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I present Szemerédi’s combinatorial proof [4] of Roth’s theorem [2, 3] on
arithmetic progressions of length three. My motivation to write it up was the
beauty of the whole argument, as well as my recent realization that my un-
derstanding of it contains a (small) gap. I comment on this gap and a minor
innovation in the proof at the end.

N={1,2,...} and [n] = {1,2,...,n} for n € N. AP is an abbreviation for
‘arithmetic progression’. This is a subset of N of the form {a,a+d,a+2d, ... a+
(m—1)d} where a,m,d € N; in particular, always d > 0. |X| denotes cardinality
of the set X. For X C N and a € N, we use notation X +a ={zx+a |z € X}.

Theorem (Roth, 1952). If r3(n) is the mazimum size of a subset of [n]
containing no AP {a,a+ d,a + 2d}, then

r3(n) = o(n), n — oo .

Equivalently: for every § > 0 there is an ng € N such that if n > ng and X C [n]
with | X| > dn, then X contains a 3-term AP.

Let 0 € (0,1] be a real number. A d-sequence is an infinite sequence of pairs
(Xi,ni), i = 1,2,..., where 0 < ny < ng < ... are integers, X; C [n;] are
subsets and, for i — oo,

X,
X — 40 (>0).

n;
We restate Roth’s theorem in terms of §-sequences.

Proposition. Every §-sequence (X;,n;) contains a 3-term AP:
X: > {a,a+d,a+2d}
for some i (equivalently, for every i > ig).

We prove Roth’s theorem in the form of the Proposition. The proof uses three
lemmas.

A set X C N contains an l-cube, I € N, if there exist positive integers
ay,as,...,a; and sets

@#QlCQQC...CQl_H:X with Qj—FCLjCQj_H for1 <j <.

Iklazar@kam.mff.cuni.cz



Lemma 1. FEvery §-sequence (X;,n;) contains (i.e., X; contains, for i > ig)
an l-cube for every | € N.

Proof. Induction on [. For [ = 1, X; contains a 1-cube whenever |X;| > 2 (if
Xi={a<b< ...}, writeb=a+ (b—a)=a+ay), which holds for any large 1.
Suppose that the lemma holds for [ > 1 and every d-sequence. We claim that
for every d0-sequence (X;,n;) there exist subsets ¥; C X, and integers b; > 0
such that (Y;,n;) is a §%/2-sequence and Y; +b; C X; for every i. Then we apply
induction on the sequence (Y;,n;), extend the l-cube in Y; by Q12 = X; and
aj+1 = by, and get an (I + 1)-cube in X;.

To establish the claim, we set Y/ to be the as of the pairs a < b in X; realizing
the most popular distance b—a between two elements of X;, and set b; = b—a to
be that distance. By the pigeon-hole, |Y/| > (‘)gl‘)/nl = (X2 /n; — | Xa| /ma).
Thus [Y/|/n; > 3(1X;]/n;)* + O(1/n;). Throwing away elements from Y; if
necessary, we get Y; with |Y;|/n; — 62/2 for i — oo. It is clear that for every i,
Y, C X;and Y; +b; C X;. O

Note that for an [-cube in X; some a; may be as large as, say, a; > n;/2, but
together we have a; +as + -+ + a; < n;.

A J-sequence (X;, n;) is saturated if for every € > 0 there is an m such that,
for every 4, if A C [n;] is an AP with |A| > m then

1X; N A

—— <d+e¢
|A]

If X C[n]and A={a,a+4d,...,a+ (m—1)d} C [n] is an AP, we set
X[A={jem]la+(G-1deX}=(zra+(z—1)d) H(XNA).

The restriction X | A records the positions of the elements of X in the AP A.
Note that | X |A| = | X NA|, XN Aisan AP if and only if X | A is an AP and
that one has this transitivity: if B C [m] is another AP then (X |A)|B =X |C
where C' C A is the unique AP with C'| A = B.

Lemma 2. For every §-sequence (X;,n;) there exist indices i1 < is < ... and
APs Aj C [ng,] with lengths m; such that my < mgy < ... and

(Yjvmj) = (Xij ‘Aj’mj)
is a saturated &'-sequence with §' > 0.

Proof. If (X;,n;) is saturated we do nothing and set i; = j, A; = X; and
0" = 6. Else there exist a dy > 4, indices i1 < ip < ... and APs A; C [n]
such that [A;| < |A2| < ... and |X;, N Aj|/|A;] > do for every j. Let &' be the
supremum of all §g with this property. By the definition of ¢’ there exist indices
i1 <ip <... and APs A; C [n;;] such that [A;| <[4z < ... and

|Xij N4l 1

P
|4, J



for every j € N. This is the sequence of indices and APs we seek. By the
maximality of &', | Xy, N A;|/[A;| = |X;, [ A;]/|A;] — ¢ as j — oo. Also,
(Xi, | Aj,|Aj|) is saturated, for else the above mentioned transitivity would give
for the original d-sequence indices and APs producing a value &g with g > ¢,
contradicting the definition of ¢'. o

By Szemerédi’s theorem, any d-sequence contains an I-term AP for any [; thus
Lemma 2 holds in fact with |Yj|/m,; =1 for every j.

If X ¢ Nand d € N, the d-decomposition of X is the unique expression of
X as a disjoint union

c-Ua
j=1

of nonempty APs A; with the same common difference d and the property that,
for every j, both minA; —d ¢ X and maxA; +d ¢ X. We obtain it by
intersecting X with the d congruence classes modulo d, and then partitioning
each nonempty intersection into maximal intervals of consecutive elements.

