Szemerédi's proof of Roth's theorem that

 $r_3(n) = o(n)$

Martin Klazar¹

April 18, 2013

I present Szemerédi's combinatorial proof [4] of Roth's theorem [2, 3] on arithmetic progressions of length three. My motivation to write it up was the beauty of the whole argument, as well as my recent realization that my understanding of it contains a (small) gap. I comment on this gap and a minor innovation in the proof at the end.

 $\mathbb{N} = \{1, 2, ...\}$ and $[n] = \{1, 2, ..., n\}$ for $n \in \mathbb{N}$. AP is an abbreviation for 'arithmetic progression'. This is a subset of \mathbb{N} of the form $\{a, a+d, a+2d, ..., a+(m-1)d\}$ where $a, m, d \in \mathbb{N}$; in particular, always d > 0. |X| denotes cardinality of the set X. For $X \subset \mathbb{N}$ and $a \in \mathbb{N}$, we use notation $X + a = \{x + a \mid x \in X\}$.

Theorem (Roth, 1952). If $r_3(n)$ is the maximum size of a subset of [n] containing no AP $\{a, a + d, a + 2d\}$, then

$$r_3(n) = o(n), \ n \to \infty$$
.

Equivalently: for every $\delta > 0$ there is an $n_0 \in \mathbb{N}$ such that if $n > n_0$ and $X \subset [n]$ with $|X| > \delta n$, then X contains a 3-term AP.

Let $\delta \in (0, 1]$ be a real number. A δ -sequence is an infinite sequence of pairs $(X_i, n_i), i = 1, 2, \ldots$, where $0 < n_1 < n_2 < \ldots$ are integers, $X_i \subset [n_i]$ are subsets and, for $i \to \infty$,

$$\frac{|X_i|}{n_i} \to \delta \ (>0) \ .$$

We restate Roth's theorem in terms of δ -sequences.

Proposition. Every δ -sequence (X_i, n_i) contains a 3-term AP:

 $X_i \supset \{a, a+d, a+2d\}$

for some *i* (equivalently, for every $i > i_0$).

We prove Roth's theorem in the form of the Proposition. The proof uses three lemmas.

A set $X \subset \mathbb{N}$ contains an *l*-cube, $l \in \mathbb{N}$, if there exist positive integers a_1, a_2, \ldots, a_l and sets

$$\emptyset \neq Q_1 \subset Q_2 \subset \ldots \subset Q_{l+1} = X$$
 with $Q_j + a_j \subset Q_{j+1}$ for $1 \leq j \leq l$.

 $^{^1{\}rm klazar@kam.mff.cuni.cz}$

Lemma 1. Every δ -sequence (X_i, n_i) contains (i.e., X_i contains, for $i > i_0$) an *l*-cube for every $l \in \mathbb{N}$.

Proof. Induction on l. For l = 1, X_i contains a 1-cube whenever $|X_i| \ge 2$ (if $X_i = \{a < b < \dots\}$, write $b = a + (b - a) = a + a_1$), which holds for any large i. Suppose that the lemma holds for $l \ge 1$ and every δ -sequence. We claim that for every δ -sequence (X_i, n_i) there exist subsets $Y_i \subset X_i$ and integers $b_i > 0$ such that (Y_i, n_i) is a $\delta^2/2$ -sequence and $Y_i + b_i \subset X_i$ for every i. Then we apply induction on the sequence (Y_i, n_i) , extend the l-cube in Y_i by $Q_{l+2} = X_i$ and $a_{l+1} = b_i$, and get an (l+1)-cube in X_i .

To establish the claim, we set Y'_i to be the *a*s of the pairs a < b in X_i realizing the most popular distance b-a between two elements of X_i , and set $b_i = b-a$ to be that distance. By the pigeon-hole, $|Y'_i| > \binom{|X_i|}{2}/n_i = \frac{1}{2}(|X_i|^2/n_i - |X_i|/n_i)$. Thus $|Y'_i|/n_i > \frac{1}{2}(|X_i|/n_i)^2 + O(1/n_i)$. Throwing away elements from Y'_i if necessary, we get Y_i with $|Y_i|/n_i \to \delta^2/2$ for $i \to \infty$. It is clear that for every i, $Y_i \subset X_i$ and $Y_i + b_i \subset X_i$.

