Szemerédi's proof of Roth's theorem that

$$
r_{3}(n)=o(n)
$$

Martin Klazar ${ }^{1}$
April 18, 2013
I present Szemerédi's combinatorial proof [4] of Roth's theorem [2, 3] on arithmetic progressions of length three. My motivation to write it up was the beauty of the whole argument, as well as my recent realization that my understanding of it contains a (small) gap. I comment on this gap and a minor innovation in the proof at the end.
$\mathbb{N}=\{1,2, \ldots\}$ and $[n]=\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$. AP is an abbreviation for 'arithmetic progression'. This is a subset of \mathbb{N} of the form $\{a, a+d, a+2 d, \ldots, a+$ ($m-1$) d\} where $a, m, d \in \mathbb{N}$; in particular, always $d>0 .|X|$ denotes cardinality of the set X. For $X \subset \mathbb{N}$ and $a \in \mathbb{N}$, we use notation $X+a=\{x+a \mid x \in X\}$.

Theorem (Roth, 1952). If $r_{3}(n)$ is the maximum size of a subset of $[n]$ containing no AP $\{a, a+d, a+2 d\}$, then

$$
r_{3}(n)=o(n), n \rightarrow \infty .
$$

Equivalently: for every $\delta>0$ there is an $n_{0} \in \mathbb{N}$ such that if $n>n_{0}$ and $X \subset[n]$ with $|X|>\delta n$, then X contains a 3 -term AP.

Let $\delta \in(0,1]$ be a real number. A δ-sequence is an infinite sequence of pairs $\left(X_{i}, n_{i}\right), i=1,2, \ldots$, where $0<n_{1}<n_{2}<\ldots$ are integers, $X_{i} \subset\left[n_{i}\right]$ are subsets and, for $i \rightarrow \infty$,

$$
\frac{\left|X_{i}\right|}{n_{i}} \rightarrow \delta(>0) .
$$

We restate Roth's theorem in terms of δ-sequences.
Proposition. Every δ-sequence (X_{i}, n_{i}) contains a 3 -term AP:

$$
X_{i} \supset\{a, a+d, a+2 d\}
$$

for some i (equivalently, for every $i>i_{0}$).
We prove Roth's theorem in the form of the Proposition. The proof uses three lemmas.

A set $X \subset \mathbb{N}$ contains an l-cube, $l \in \mathbb{N}$, if there exist positive integers $a_{1}, a_{2}, \ldots, a_{l}$ and sets

$$
\emptyset \neq Q_{1} \subset Q_{2} \subset \ldots \subset Q_{l+1}=X \text { with } Q_{j}+a_{j} \subset Q_{j+1} \text { for } 1 \leq j \leq l .
$$

[^0]Lemma 1. Every δ-sequence $\left(X_{i}, n_{i}\right)$ contains (i.e., X_{i} contains, for $i>i_{0}$) an l-cube for every $l \in \mathbb{N}$.
Proof. Induction on l. For $l=1, X_{i}$ contains a 1-cube whenever $\left|X_{i}\right| \geq 2$ (if $X_{i}=\{a<b<\ldots\}$, write $\left.b=a+(b-a)=a+a_{1}\right)$, which holds for any large i. Suppose that the lemma holds for $l \geq 1$ and every δ-sequence. We claim that for every δ-sequence $\left(X_{i}, n_{i}\right)$ there exist subsets $Y_{i} \subset X_{i}$ and integers $b_{i}>0$ such that $\left(Y_{i}, n_{i}\right)$ is a $\delta^{2} / 2$-sequence and $Y_{i}+b_{i} \subset X_{i}$ for every i. Then we apply induction on the sequence $\left(Y_{i}, n_{i}\right)$, extend the l-cube in Y_{i} by $Q_{l+2}=X_{i}$ and $a_{l+1}=b_{i}$, and get an $(l+1)$-cube in X_{i}.

To establish the claim, we set Y_{i}^{\prime} to be the a s of the pairs $a<b$ in X_{i} realizing the most popular distance $b-a$ between two elements of X_{i}, and set $b_{i}=b-a$ to be that distance. By the pigeon-hole, $\left|Y_{i}^{\prime}\right|>\binom{\left|X_{i}\right|}{2} / n_{i}=\frac{1}{2}\left(\left|X_{i}\right|^{2} / n_{i}-\left|X_{i}\right| / n_{i}\right)$. Thus $\left|Y_{i}^{\prime}\right| / n_{i}>\frac{1}{2}\left(\left|X_{i}\right| / n_{i}\right)^{2}+O\left(1 / n_{i}\right)$. Throwing away elements from Y_{i}^{\prime} if necessary, we get Y_{i} with $\left|Y_{i}\right| / n_{i} \rightarrow \delta^{2} / 2$ for $i \rightarrow \infty$. It is clear that for every i, $Y_{i} \subset X_{i}$ and $Y_{i}+b_{i} \subset X_{i}$.

