pintér [13, 14]. We
review them briefly and then summarize our theorems. The main tools that
we use are the results of Corvaja and Zannier [6] which are described in
section 2. Our results are proved in section 3.

Pintér proved in [13] that for any fixed a ∈ N, if S(n, n − a) is an
m-th power, m ≥ 3, then n < C where C = C(a) is an effectively com-
putable constant. He proved also an analogous result for the equation
S(n, n − a) ∈ S where S is the set of positive integers composed only of
primes from a fixed finite set. In [14] he proved that for all fixed inte-
gers 1 < a < b the solutions of the equation S(m, a) = S(n, b) satisfy
max(m,n) < Cb(log b)3 log(b!/a!) log a where C is an effectively computable
absolute constant. Brindza and Pintér [4] considered equations S(x, x−a) =
byz and S(x, a) = byz with parameters a, b ∈ N and unknowns x, y, z ∈ N.
As for the first equation, they proved that if (x, y, z) is a solution with
x > 2b16aa8a and y > 1, then z(7.5+ log z)−2 < 11000(log b+8a log a+3a).
(The same bound is proved also for Stirling numbers of the first kind s(n, k)
which count the permutations of 1, 2, . . . , n with k cycles.) Further, if z ≥ 3
is fixed or z = 2 and a 6= 1, 3, then max(x, y) can be effectively bounded
in terms of a and b. As for the second equation, they proved that in all
solutions (x, y, z) with y > 1 (also a > 1) z is bounded by a constant that is
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effectively computable in terms of a and b. The main tool used in all these
results is the theory of linear forms in logarithms.

Now we state our results and begin with two theorems on the “Stirling-
like” numbers T (n, k). These are given by

T (n, k) =
k∑

i=1

t(k, i)in,

where t(k, i) ∈ Q, 1 ≤ i ≤ k, are some fixed nonzero constants.

Theorem 1.1 For every two fixed integers k1 and k2, 1 < k1 < k2,

T (n, k2)

T (n, k1)
∈ Z(2)

holds for only finitely many n ∈ N.

Theorem 1.2 Suppose d > 1 is an integer, a1, . . . , am ∈ N are m positive
integers, not all divisible by d, and 1 < k1 < k2 < . . . < km are m distinct
integers. Then the diophantine equation

T (n, k1)
a1T (n, k2)

a2 . . . T (n, km)am = xd(3)

has only finitely many solutions (n, x) ∈ N2.

Our remaining theorems deal with the more particular Stirling numbers
S(n, k), but in much more general expressions. In the next theorem ψ is a
ring isomorphism, defined in Proposition 2.4, between the power-sums and
the ring Q[Xp : p ∈ P ] of rational polynomials in countably many variables
indexed by the primes.

Theorem 1.3 Let P ∈ Q[Y1, . . . , Ym] be a nonconstant polynomial and t ∈
N be a number. There exists a constant C = C(m, t) > 0 such that if
C < k1 < k2 < . . . < km are m distinct integers, then the polynomial

P (ψ(S(ν, k1)), . . . , ψ(S(ν, km)))

depends on at least t variables.
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Corollary 1.4 Let θ > 23
42

and P ∈ Q[Y1, . . . , Ym] be a nonconstant polyno-
mial. There exists a constant C = C(m, θ) > 0 such that if C < k1 < k2 <
. . . < km are m distinct integers, then

|P (S(n, k1), . . . , S(n, km))| > (k1 − kθ
1)

n

holds for every n ≥ n0.

Theorem 1.5 Let P,Q ∈ Q[Y1, . . . , Ym] be two polynomials such that P
does not divide Q. There exists a constant C = C(m) > 0 depending only
on m such that if C < k1 < . . . < km are m distinct integers, then

Q(S(n, k1), . . . , S(n, km))

P (S(n, k1), . . . , S(n, km))
∈ Z

holds for only finitely many n ∈ N.

Theorem 1.6 Let d ∈ N, d > 1, and P ∈ Q[Y1, . . . , Ym] be a poly-
nomial which is not a d-th power in Q[Y1, . . . , Ym]. There is a constant
C = C(m, deg(P )) depending only on m and the degree of P such that if
C < k1 < . . . < km are m distinct numbers, then the diophantine equation

P (S(n, k1), . . . , S(n, km)) = xd

admits only finitely many solutions (n, x) ∈ N2.

Theorem 1.7 If P ∈ Q[Y1, . . . , Ym] is not a perfect power in Q[Y1, . . . , Ym],
then there exists a constant C1 = C1(P ) depending only on P such that if
C1 < k1 < . . . < km are m distinct integers, then the diophantine equation

P (S(n, k1), . . . , S(n, km)) = xd

has only finitely many solutions (n, x, d) ∈ N3, x, d > 1.