Lemma 3. The d-decomposition X = U;:1 Aj of X has the following proper-
ties.

1. The number of progressions is bounded by r < [(X + d)\X].

2. Let m,n € N with n > md and let X C [n]. Define X' = J;_, A} C
X where each A;- arises from A; by deleting the first m and the last m
elements (A% # 0 iff |A;| > 2m). Then in the d-decomposition of the
complement

N\ = B;
j=1
each AP B; has length at least m.

Proof. 1. The mapping A; — maxA; + d is an injection and goes from
{A1,..., A} to (X +d)\X.

2. By the definition, B; is a maximal interval of C'N ([n]\X’) where C is a
mod d congruence class. If B; is in C'N[n] followed or preceded by a nonempty
A}, then B; contains the first m or the last m elements of Ay and |B;| > m.
If there is no such A} then B; = C' N [n] and we have |B;| > m due to the
assumption that n > md. O

Szemerédi’s proof of Roth’s theorem. We prove that every §-sequence
(X, n;) contains a 3-term AP. By Lemma 2 and the observations on X | A, we
may assume that (X;,n;) is saturated. We split each [n;] into three intervals
(which are also APs)

[nl] =LUJ,UK,; = [an/4j] U [Lnl/4j + 1, I_’I’LZ/QJ] U [Lnl/QJ + 1,ni] .



I;, J; and K; have respective lengths, up to errors O(1), n;/4, n;/4 and n;/2.
We set
U, =X;NL, V,=X;NnJ; and W; = X;NK; .

Since (X;,n;) is a d-sequence and is saturated, for large ¢ we have

because |U;|, |V;| < dn;/4+6n; /60, |W;| < dn;/2+n;/60 and |U;|+|V;|+|W;| =
| Xi| > on; — dn; /60 for large i. We show that for large ¢ there is a 3-term AP
uv=u+dw=u+2din X; withu e U;, v € V; and w € X;. As u+w = 2v,
this is equivalent with finding such elements u € U; and v € V; that 2v — u is in
X;. Note that 2v — u € [n;] for every v € J; and u € I.

Using saturatedness of (X;,n;), we fix a large m € N such that

1X; N A

i 2 54 62/40
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whenever A C [n;] is an AP with |A] > m. Then we fix a large | € N such that
2m/l < §/10. By Lemma 1, for each large i the set V; contains an (14 2m)-cube:

D#Q1CQ2C...C Quams1 =V with Q;+a; C Q41 for 1 <j<I+2m,

for some sets @); and positive integers a1, ag, . . . , j+2m (for simplicity of notation
we do not mark explicitly their dependence on 7). Now

ar t+ag + -+ appom <N, ,

and thus a; > n;/2m only for at most 2m indices j. Without loss of generality,
the big a;s are the last ones. Hence

2m/l < 6/10 and 2a;m <n,;, j=1,2,...,1.
We define
i =2Q;,—U;={2v—u|veQuel}, 1<j<Ii+1.
Clearly,
Dy CDy;C...C D41 Clngl, Dj+2a; C Djy1 and n; > |Dj| > |Dy| > |U;] .

It follows that |D;y1\D;| < n;/l for some j, 1 < j < I. We consider the
2aj-decomposition

t=1
for this j, and the set
.
E;, = U A; C Dj s

t=1



with A} obtained by deleting the first and last m elements of the AP A;. Thus
|D;\E;| < 2mr. By the two properties of d-decompositions in Lemma 3,

S
r <|(Dj 4 2a;)\D;| < |Dj1\Dj| < ni/l and [n)\Ei = | By, |Bi| > m,
t=1

where the By are disjoint APs with common difference 2a;. Each B; has indeed
length at least m because 2a;m < n;.

For large i, due to the selection of m and [, due to saturatedness of (X;,n;)
and due to the fact that each |B;| > m, we have

and

|XinEil = |Xi = | X0 ([n]\Es)|
> 0n; — %0 /40 = Y |X; N By|
t=1

> 0n; — 6°n;/40 — (5 + 67/40) Y | By|
t=1

= on; — 6°n;/40 — (0 + 6%/40)(n; — |E;|)

> 0|E;| — 6*n;/20 > 6%n; /10 — 6%n; /20

= 6%n;/20.

Hence X; N E; # 0 and w € X; N E; for large i. Since E; C D; =20Q; —U; and
Q; CV;, this means that w = 2v —u € X; with v € V; and v € U;, and we get
the desired 3-term AP {u,v,w} C X;. O

Remarks. I took the proof from the book [1] of Moreno and Wagstaft (it also
contains Szemerédi’s proof of Szemerédi’s theorem). The small gap that T did
not realize until recently is the missing of the reduction from (I 4+ 2m)-cube to
l-cube to purge large 2a;s. Without this purge, if we pick up a bad index j
with 2a; > n;/m, the final calculation does not work as all APs B, are short.
This gap is present in the rendering of the proof in the book [1] (and maybe
elsewhere). Of course, once one realizes it, it is easy to fix it but it brings
a humbling experience. The minor innovation of mine is the introduction of
d-sequences in the proof, which makes some arguments cleaner (seems to me)
and reduces necessary calculations. The transition to saturated subsequence in
Lemma 2 corresponds, in other renderings of Szemerédi’s proof, to the step of
proving by Fekete’s lemma that lim,,—, r3(n)/n exists.
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