Note that for an l-cube in X_{i} some a_{j} may be as large as, say, $a_{j}>n_{i} / 2$, but together we have $a_{1}+a_{2}+\cdots+a_{l}<n_{i}$.

A δ-sequence $\left(X_{i}, n_{i}\right)$ is saturated if for every $\varepsilon>0$ there is an m such that, for every i, if $A \subset\left[n_{i}\right]$ is an AP with $|A| \geq m$ then

$$
\frac{\left|X_{i} \cap A\right|}{|A|}<\delta+\varepsilon .
$$

If $X \subset[n]$ and $A=\{a, a+d, \ldots, a+(m-1) d\} \subset[n]$ is an AP, we set

$$
X \mid A=\{j \in[m] \mid a+(j-1) d \in X\}=(x \mapsto a+(x-1) d)^{-1}(X \cap A) .
$$

The restriction $X \mid A$ records the positions of the elements of X in the AP A. Note that $|X| A|=|X \cap A|, X \cap A$ is an AP if and only if $X| A$ is an AP and that one has this transitivity: if $B \subset[m]$ is another AP then $(X \mid A)|B=X| C$ where $C \subset A$ is the unique AP with $C \mid A=B$.

Lemma 2. For every δ-sequence $\left(X_{i}, n_{i}\right)$ there exist indices $i_{1}<i_{2}<\ldots$ and APs $A_{j} \subset\left[n_{i_{j}}\right]$ with lengths m_{j} such that $m_{1}<m_{2}<\ldots$ and

$$
\left(Y_{j}, m_{j}\right)=\left(X_{i_{j}} \mid A_{j}, m_{j}\right)
$$

is a saturated δ^{\prime}-sequence with $\delta^{\prime} \geq \delta$.
Proof. If $\left(X_{i}, n_{i}\right)$ is saturated we do nothing and set $i_{j}=j, A_{j}=X_{j}$ and $\delta^{\prime}=\delta$. Else there exist a $\delta_{0}>\delta$, indices $i_{1}<i_{2}<\ldots$ and APs $A_{j} \subset\left[n_{i_{j}}\right]$ such that $\left|A_{1}\right|<\left|A_{2}\right|<\ldots$ and $\left|X_{i_{j}} \cap A_{j}\right| /\left|A_{j}\right|>\delta_{0}$ for every j. Let δ^{\prime} be the supremum of all δ_{0} with this property. By the definition of δ^{\prime} there exist indices $i_{1}<i_{2}<\ldots$ and APs $A_{j} \subset\left[n_{i_{j}}\right]$ such that $\left|A_{1}\right|<\left|A_{2}\right|<\ldots$ and

$$
\frac{\left|X_{i_{j}} \cap A_{j}\right|}{\left|A_{j}\right|}>\delta^{\prime}-\frac{1}{j}
$$

for every $j \in \mathbb{N}$. This is the sequence of indices and APs we seek. By the maximality of $\delta^{\prime},\left|X_{i_{j}} \cap A_{j}\right| /\left|A_{j}\right|=\left|X_{i_{j}}\right| A_{j}\left|/\left|A_{j}\right| \rightarrow \delta^{\prime}\right.$ as $j \rightarrow \infty$. Also, ($X_{i_{j}}\left|A_{j},\left|A_{j}\right|\right)$ is saturated, for else the above mentioned transitivity would give for the original δ-sequence indices and APs producing a value δ_{0} with $\delta_{0}>\delta^{\prime}$, contradicting the definition of δ^{\prime}.

By Szemerédi's theorem, any δ-sequence contains an l-term AP for any l; thus Lemma 2 holds in fact with $\left|Y_{j}\right| / m_{j}=1$ for every j.

If $X \subset \mathbb{N}$ and $d \in \mathbb{N}$, the d-decomposition of X is the unique expression of X as a disjoint union

$$
X=\bigcup_{j=1}^{r} A_{j}
$$

of nonempty $\operatorname{APs} A_{j}$ with the same common difference d and the property that, for every j, both $\min A_{j}-d \notin X$ and $\max A_{j}+d \notin X$. We obtain it by intersecting X with the d congruence classes modulo d, and then partitioning each nonempty intersection into maximal intervals of consecutive elements.

Lemma 3. The d-decomposition $X=\bigcup_{j=1}^{r} A_{j}$ of X has the following properties.