Note that for an *l*-cube in X_i some a_j may be as large as, say, $a_j > n_i/2$, but together we have $a_1 + a_2 + \cdots + a_l < n_i$.

A δ -sequence (X_i, n_i) is saturated if for every $\varepsilon > 0$ there is an m such that, for every i, if $A \subset [n_i]$ is an AP with $|A| \ge m$ then

$$\frac{|X_i \cap A|}{|A|} < \delta + \varepsilon$$

If $X \subset [n]$ and $A = \{a, a+d, \dots, a+(m-1)d\} \subset [n]$ is an AP, we set

 $X \mid A = \{ j \in [m] \mid a + (j-1)d \in X \} = (x \mapsto a + (x-1)d)^{-1}(X \cap A) \; .$

The restriction X | A records the positions of the elements of X in the AP A. Note that $|X|A| = |X \cap A|$, $X \cap A$ is an AP if and only if X | A is an AP and that one has this transitivity: if $B \subset [m]$ is another AP then (X | A) | B = X | C where $C \subset A$ is the unique AP with C | A = B.

Lemma 2. For every δ -sequence (X_i, n_i) there exist indices $i_1 < i_2 < \ldots$ and $APs A_j \subset [n_{i_j}]$ with lengths m_j such that $m_1 < m_2 < \ldots$ and

$$(Y_j, m_j) = (X_{i_j} \mid A_j, m_j)$$

is a saturated δ' -sequence with $\delta' \geq \delta$.

Proof. If (X_i, n_i) is saturated we do nothing and set $i_j = j$, $A_j = X_j$ and $\delta' = \delta$. Else there exist a $\delta_0 > \delta$, indices $i_1 < i_2 < \ldots$ and APs $A_j \subset [n_{i_j}]$ such that $|A_1| < |A_2| < \ldots$ and $|X_{i_j} \cap A_j|/|A_j| > \delta_0$ for every j. Let δ' be the supremum of all δ_0 with this property. By the definition of δ' there exist indices $i_1 < i_2 < \ldots$ and APs $A_j \subset [n_{i_j}]$ such that $|A_1| < |A_2| < \ldots$ and

$$\frac{|X_{i_j}\cap A_j|}{|A_j|} > \delta' - \frac{1}{j}$$

for every $j \in \mathbb{N}$. This is the sequence of indices and APs we seek. By the maximality of δ' , $|X_{i_j} \cap A_j|/|A_j| = |X_{i_j}|A_j|/|A_j| \to \delta'$ as $j \to \infty$. Also, $(X_{i_j}|A_j, |A_j|)$ is saturated, for else the above mentioned transitivity would give for the original δ -sequence indices and APs producing a value δ_0 with $\delta_0 > \delta'$, contradicting the definition of δ' .

By Szemerédi's theorem, any δ -sequence contains an *l*-term AP for any *l*; thus Lemma 2 holds in fact with $|Y_j|/m_j = 1$ for every *j*.

If $X \subset \mathbb{N}$ and $d \in \mathbb{N}$, the *d*-decomposition of X is the unique expression of X as a disjoint union

$$X = \bigcup_{j=1}^{r} A_j$$

of nonempty APs A_j with the same common difference d and the property that, for every j, both $\min A_j - d \notin X$ and $\max A_j + d \notin X$. We obtain it by intersecting X with the d congruence classes modulo d, and then partitioning each nonempty intersection into maximal intervals of consecutive elements.

Lemma 3. The d-decomposition $X = \bigcup_{j=1}^{r} A_j$ of X has the following properties.