Theorems 1.1 and 1.2 are straightforward applications of the results of
Corvaja and Zannier [6] on power sums. The proofs of Theorems 1.3–1.7
are more technical and require besides [6] our Propositions 3.1 and 3.3.
(The proof of Theorem 1.7 uses also some bounds from the theory of linear
forms in logarithms.) Proposition 3.1 proves that certain polynomial sys-
tems {Pi ∈ C[X1, . . . , Xm] : i = 1, . . . ,m} are invertible. Proposition 3.3
shows that systems {S(n, ki) : i = 1, . . . ,m} can be reduced, restricting
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to appropriate sets of primes, to such polynomial systems. To obtain these
sets we apply bounds on numbers of primes in short intervals.

Since S(n, k) are quite special power-sums, the independence of their
coefficients (−1)k−i/(i!(k−i)!) given in (1) (see the application of Lemma 3.2
in the proof of Proposition 3.3 for the exact meaning of “independence”)
enables to handle quite general polynomial expressions. We think that our
methodology may be useful also for some power-sums more general than
S(n, k), especially for those arising in combinatorial enumeration.

But some independence of the coefficients is necessary. Note that The-
orem 1.1 cannot be generalized much more towards Theorem 1.5 because
if T0(n, k) = kn + (k − 1)n + · · · + 1n, Q(X1, . . . , X4) = X1 − X2, and
P (X1, . . . , X4) = X3 −X4, then

Q(T0(2k, n), T0(2k − 1, n), T0(k, n), T0(k − 1, n))

P (T0(2k, n), T0(2k − 1, n), T0(k, n), T0(k − 1, n))
= 2n ∈ Z

for every k, n ∈ N although P does not divide Q. Similarly, T0(n, k) and
P (X1, X2) = X1 − X2 show that the monomial on the left hand side of
(3) cannot be in general replaced by a sum of two monomials: although
P is linear, P (T0(k, n), T0(k − 1, n)) = xd has infinitely many solutions
(n, x) ∈ N2 for any fixed d > 1 and k ∈ N.

Recall this notation: N = {1, 2, . . .} are positive integers, Z is the set of
all integers, Q are rational numbers, C are complex numbers, if m ∈ N then
[m] = {1, 2, . . . ,m}, and P = {2, 3, 5, 7, 11, . . .} is the set of prime numbers.

2 The results of Corvaja and Zannier

Our presentation of the results in [6] is somewhat more “formal”as it sepa-
rates the power-sums as integer sequences and their syntactic descriptions
by the exponential polynomials. Let E be the set of all finite rational linear
combinations

α = α(ν) =
k∑

i=1

cia
ν
i

where the ci ∈ Q are all nonzero, a1 > a2 > . . . > ak > 0 are distinct positive
integers, k ≥ 0 (the empty sum being 0), and ν is a formal variable. The
integers ai are the roots of α, the rationals ci are its coefficients , and k is
its rank . E is, with the obvious addition and multiplication, a commutative
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integral domain with 1 which extends the field Q. One more operation will
be of importance. The substitutions ν 7→ e+ dν, where e, d ∈ Z and d > 0,
act on E by transforming c · aν to cae · (ad)ν . For example,

if α(ν) = 1
3
4ν − 3ν + 7

6
1ν then α(2ν − 1) = 1

12
16ν − 1

3
9ν + 7

6
1ν .

One turns α into a function α : N → Q by substituting positive integers
n ∈ N for ν. It is clear that two different α1, α2 ∈ E produce two different
functions; one has even α1(n) > α2(n) or vice versa for all n > n0. Thus
one can view E in two ways, as a ring of exponential polynomials or as a
ring of particular functions from N to Q.

The following result is Theorem 1 of [6].

Proposition 2.1 If α, β ∈ E are such that α(n)/β(n) ∈ Z for infinitely
many n ∈ N, then there is a γ ∈ E such that

α = β · γ.(4)

The following result is Corollary 1 of Theorem 2 in [6].

Proposition 2.2 If α ∈ E, d > 1 is an integer, and α(n) = xd has infinitely
many solutions (n, x) ∈ N2, then there is an integer e ∈ {0, 1, . . . , d − 1}
and an element β ∈ E such that

α(e+ dν) = β(ν)d.(5)

The following result is a part of Corollary 2 of Theorem 3 in [6]; in [6] a
stronger approximation result is given.

Proposition 2.3 Suppose that α ∈ E has rank at least 2 and its two leading
roots a1 > a2 are coprime. Then, for every fixed integer d > 1, the equation
α(n) = xd has only finitely many solutions (n, x) ∈ N2.

This is a consequence of Proposition 2.2. Indeed, suppose that there are
infinitely many solutions. Then (5) holds. So β(ν) has rank at least 2 as
well. If b1 > b2 are the two leading roots of β(ν), then β(ν)d has two leading
roots bd1 > bd−1

1 b2 with the gcd at least bd−1
1 ≥ b1 ≥ 2. On the other hand,

the two leading roots of α(e + dν) are ad
1 > ad

2 and are coprime. Hence (5)
cannot hold, which is a contradiction.