1. The number of progressions is bounded by $r \leq|(X+d) \backslash X|$.
2. Let $m, n \in \mathbb{N}$ with $n \geq m d$ and let $X \subset[n]$. Define $X^{\prime}=\bigcup_{j=1}^{r} A_{j}^{\prime} \subset$ X where each A_{j}^{\prime} arises from A_{j} by deleting the first m and the last m elements $\left(A_{j}^{\prime} \neq \emptyset\right.$ iff $\left.\left|A_{j}\right|>2 m\right)$. Then in the d-decomposition of the complement

$$
[n] \backslash X^{\prime}=\bigcup_{j=1}^{s} B_{j}
$$

each AP B_{j} has length at least m.
Proof. 1. The mapping $A_{j} \mapsto \max A_{j}+d$ is an injection and goes from $\left\{A_{1}, \ldots, A_{r}\right\}$ to $(X+d) \backslash X$.
2. By the definition, B_{j} is a maximal interval of $C \cap\left([n] \backslash X^{\prime}\right)$ where C is a $\bmod d$ congruence class. If B_{j} is in $C \cap[n]$ followed or preceded by a nonempty A_{k}^{\prime}, then B_{j} contains the first m or the last m elements of A_{k} and $\left|B_{j}\right| \geq m$. If there is no such A_{k}^{\prime} then $B_{j}=C \cap[n]$ and we have $\left|B_{j}\right| \geq m$ due to the assumption that $n \geq m d$.

Szemerédi's proof of Roth's theorem. We prove that every δ-sequence $\left(X_{i}, n_{i}\right)$ contains a 3 -term AP. By Lemma 2 and the observations on $X \mid A$, we may assume that $\left(X_{i}, n_{i}\right)$ is saturated. We split each $\left[n_{i}\right]$ into three intervals (which are also APs)

$$
\left[n_{i}\right]=I_{i} \cup J_{i} \cup K_{i}=\left[\left\lfloor n_{i} / 4\right\rfloor\right] \cup\left[\left\lfloor n_{i} / 4\right\rfloor+1,\left\lfloor n_{i} / 2\right\rfloor\right] \cup\left[\left\lfloor n_{i} / 2\right\rfloor+1, n_{i}\right]
$$

I_{i}, J_{i} and K_{i} have respective lengths, up to errors $O(1), n_{i} / 4, n_{i} / 4$ and $n_{i} / 2$. We set

$$
U_{i}=X_{i} \cap I_{i}, \quad V_{i}=X_{i} \cap J_{i} \text { and } W_{i}=X_{i} \cap K_{i}
$$

Since $\left(X_{i}, n_{i}\right)$ is a δ-sequence and is saturated, for large i we have

$$
\left|U_{i}\right|,\left|V_{i}\right| \geq \delta n_{i} / 5=\delta n_{i} / 4-\delta n_{i} / 20
$$

because $\left|U_{i}\right|,\left|V_{i}\right|<\delta n_{i} / 4+\delta n_{i} / 60,\left|W_{i}\right|<\delta n_{i} / 2+\delta n_{i} / 60$ and $\left|U_{i}\right|+\left|V_{i}\right|+\left|W_{i}\right|=$ $\left|X_{i}\right|>\delta n_{i}-\delta n_{i} / 60$ for large i. We show that for large i there is a 3 -term AP $u, v=u+d, w=u+2 d$ in X_{i} with $u \in U_{i}, v \in V_{i}$ and $w \in X_{i}$. As $u+w=2 v$, this is equivalent with finding such elements $u \in U_{i}$ and $v \in V_{i}$ that $2 v-u$ is in X_{i}. Note that $2 v-u \in\left[n_{i}\right]$ for every $v \in J_{i}$ and $u \in I_{i}$.

Using saturatedness of $\left(X_{i}, n_{i}\right)$, we fix a large $m \in \mathbb{N}$ such that

$$
\frac{\left|X_{i} \cap A\right|}{|A|}<\delta+\delta^{2} / 40
$$

whenever $A \subset\left[n_{i}\right]$ is an AP with $|A| \geq m$. Then we fix a large $l \in \mathbb{N}$ such that $2 m / l<\delta / 10$. By Lemma 1 , for each large i the set V_{i} contains an $(l+2 m)$-cube:
$\emptyset \neq Q_{1} \subset Q_{2} \subset \ldots \subset Q_{l+2 m+1}=V_{i}$ with $Q_{j}+a_{j} \subset Q_{j+1}$ for $1 \leq j \leq l+2 m$,
for some sets Q_{j} and positive integers $a_{1}, a_{2}, \ldots, a_{l+2 m}$ (for simplicity of notation we do not mark explicitly their dependence on i). Now

$$
a_{1}+a_{2}+\cdots+a_{l+2 m}<n_{i}
$$

and thus $a_{j}>n_{i} / 2 m$ only for at most $2 m$ indices j. Without loss of generality, the big $a_{j} \mathrm{~s}$ are the last ones. Hence

$$
2 m / l<\delta / 10 \text { and } 2 a_{j} m \leq n_{i}, j=1,2, \ldots, l
$$

We define

$$
D_{j}=2 Q_{j}-U_{i}=\left\{2 v-u \mid v \in Q_{j}, u \in U_{i}\right\}, 1 \leq j \leq l+1
$$