- 1. The number of progressions is bounded by $r \leq |(X+d) \setminus X|$.
- 2. Let $m, n \in \mathbb{N}$ with $n \geq md$ and let $X \subset [n]$. Define $X' = \bigcup_{j=1}^{r} A'_{j} \subset X$ where each A'_{j} arises from A_{j} by deleting the first m and the last m elements $(A'_{j} \neq \emptyset \text{ iff } |A_{j}| > 2m)$. Then in the d-decomposition of the complement

$$[n]\backslash X' = \bigcup_{j=1}^{s} B_j$$

each $AP B_j$ has length at least m.

Proof. 1. The mapping $A_j \mapsto \max A_j + d$ is an injection and goes from $\{A_1, \ldots, A_r\}$ to $(X + d) \setminus X$.

2. By the definition, B_j is a maximal interval of $C \cap ([n] \setminus X')$ where C is a mod d congruence class. If B_j is in $C \cap [n]$ followed or preceded by a nonempty A'_k , then B_j contains the first m or the last m elements of A_k and $|B_j| \ge m$. If there is no such A'_k then $B_j = C \cap [n]$ and we have $|B_j| \ge m$ due to the assumption that $n \ge md$.

Szemerédi's proof of Roth's theorem. We prove that every δ -sequence (X_i, n_i) contains a 3-term AP. By Lemma 2 and the observations on X | A, we may assume that (X_i, n_i) is saturated. We split each $[n_i]$ into three intervals (which are also APs)

$$[n_i] = I_i \cup J_i \cup K_i = [\lfloor n_i/4 \rfloor] \cup [\lfloor n_i/4 \rfloor + 1, \lfloor n_i/2 \rfloor] \cup [\lfloor n_i/2 \rfloor + 1, n_i].$$

 I_i , J_i and K_i have respective lengths, up to errors O(1), $n_i/4$, $n_i/4$ and $n_i/2$. We set

$$U_i = X_i \cap I_i, V_i = X_i \cap J_i \text{ and } W_i = X_i \cap K_i.$$

Since (X_i, n_i) is a δ -sequence and is saturated, for large *i* we have

$$|U_i|, |V_i| \ge \delta n_i / 5 = \delta n_i / 4 - \delta n_i / 20 ,$$

because $|U_i|, |V_i| < \delta n_i/4 + \delta n_i/60$, $|W_i| < \delta n_i/2 + \delta n_i/60$ and $|U_i| + |V_i| + |W_i| = |X_i| > \delta n_i - \delta n_i/60$ for large *i*. We show that for large *i* there is a 3-term AP u, v = u + d, w = u + 2d in X_i with $u \in U_i, v \in V_i$ and $w \in X_i$. As u + w = 2v, this is equivalent with finding such elements $u \in U_i$ and $v \in V_i$ that 2v - u is in X_i . Note that $2v - u \in [n_i]$ for every $v \in J_i$ and $u \in I_i$.

Using saturatedness of (X_i, n_i) , we fix a large $m \in \mathbb{N}$ such that

$$\frac{|X_i \cap A|}{|A|} < \delta + \delta^2/40$$

whenever $A \subset [n_i]$ is an AP with $|A| \ge m$. Then we fix a large $l \in \mathbb{N}$ such that $2m/l < \delta/10$. By Lemma 1, for each large *i* the set V_i contains an (l+2m)-cube:

$$\emptyset \neq Q_1 \subset Q_2 \subset \ldots \subset Q_{l+2m+1} = V_i$$
 with $Q_j + a_j \subset Q_{j+1}$ for $1 \le j \le l+2m$.

for some sets Q_j and positive integers $a_1, a_2, \ldots, a_{l+2m}$ (for simplicity of notation we do not mark explicitly their dependence on i). Now

$$a_1 + a_2 + \dots + a_{l+2m} < n_i$$
,

and thus $a_j > n_i/2m$ only for at most 2m indices j. Without loss of generality, the big a_j s are the last ones. Hence

$$2m/l < \delta/10$$
 and $2a_j m \le n_i, \ j = 1, 2, \dots, l$.