The simple criterion of Proposition 2.3 answers the question about per-
fect powers in (S(n, k))n≥1. By (1), for k ≥ 2 the two leading roots of
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S(ν, k) are the coprime numbers k > k − 1. So, S(n, k) = xd has for fixed
k, d ≥ 2 only finitely many solutions (n, x) ∈ N2. Combining this with the
result of Brindza and Pintér [4] (see the previous section) we obtain that for
every fixed k ≥ 2 the equation S(n, k) = xd has only finitely many solutions
(n, x, d) ∈ N3 with x, d > 1.

There is yet the third way of looking at the ring E which we state in the
form of the next proposition; its proof is trivial.

Proposition 2.4 Let the mapping ψ : E → Q[Xp : p ∈ P] be defined by
ψ(c1ν) = c for c ∈ Q, ψ(pν) = Xp for p ∈ P, and by the multiplicative
and additive extension on the remaining elements of E. Then ψ is a ring
isomorphism between E and Q[Xp : p ∈ P ].

For example,

ψ(− 7
90
· 24ν + 10ν + 5 · 9ν − 10 · 1ν) = − 7

90
X3

2X3 +X2X5 + 5X2
3 − 10.

The isomorphism ψ is a standard tool for dealing with exponential polyno-
mials and goes back at least to Ritt [16]. See van der Poorten [15, 3.2] for
more information.

We need to show that certain relations of type (4) or (5) are impossible.
We accomplish this by interpreting them via ψ as polynomial identities. See
Luca and Walsh [12] for similar applications.

3 The proofs

In the proofs of Theorems 1.1 and 1.2 we need the well-known Bertrand’s
postulate. It asserts that for every n ∈ N, n ≥ 2, the interval (n/2, n]
contains at least one prime number. A simple proof was given by Erdős [7].
A nice presentation of this proof is in Aigner and Ziegler [1, pp. 7–12].

Proof of Theorem 1.1. Suppose, for the contradiction, that (2) holds for
infinitely many n ∈ N. By Proposition 2.1, we have in E the identity

T (ν, k2) = T (ν, k1) · γ(6)

with a nonzero γ ∈ E . Hence k2 = ak1 where a ∈ N is the leading root of
γ. Since k2 > k1, we have that k2 ≥ 2k1. By Bertrand’s postulate, there is
a prime number p such that k2 ≥ p > k1. From (6),

A = B · C

8



where A = ψ(T (ν, k2)), B = ψ(T (ν, k1)), and C = ψ(γ) are polynomials
from Q[Xp : p ∈ P]. The variable Xp does not appear in B but it appears
exactly once in A, in the monomial t(k2, p)Xp (remember that all t(k, i) are
nonzero). Since k1 > 1, B is a nonconstant polynomial. If Xp does not
appear in C, the identity is patently impossible. If Xp appears in C, it is
impossible either because then B ·C has at least one monomial of the type
DXp, where D is a nonconstant monomial in the variables distinct from Xp,
but A contains no such monomial. We have a contradiction. 2

Proof of Theorem 1.2. Without loss of generality we can assume that no
exponent ai in (3) is divisible by d. We fix an m-tuple 1 < k1 < . . . < km

of distinct integers and an m-tuple of positive integers a1, . . . , am none of
which is divisible by d > 1, and assume that

T (n, k1)
a1 . . . T (n, km)am = xd

has infinitely many solutions (n, x) ∈ N2. We show that this leads to a
contradiction.

By Proposition 2.2,

T (e+ dν, k1)
a1 . . . T (e+ dν, km)am = γd

for some e ∈ {0, 1, . . . , d−1} and γ ∈ E . Applying ψ, we obtain the identity

m∏
j=1

( kj∑
i=1

t(kj, i)i
eX(i)d

)aj

= Qd(7)

where X(i) =
∏

p\iX
mp(i)
p (mp(i) is the exponent of p in the prime decom-

position of i) and Q = ψ(γ) ∈ Q[Xp : p ∈ P]. Let q be the maximum
prime number in the interval (km/2, km]. By Bertrand’s postulate, q exists.
The variable Xq appears in each of the m factors in the left hand side of
(7) at most once, possibly in the summand t(kj, q)q

eX(q)d = t(kj, q)q
eXd

q ,
and it does appear in the last mth factor. Distinguishing Xq and denoting
R = Q[Xp : p ∈ P & p 6= q], we write (7) in the form

m∏
j=1

(
t(kj, q)q

eXd
q +Bj

)aj

= Qd.(8)