Clearly,
$D_{1} \subset D_{2} \subset \ldots \subset D_{l+1} \subset\left[n_{i}\right], D_{j}+2 a_{j} \subset D_{j+1}$ and $n_{i} \geq\left|D_{j}\right| \geq\left|D_{1}\right| \geq\left|U_{i}\right|$.
It follows that $\left|D_{j+1} \backslash D_{j}\right|<n_{i} / l$ for some $j, 1 \leq j \leq l$. We consider the $2 a_{j}$-decomposition

$$
D_{j}=\bigcup_{t=1}^{r} A_{t}
$$

for this j, and the set

$$
E_{i}=\bigcup_{t=1}^{r} A_{t}^{\prime} \subset D_{j}
$$

with A_{t}^{\prime} obtained by deleting the first and last m elements of the AP A_{t}. Thus $\left|D_{j} \backslash E_{i}\right| \leq 2 m r$. By the two properties of d-decompositions in Lemma 3,

$$
r \leq\left|\left(D_{j}+2 a_{j}\right) \backslash D_{j}\right| \leq\left|D_{j+1} \backslash D_{j}\right|<n_{i} / l \text { and }\left[n_{i}\right] \backslash E_{i}=\bigcup_{t=1}^{s} B_{t},\left|B_{t}\right| \geq m
$$

where the B_{t} are disjoint APs with common difference $2 a_{j}$. Each B_{t} has indeed length at least m because $2 a_{j} m \leq n_{i}$.

For large i, due to the selection of m and l, due to saturatedness of $\left(X_{i}, n_{i}\right)$ and due to the fact that each $\left|B_{t}\right| \geq m$, we have

$$
\left|E_{i}\right| \geq\left|D_{j}\right|-2 m r \geq\left|U_{i}\right|-(2 m / l) n_{i}>\delta n_{i} / 5-\delta n_{i} / 10=\delta n_{i} / 10
$$

and

$$
\begin{aligned}
\left|X_{i} \cap E_{i}\right| & =\left|X_{i}\right|-\left|X_{i} \cap\left(\left[n_{i}\right] \backslash E_{i}\right)\right| \\
& >\delta n_{i}-\delta^{2} n_{i} / 40-\sum_{t=1}^{s}\left|X_{i} \cap B_{t}\right| \\
& >\delta n_{i}-\delta^{2} n_{i} / 40-\left(\delta+\delta^{2} / 40\right) \sum_{t=1}^{s}\left|B_{t}\right| \\
& =\delta n_{i}-\delta^{2} n_{i} / 40-\left(\delta+\delta^{2} / 40\right)\left(n_{i}-\left|E_{i}\right|\right) \\
& >\delta\left|E_{i}\right|-\delta^{2} n_{i} / 20>\delta^{2} n_{i} / 10-\delta^{2} n_{i} / 20 \\
& =\delta^{2} n_{i} / 20 .
\end{aligned}
$$

Hence $X_{i} \cap E_{i} \neq \emptyset$ and $w \in X_{i} \cap E_{i}$ for large i. Since $E_{i} \subset D_{j}=2 Q_{j}-U_{i}$ and $Q_{j} \subset V_{i}$, this means that $w=2 v-u \in X_{i}$ with $v \in V_{i}$ and $u \in U_{i}$, and we get the desired 3 -term AP $\{u, v, w\} \subset X_{i}$.

Remarks. I took the proof from the book [1] of Moreno and Wagstaff (it also contains Szemerédi's proof of Szemerédi's theorem). The small gap that I did not realize until recently is the missing of the reduction from $(l+2 m)$-cube to l-cube to purge large $2 a_{j}$ s. Without this purge, if we pick up a bad index j with $2 a_{j}>n_{i} / m$, the final calculation does not work as all APs B_{t} are short. This gap is present in the rendering of the proof in the book [1] (and maybe elsewhere). Of course, once one realizes it, it is easy to fix it but it brings a humbling experience. The minor innovation of mine is the introduction of δ-sequences in the proof, which makes some arguments cleaner (seems to me) and reduces necessary calculations. The transition to saturated subsequence in Lemma 2 corresponds, in other renderings of Szemerédi's proof, to the step of proving by Fekete's lemma that $\lim _{n \rightarrow \infty} r_{3}(n) / n$ exists.

References

[1] C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[2] K. Roth, Sur quelques ensembles d'entiers, C. R. Acad. Sci. Paris, 234 (1952), 388-390.
[3] K. F. Roth, On certain sets of integers, J. London Math. Soc., 28 (1953), 104-109.
[4] E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar., 20 (1969), 89-104.

[^0]: ${ }^{1}$ klazar@kam.mff.cuni.cz