We define

$$D_j = 2Q_j - U_i = \{2v - u \mid v \in Q_j, u \in U_i\}, \ 1 \le j \le l + 1.$$

Clearly,

$$D_1 \subset D_2 \subset \ldots \subset D_{l+1} \subset [n_i], \ D_j + 2a_j \subset D_{j+1} \text{ and } n_i \ge |D_j| \ge |D_1| \ge |U_i|.$$

It follows that $|D_{j+1} \setminus D_j| < n_i/l$ for some $j, 1 \leq j \leq l$. We consider the $2a_j$ -decomposition

$$D_j = \bigcup_{t=1}^r A_t$$

for this j, and the set

$$E_i = \bigcup_{t=1}^r A'_t \subset D_j \; ,$$

with A'_t obtained by deleting the first and last m elements of the AP A_t . Thus $|D_j \setminus E_i| \leq 2mr$. By the two properties of d-decompositions in Lemma 3,

$$r \le |(D_j + 2a_j) \backslash D_j| \le |D_{j+1} \backslash D_j| < n_i/l \text{ and } [n_i] \backslash E_i = \bigcup_{t=1}^s B_t, \ |B_t| \ge m ,$$

where the B_t are disjoint APs with common difference $2a_j$. Each B_t has indeed length at least m because $2a_jm \leq n_i$.

For large *i*, due to the selection of *m* and *l*, due to saturatedness of (X_i, n_i) and due to the fact that each $|B_t| \ge m$, we have

$$|E_i| \ge |D_j| - 2mr \ge |U_i| - (2m/l)n_i > \delta n_i / 5 - \delta n_i / 10 = \delta n_i / 10$$

and

$$\begin{aligned} X_i \cap E_i | &= |X_i| - |X_i \cap ([n_i] \setminus E_i)| \\ &> \delta n_i - \delta^2 n_i / 40 - \sum_{t=1}^s |X_i \cap B_t| \\ &> \delta n_i - \delta^2 n_i / 40 - (\delta + \delta^2 / 40) \sum_{t=1}^s |B_t| \\ &= \delta n_i - \delta^2 n_i / 40 - (\delta + \delta^2 / 40) (n_i - |E_i|) \\ &> \delta |E_i| - \delta^2 n_i / 20 > \delta^2 n_i / 10 - \delta^2 n_i / 20 \\ &= \delta^2 n_i / 20 . \end{aligned}$$

Hence $X_i \cap E_i \neq \emptyset$ and $w \in X_i \cap E_i$ for large *i*. Since $E_i \subset D_j = 2Q_j - U_i$ and $Q_j \subset V_i$, this means that $w = 2v - u \in X_i$ with $v \in V_i$ and $u \in U_i$, and we get the desired 3-term AP $\{u, v, w\} \subset X_i$.

Remarks. I took the proof from the book [1] of Moreno and Wagstaff (it also contains Szemerédi's proof of Szemerédi's theorem). The small gap that I did not realize until recently is the missing of the reduction from (l + 2m)-cube to l-cube to purge large $2a_j$ s. Without this purge, if we pick up a bad index jwith $2a_j > n_i/m$, the final calculation does not work as all APs B_t are short. This gap is present in the rendering of the proof in the book [1] (and maybe elsewhere). Of course, once one realizes it, it is easy to fix it but it brings a humbling experience. The minor innovation of mine is the introduction of δ -sequences in the proof, which makes some arguments cleaner (seems to me) and reduces necessary calculations. The transition to saturated subsequence in Lemma 2 corresponds, in other renderings of Szemerédi's proof, to the step of proving by Fekete's lemma that $\lim_{n\to\infty} r_3(n)/n$ exists.

References

 C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, FL, 2006.

- [2] K. Roth, Sur quelques ensembles d'entiers, C. R. Acad. Sci. Paris, 234 (1952), 388–390.
- [3] K.F. Roth, On certain sets of integers, J. London Math. Soc., 28 (1953), 104–109.
- [4] E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, *Acta Math. Acad. Sci. Hungar.*, **20** (1969), 89–104.