Here t(kj, q) = 0 if q > kj and t(km, q) 6= 0, Bj ∈ R, and Q ∈ R[Xq]. Clearly,
every Bj is nonzero and except for the case kj0 = q and kj0−1 = q − 1 when
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Bj0 = Bj0−1, we have that if j1 > j2 then Bj1 has a monomial not contained
in Bj2 (since all t(k, i) are nonzero). Hence each two of the Bjs with kj ≥ q
differ by more than a constant multiple. So we write (8) as

B
s∏

j=1

(
Xd

q + Cj

)bj

= Qd

where B,Cj ∈ R are nonzero, s ≥ 1, bj are positive integers not divisible by
d, and Cj are mutually distinct. This identity is impossible. The left hand
side, taken as a polynomial in Xq, has ds ≥ 2 distinct roots none of which
has multiplicity divisible by d. But each root of the right hand side (if any)
has multiplicity divisible by d. We have obtained a contradiction. 2

A polynomial P ∈ C[X1, . . . , Xm] depends on Xi if ∂P
∂Xi

6= 0. An interval
partition M of [m] is a partition [m] = I1∪I2∪. . .∪Is into disjoint nonempty
intervals I1 < I2 < . . . < Is. A polynomial system {Pi ∈ C[X1, . . . , Xm] :
i = 1, . . . ,m} is M-regular if (i) for every k and i ∈ Ik one has Pi ∈ C[Xj :
j ∈ I1 ∪ . . . ∪ Ik], (ii) for every k and i, j ∈ Ik the variable Xj appears in Pi

only in the monomial bi,jXj (bi,j ∈ C is possibly zero), and (iii) the Jacobian
det( ∂Pi

∂Xj
) is a nonzero constant. We call the linear tail

∑
j∈Ik

bi,jXj of Pi,

i ∈ Ik, the linear part of Pi.
Suppose {Pi : i = 1, . . . ,m} is M-regular. Then, by (i) and (ii), the

Jacobi matrix ( ∂Pi

∂Xj
) has a block lower triangular form with s blocks on the

main diagonal (and zeros above the blocks) where the kth block is a square
|Ik|× |Ik| matrix Ak of coefficients of the linear parts of the Pis, i ∈ Ik. The
condition (iii) is equivalent to the fact that every Ak is regular because the
Jacobian equals det(A1) · . . . · det(As).

If the polynomials and their variables are indexed instead of [m] by two
arbitrary m-sets of integers M and N , we transfer the interval partition M
of [m] to M and N in the obvious way and work with M-regular systems
also in this more general situation.

Proposition 3.1 Let P ∈ C[X1, . . . , Xm] be a nonconstant polynomial, M
an interval partition of [m] with parts I1 < . . . < Is, and {Pi ∈ C[X1, . . . , Xm] :
i = 1, . . . ,m} an M-regular system of polynomials. Then the following hold.

1. There exist m polynomials Q1, . . . , Qm ∈ C[X1, . . . , Xm] inverting the
system {Pi : i = 1, . . . ,m}, that is, Pi(Q1, . . . , Qm) = Xi for every
i = 1, . . . ,m.
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2. The system {Qi : i = 1, . . . ,m} of 1 is M-regular.

3. The polynomial P (P1, . . . , Pm) ∈ C[X1, . . . , Xm] is nonconstant.

4. If P depends on some variable Xj, j ∈ Is, then P (P1, . . . , Pm) depends
also on some variable Xk, k ∈ Is.

Proof. Let P , M, and {Pi : i = 1, . . . ,m} be as stated. For every
k = 1, . . . , s consider the linear system

{∑j∈Ik
bi,jXj = Yi −Ri : i ∈ Ik}

in the unknowns Xj, j ∈ Ik, where the left hand sides are the linear parts
of the Pis, i ∈ Ik, Yi are new variables, and Ri = Pi −

∑
j∈Ik

bi,jXj ∈ C[Xj :
j ∈ I1 ∪ . . . ∪ Ik−1]. The unique solution obtained by multiplying by A−1

k is
the polynomials Xj = Tj(Yj : j ∈ Ik; Xj : j ∈ I1 ∪ . . . ∪ Ik−1), j ∈ Ik. The
first |I1| polynomials Tj are linear and free of the X-variables. Substituting
Tj for Xj, j ∈ I1, in Tj with j ∈ I2, we eliminate the X-variables in the next
|I2| polynomials Tj. Continuing this way we eliminate from every Tj every
X-variable and obtain some polynomials Qj, j = 1, . . . ,m, only in the Y -
variables. It follows by elementary properties of matrix multiplication that
{Qj : j = 1, . . . ,m} indeed inverts {Pi : i = 1, . . . ,m}.

The solution process in 1 gives the system {Qi : i = 1, . . . ,m} the form
prescribed in the conditions (i) and (ii) of regularity. The diagonal blocks
of its Jacobi matrix are just the inverse matrices A−1

k . Thus its Jacobian is
nonzero and equals to the reciprocal of the Jacobian of {Pi : i = 1, . . . ,m}.
This proves 2.

