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For a k-tuple A = (a1, . . . , ak) of (not necessarily distinct) numbers ai ∈ N
and n ∈ N, we denote by pA(n) the number of partitions of n into the parts ai,
that is, the number of solutions (m1, . . . ,mk) ∈ Nk

0 of the equation

m1a1 +m2a2 + · · ·+mkak = n .

In [4] Issai Schur (1875–1941) found the asymptotics for pA(n):

Theorem (Schur, 1926). Suppose that gcd(a1, . . . , ak) = 1. Then for n =
1, 2, . . . we have

pA(n) =
nk−1

a1a2 . . . ak · (k − 1)!
+O(nk−2) .

This appears also as problem 27 in part 1 of the book [3] of Pólya and Szegö,
first published in 1925. In the solution they refer to collected papers of Laguerre,
published in 1898. Of course, it is nothing that could not have been possibly
calculated by L. Euler in the 18th century (but apparently it was not — such
asymptotic approach was not in the spirit of the time).

One can prove the theorem by induction on k — see Nathanson [1, Chapter
15.2] and [2]. In the last lecture (January 9, 2014) of the course Introduction
to Number Theory I gave the standard algebraic proof using decomposition of
the generating function into partial fractions, and for the benefit of the students
and myself I write it up here.

We start from scratch and derive decomposition into partial fractions itself.
The ring C[x] is Euclidean (i.e., has the division algorithm), thus Bachet’s iden-
tity holds in it: if p, q ∈ C[x] are coprime polynomials then for some r, s ∈ C[x]
we have

rp+ sq = 1, or
1

pq
=
s

p
+
r

q
.

Iterating this we get that if the polynomials pi ∈ C[x] are pairwise coprime then
for some qi ∈ C[x] we have

1

p1p2 . . . pk
=
q1
p1

+
q2
p2

+ · · ·+ qk
pk

.

Suppose that, moreover, each pi is a power of a linear polynomial, pi = rmi
i

with deg ri = 1 and mi ∈ N. Then we express each qi as a C-linear combination
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of the powers 1, ri, r
2
i , . . . and get the partial fractions decomposition

1

p1p2 . . . pk
= q +

k∑
i=1

mi∑
j=1

βi,j

rji
, βi,j ∈ C and q ∈ C[x] .

But x→ +∞ shows that q = 0.
For α ∈ C and m ∈ N recall the expansion

1

(1− αx)m
=

∞∑
n=0

(
n+m− 1

m− 1

)
αnxn =

∞∑
n=0

(nm−1/(m− 1)! +O(nm−2))αnxn

where the implicit constant in O depends only on m. It is easy to see that the
generating function of the numbers pA(n) is given by

∞∑
n=0

pA(n)xn =
1

(1− xa1)(1− xa2) . . . (1− xak)

(a formal power series equality; no need for |x| < 1 and the like).
For a ∈ N a variant of the usual factorization in C[x] is

1− xa =

a−1∏
j=0

(1− exp(2πi · j/a)x) .

Thus, for the given k-tuple A,

k∏
l=1

(1− xal) =

k∏
l=1

al−1∏
j=0

(1− exp(2πi · j/al)x)

=
∏

d, d | al

∏
0≤e<d, (e,d)=1

(1− exp(2πi · e/d)x)md

=:
∏

d, d | al

∏
0≤e<d, (e,d)=1

pmd

d,e , deg pd,e = 1 ,

where md ∈ N is the number of the als divisible by d; so d runs over the numbers
that divide some al and e is coprime with d. We obtained this expression simply
by reducing the fractions j/al to the least terms e/d. The linear polynomials
pd,e are pairwise coprime (the roots of unity exp(2πi ·e/d) are pairwise distinct)
and the above partial fractions decomposition gives

1

(1− xa1)(1− xa2) . . . (1− xak)
=
∑
d,e

md∑
j=1

βd,e,j

pjd,e
, βd,e,j ∈ C ,

with d, e and md as before. But pjd,e = (1− αx)j where α ∈ C is a d-th root of
1 and 1 ≤ j ≤ md, m1 = k and, by the assumption in the theorem, md < k for
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d > 1. Hence the above expansion shows that the coefficient pA(n) of xn in the
power series expansion of the left side has form

pA(n) = β1,0,kn
k−1/(k − 1)! +O(nk−2) .

Since 1 − xa = (1 − x)(1 + x + x2 + · · · + xa−1), x → 1 shows that β1,0,k =
1/(a1a2 . . . ak) and we are done.
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