The proof of 3 follows immediately from 1: If P (P1, . . . , Pm) were con-
stant, then P (P1(Q1, . . . , Qm), . . . , Pm(Q1, . . . , Qm)) = P (X1, . . . , Xm) would
be constant as well.

As for 4, we show that for a specialization of the first |I1| + · · · + |Is−1|
variables P (P1, . . . , Pm) becomes a nonconstant polynomial. We write P as
a finite sum

P =
∑
M

TM ·M

where M ∈ C[Xj : j ∈ Is] are distinct monic monomials and TM ∈ C[Xj :
j ∈ I1 ∪ . . . ∪ Is−1]. Since P depends on one of the last |Is| variables, there
is a nonconstant M0 with a nonzero TM0 . By 3, T ∗M0

= TM0(Xj := Pj :
j ∈ I1 ∪ . . .∪ Is−1) is a nonzero (but possibly constant) polynomial. We set
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Xj := αj ∈ C, j ∈ I1 ∪ . . . ∪ Is−1, so that T ∗M0
becomes a nonzero constant.

After this P (Xj := Pj : j ∈ I1 ∪ . . . ∪ Is−1; Xj : j ∈ Is) becomes a
nonconstant polynomial P ∗ ∈ C[Xj : j ∈ Is] and {Pj : j ∈ Is} becomes an
N -regular system {P ∗

j ∈ C[Xj : j ∈ Is] : j ∈ Is} where N consists of just
one part Is. Again by 3, P (P1, . . . , Pm)(Xj := αj : j ∈ I1 ∪ . . . ∪ Is−1) =
P ∗(Xj := P ∗

j : j ∈ Is) is a nonconstant polynomial. 2

Claim 1 of the previous proposition is a particular (and rather trivial) case
of the famous Jacobian conjecture which is still open; see, for example, [8].

Lemma 3.2 Let 1 ≤ k1 < k2 < . . . < km be m distinct integers and

Dm = Dm(X1, X2, . . . , Xm) = det

(
km−ki∏
k=1

(ki + k −Xj)

)m

i,j=1

where for i = m the product is defined as 1. Then for every t ∈ N and
A ⊂ C with |A| ≥ m(km − k1 + t) there exist t mutually disjoint m-tuples
(αi,1, . . . , αi,m) ∈ Am of elements of A, the elements in each m-tuple being
mutually distinct, such that Dm(αi,1, . . . , αi,m) 6= 0 for every i = 1, . . . , t,

Proof. Dm is a polynomial which has degree at most d = km − k1 in
every variable Xi. We show that Dm is not identically zero by proving by
induction on m that actually degX1

(Dm) = d (by the symmetry, this holds
for every variable). For m = 1 it is true because D1 = 1. For m > 1 we
expand Dm by the first row:

Dm =
km−k1∏

k=1

(k1 + k −X1) · E +
m∑

j=2

(−1)j+1a1,jM1,j

where E = Dm−1(X2, . . . , Xm) corresponds to the (m− 1)-tuple k2, . . . , km,
ai,j is the entry of the matrix defining Dm, and Mi,j is the minor of ai,j. The
first term is of degree d in X1 (by induction, E is a nonzero polynomial),
a1,j are X1-free, and degX1

(M1,j) ≤ km − k2 < d. Hence degX1
(Dm) = d.

Now it suffices to prove that for every A ⊂ C with |A| ≥ m(d+1) we can
select m distinct elements α1, . . . , αm ∈ A such that Dm(α1, . . . , αm) 6= 0.
Since Dm is a nonzero polynomial in m variables and of degree at most d in
each, this follows by an easy induction on m using the basic fact that every
nonzero P ∈ C[X], deg(P ) ≤ d, has at most d distinct roots. 2
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For the proofs of Theorems 1.3–1.7 we need a bound on the number of
primes in the interval (x − ∆, x) stronger than Bertrand’s postulate. We
use the fact that there exists a real number θ, 0 < θ < 1, and constants
κ, x0 > 0 such that

π(x)− π(x−∆) >
κ∆

log x
(9)

whenever x > x0 and xθ < ∆ < x. By the result of Iwaniecz and Pintz [9],
this is true for every θ > 23

42
. We can certainly fix θ to be 2

3
.

For the next key result recall the definition of ψ given in Proposition 2.4.
The notation like Xp := αp : p 6∈ Pk means that the variables Xp with
p ∈ Pk are left unevaluated and for the remaining Xp we substitute the
constants αp.

Proposition 3.3 For every m, t ∈ N there is a constant C = C(m, t) > 0
such that the following holds. For every m distinct positive integers C <
k1 < k2 < . . . < km there is an interval partition M of [m] and t mutually
disjoint m-sets of prime numbers P1, . . . ,Pt such that for every k = 1, . . . , t
and every specialization {αp ∈ C : p ∈ P} the system of m polynomials
from Q[Xp : p ∈ Pk]

{ψ(S(ν, ki))(Xp := αp : p 6∈ Pk) : i = 1, . . . ,m}

is M-regular.

Proof. First we fix an arbitrary decreasing sequence θ1 > θ2 > . . . of
numbers in the interval (2

3
, 1). To be specific, we set

θi =
5

3
− i+ 2

i+ 3
.

So (θi)i≥1 = (11
12
, 13

15
, 5

6
, . . .). Let m, t ∈ N be given. We fix a sufficiently

large constant C = C(m, t) > 0 meeting the following conditions, in which
x0 and κ are the constants of bound (9) corresponding to θ = 2

3
.

C > x0,(10)

k > C ⇒ (m+ 1)kθ1 < 1
2
k,(11)

k > C ⇒ κkθi

log k
> m(m(2k)θi+1 + t) for every i = 1, . . . ,m.(12)

13



Let C < k1 < k2 < . . . < km be m fixed integers. We take the set A,
1 ∈ A ⊂ [m], defined by

A = {1} ∪ {i ∈ [m] : i ≥ 2 & ki − kθi
i ≥ ki−1}.

A has s ≥ 1 elements 1 = a1 < a2 < . . . < as ≤ m. We define the interval
partition M of [m] by

M = {I1, . . . , Is} = {[1, a2 − 1], [a2, a3 − 1], . . . , [as−1, as − 1], [as,m]}

and set as+1 = m+ 1. For j = 1, . . . , s we define the interval

Jj = (kaj
− k

θaj
aj , kaj

].

Clearly,
kaj−1 < Jj ≤ kaj

.(13)

Let K = kaj+1−1 = max{ki : i ∈ Ij}. By the definition of A, if aj+1− 2 ∈ Ij
then

kaj+1−2 > K −Kθaj+1−1 ≥ K −Kθaj .

From this, if aj+1 − 3 ∈ Ij then

kaj+1−3 > kaj+1−2 − k
θaj+1−2

aj+1−2 ≥ K − 2Kθaj

and so on. In the end,

kaj
≥ K − (|Ij| − 1)Kθaj > K −mKθaj .

From this and by (11),
K = kaj+1−1 < 2kaj

(14)

and
kaj

− k
θaj
aj > K − (m+ 1)Kθaj > 1

2
K = 1

2
kaj+1−1.

We conclude that
Jj ⊂ (1

2
ki, ki] for every i ∈ Ij.(15)

Let j ∈ N, 1 ≤ j ≤ s, be again arbitrary and fixed. Let Q ⊂ Jj be an
|Ij| = (aj+1− aj)-element set of primes. By (15), for every i ∈ Ij and p ∈ Q
the variable Xp appears in ψ(S(ν, ki)) only in the linear term αi,pXp. By
(1), the matrix of coefficients Aj is

Aj = (αi,p)i∈Ij , p∈Q =

(
(−1)ki−p

(ki − p)! · p!

)
i∈Ij , p∈Q

.

14



Let again K = kaj+1−1. The determinant detAj is nonzero if and only if
detBj is nonzero where the matrix Bj arises by multiplying every column
p of Aj by (−1)p(K − p)! · p! and every row ki by (−1)ki . We have

Bj =

(
K−ki∏
k=1

(ki + k − p)

)
i∈Ij , p∈Q

.

Hence detAj 6= 0 if and only if the polynomial D|Ij | of Lemma 3.2, corre-
sponding to the parameters {ki : i ∈ Ij}, does not vanish on the ordered
|Ij|-tuple of the elements of Q. D|Ij | has in every variable degree K − kaj

.
By the definition of A and by (14),

K − kaj
=

aj+1−aj−1∑
r=1

kaj+r − kaj+r−1 <
aj+1−aj−1∑

r=1

k
θaj+r

aj+r ≤ mKθaj+1

< m(2kaj
)θaj+1 .(16)

By (9) and (10),

|Jj ∩ P| >
κk

θaj
aj

log(kaj
)
.(17)

By (12), (16), and (17),

|Jj ∩ P| > m(K − kaj
+ t) ≥ |Ij|(K − kaj

+ t).

Using Lemma 3.2, we select t mutually disjoint |Ij|-sets of primes Q1,j ⊂
Jj, . . . ,Qt,j ⊂ Jj such that for every Qi,j, 1 ≤ i ≤ t, the corresponding
matrix of coefficients Aj is regular. We define, for i = 1, . . . , t, the desired
m-element sets of primes as

Pi =
s⋃

j=1

Qi,j.

By the selection of the Qi,js and by (13), these sets are disjoint. Let
{αp ∈ C : p ∈ P} be any fixed specialization. By (13) and (15), for every
k = 1, . . . , t the Jacobi matrix of {ψ(S(ν, ki))(Xp := αp : p 6∈ Pk) : i =
1, . . . ,m} satisfies conditions (i) and (ii) of M-regularity. Its determinant
is a nonzero constant because of the selection of the Qi,js. The proposition
is proved. 2
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Note that we prove more than it is stated (and we will need this): By (15),
if p ∈ Pk belongs to the last part of M, that is p ∈ Qk,s, then Xp appears
in every ψ(S(ν, ki)) (in all variables {Xp : p ∈ P}) only in the linear term
bXp.

Proof of Theorem 1.3. It follows immediately by combining 3 of Propo-
sition 3.1 and Proposition 3.3. 2

Proof of Corollary 1.4. We can use in the proof of Proposition 3.3 a
decreasing sequence (θi)i≥1 in the interval (23

42
, 1) such that θ1 = θ. Then we

set C to be C(m, 1) of Theorem 1.3. By Theorem 1.3 and by the proof of
Proposition 3.3, the polynomial

Q = P (ψ(S(ν, k1)), . . . , ψ(S(ν, km)))

has a monomial (with nonzero coefficient) containing a power Xs
p such that

s ≥ 1 and p > k1 − kθ
1. Thus the leading root a ∈ N of ψ−1(Q) = caν + · · ·,

c ∈ Q is nonzero, satisfies a ≥ p > k1 − kθ
1 and the corollary follows. 2

Proof of Theorem 1.5. We set the constant C to be C(m, 1) of Propo-
sition 3.3. We prove the contraposition of the implication. Suppose that
C < k1 < . . . < km are fixed and Q(S(n,k1),...,S(n,km))

P (S(n,k1),...,S(n,km))
∈ Z for infinitely many

n ∈ N. By Proposition 2.1, we have in Q[Xp : p ∈ P ] the identity

ψ(Q(S(ν, k1), . . . , S(ν, km))) = ψ(P (S(ν, k1), . . . , S(ν, km))) · T

for some polynomial T . Let P1 be the m-set of primes ensured by Proposi-
tion 3.3, with elements p1 < . . . < pm. Setting all Xp, p 6∈ P1, equal to zero
we obtain the identity

Q(S∗1 , . . . , S
∗
m) = P (S∗1 , . . . , S

∗
m) · T ∗

where S∗i = ψ(S(ν, ki))(Xp = 0 : p 6∈ P1), i = 1, . . . ,m, and T ∗ are poly-
nomials from Q[Xp : p ∈ P1]. Substituting for Xp, p ∈ P1, the polynomial
Qp(Yp : p ∈ P1) ensured by 1 of Proposition 3.1 and Proposition 3.3, we
obtain the identity

Q(Yp1 , . . . , Ypm) = P (Yp1 , . . . , Ypm) · T ∗∗.

Hence P divides Q. 2
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Lemma 3.4 Let K be an integral domain of characteristic 0, g, d ∈ N be
two numbers, and let P ∈ K[X] satisfy

P g ∈ K[Xd].

Then P = Xs ·Q(Xd) for some integer s ≥ 0 and a polynomial Q ∈ K[X].

Proof. We write P = XsQ where c = Q(0) 6= 0. From P g ∈ K[Xd] it
follows that d divides gs and Qg ∈ K[Xd]. Suppose, for the contradiction,
that Q 6∈ K[Xd]. Let m > 0 be the smallest integer not divisible by d
for which Xm has in Q a nonzero coefficient f . It is easy to see that the
coefficient of Xm in Qg is

gcg−1f 6= 0.

This contradicts the assumption Qg ∈ K[Xd]. 2

Proof of Theorem 1.6. We can assume that P depends on all vari-
ables Y1, . . . , Ym and that if Qd divides P for some Q ∈ Q[Y1, . . . , Ym] then
Q is constant. We set t = deg(P ) + 1 and C to be C(m, deg(P ) + 1)
of Proposition 3.3. Suppose that C < k1 < . . . < km are fixed and
P (S(n, k1), . . . , S(n, km)) is a dth power of a positive integer for infinitely
many n ∈ N. By Proposition 2.2, there is an integer e, 0 ≤ e < d, and an
element τ of E so that

P (S(e+ dν, k1), . . . , S(e+ dν, km)) = τ d.

Thus
P (S1, . . . , Sm) = T d

where T = ψ(τ) and Si = ψ(S(e+dν, ki)) are polynomials from Q[Xp : p ∈
P ]. Let M = {I1, . . . , Is} be the interval partition of [m] and P1, . . . ,Pt be
the t disjoint m-sets of primes guaranteed by Proposition 3.3. Let {αp ∈
C : p ∈ P} be any fixed specialization. We take any of the sets, say P1

with the elements p1 < . . . < pm, and set every Xp for p 6∈ P1 equal to αp.
We get the identity

P (S∗1 , . . . , S
∗
m) = (T ∗)d(18)

where T ∗ and S∗i = Si(Xp := αp : p 6∈ P1) are polynomials from Q[Xp :
p ∈ P1].
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Due to the substitution ν 7→ e+dν, actually the polynomial P (S∗1 , . . . , S
∗
m)

lies in Q[Xd
p : p ∈ P1]. Applying the previous lemma (with g = d) for each

of the m variables, we see that

T ∗ = M · U(Xd
p : p ∈ P1)(19)

where M =
∏

p∈P1
Xsp

p , sp ≥ 0. From (18) and (19) we obtain, by replacing
Xd

p with the variable Zp, that

P (U1, . . . , Um) =
∏

p∈P1

Zsp
p · Ud

where Ui, U ∈ Q[Zp : p ∈ P1]. It follows that {Ui : i = 1, . . . ,m} is an
M-regular system. Indeed, S = {ψ(S(ν, ki))(Xp := αp : p 6∈ P1) : i =
1, . . . ,m} is M-regular by Proposition 3.3 and Ui = ψ(S(e+ dν, ki))(Xp :=
αp : p 6∈ P1; X

d
p := Zp : p ∈ P1). That the system {Ui : i = 1, . . . ,m}

satisfies the conditions (i) and (ii) of regularity is clear. Its Jacobian is
a nonzero constant because the substitution ν 7→ e + dν results only in
multiplying the column of Xp in the diagonal block in the Jacobi matrix
of S by the nonzero constant pe. Inverting {Ui : i = 1, . . . ,m} by 1 of
Proposition 3.1, we get the identity

P (Zp1 , . . . , Zpm) =
∏

p∈P1

Qsp
p · U(Zp := Qp : p ∈ P1)

d

for some polynomials Qp ∈ Q[Zp : p ∈ P1]. If U were nonconstant, then
U(Zp := Qp : p ∈ P1) would be nonconstant as well, by 2 and 3 of Proposi-
tion 3.1, which is impossible because P is free of all nonconstant dth powers.
Hence the polynomial U is a constant different from 0. Using (18) and (19)
we conclude from this that

P (S∗1 , . . . , S
∗
m) = c

∏
p∈P1

Xdsp
p

where c ∈ C is nonzero and sp are nonnegative integers. Not all sp may be
zero. Even more is true: By 4 of Proposition 3.1, there exists a k ∈ Is so
that spk

> 0. Returning to all the variables before the specialization, we
conclude that

P (S1, . . . , Sm) = A ·
∏

p∈P1

Xdsp
p +B(20)
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where spk
> 0, A,B ∈ Q[Xp : p ∈ P\P1], and

B(Xp := αp : p ∈ P\P1) = 0.(21)

Since the expression of P (S1, . . . , Sm) in the form (20) is unique, the poly-
nomials A and B are independent of the choice of the specialization {αp ∈
C : p ∈ P}. Since (21) holds for every specialization, B must be a zero
polynomial.

Thus there is a k ∈ Is such that the polynomial P (S1, . . . , Sm) is divisible
by Xd

pk
. Since Is is the last part of M, by the remark after Proposition 3.1

the variable Xpk
appears in every Si only in the term bXd

pk
. Taking any of

the sets of primes Pi, i = 1, . . . , t, in the place of P1, we obtain a set Q
of t primes such that (i) the monomial

(∏
p∈QXp

)d
divides P (S1, . . . , Sm)

and (ii) every Xp, p ∈ Q, appears in every Si only in the term bXd
p . By

(i), the degree of P (S1, . . . , Sm) in the variables {Xp : p ∈ Q} is at least
dt = d(deg(P ) + 1). By (ii), this degree is at most d deg(P ). We have a
contradiction. 2

Proof of Theorem 1.7. In view of Theorem 1.6 it suffices to show that if
C1 < k1 < . . . < km are distinct then the equality P (S(n, k1), . . . , S(n, km)) =
xd for n, x ∈ N, x > 1, implies that d is bounded by a constant. We
assume that P depends on all m variables and set C1 = C1(P ) to be
equal to the constant C(m, deg(P )) of Theorem 1.6. Suppose that Q =
P (ψ(S(ν, k1)), . . . , ψ(S(ν, km))) is a monomial. We know, by the previous
proof, that Q depends on t = deg(P ) + 1 variables Xp such that each of
them appears in every ψ(S(ν, ki)) only in the linear term. But then we
have the same contradiction for the degree of Q in these variables as be-
fore. So Q is not a monomial and P (S(ν, k1), . . . , S(ν, km)) ∈ E has rank
at least two. Thus (P (S(n, k1), . . . , S(n, km)))n≥1 is a non-degenerate lin-
early recurrent sequence having a leading root. By a result from Shorey and
Stewart [19], it follows that there exists a constant C2 which is effectively
computable and depends on P and k1, k2, . . . , km, such that the equality
P (S(n, k1), . . . , S(n, km)) = xd, n, x ∈ N, x > 1, implies d < C2. 2
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