
Szemerédi’s proof of Roth’s theorem that

r3(n) = o(n)

Martin Klazar1

April 18, 2013

I present Szemerédi’s combinatorial proof [4] of Roth’s theorem [2, 3] on
arithmetic progressions of length three. My motivation to write it up was the
beauty of the whole argument, as well as my recent realization that my un-
derstanding of it contains a (small) gap. I comment on this gap and a minor
innovation in the proof at the end.

N = {1, 2, . . . } and [n] = {1, 2, . . . , n} for n ∈ N. AP is an abbreviation for
‘arithmetic progression’. This is a subset of N of the form {a, a+d, a+2d, . . . , a+
(m−1)d} where a,m, d ∈ N; in particular, always d > 0. |X| denotes cardinality
of the set X. For X ⊂ N and a ∈ N, we use notation X + a = {x+ a | x ∈ X}.

Theorem (Roth, 1952). If r3(n) is the maximum size of a subset of [n]
containing no AP {a, a+ d, a+ 2d}, then

r3(n) = o(n), n→∞ .

Equivalently: for every δ > 0 there is an n0 ∈ N such that if n > n0 and X ⊂ [n]
with |X| > δn, then X contains a 3-term AP.

Let δ ∈ (0, 1] be a real number. A δ-sequence is an infinite sequence of pairs
(Xi, ni), i = 1, 2, . . . , where 0 < n1 < n2 < . . . are integers, Xi ⊂ [ni] are
subsets and, for i→∞,

|Xi|
ni
→ δ (> 0) .

We restate Roth’s theorem in terms of δ-sequences.

Proposition. Every δ-sequence (Xi, ni) contains a 3-term AP:

Xi ⊃ {a, a+ d, a+ 2d}

for some i (equivalently, for every i > i0).

We prove Roth’s theorem in the form of the Proposition. The proof uses three
lemmas.

A set X ⊂ N contains an l-cube, l ∈ N, if there exist positive integers
a1, a2, . . . , al and sets

∅ 6= Q1 ⊂ Q2 ⊂ . . . ⊂ Ql+1 = X with Qj + aj ⊂ Qj+1 for 1 ≤ j ≤ l .
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Lemma 1. Every δ-sequence (Xi, ni) contains (i.e., Xi contains, for i > i0)
an l-cube for every l ∈ N.

Proof. Induction on l. For l = 1, Xi contains a 1-cube whenever |Xi| ≥ 2 (if
Xi = {a < b < . . . }, write b = a+ (b− a) = a+ a1), which holds for any large i.
Suppose that the lemma holds for l ≥ 1 and every δ-sequence. We claim that
for every δ-sequence (Xi, ni) there exist subsets Yi ⊂ Xi and integers bi > 0
such that (Yi, ni) is a δ2/2-sequence and Yi+bi ⊂ Xi for every i. Then we apply
induction on the sequence (Yi, ni), extend the l-cube in Yi by Ql+2 = Xi and
al+1 = bi, and get an (l + 1)-cube in Xi.

To establish the claim, we set Y ′i to be the as of the pairs a < b in Xi realizing
the most popular distance b−a between two elements of Xi, and set bi = b−a to
be that distance. By the pigeon-hole, |Y ′i | >

(|Xi|
2

)
/ni = 1

2 (|Xi|2/ni − |Xi|/ni).
Thus |Y ′i |/ni > 1

2 (|Xi|/ni)2 + O(1/ni). Throwing away elements from Y ′i if
necessary, we get Yi with |Yi|/ni → δ2/2 for i→∞. It is clear that for every i,
Yi ⊂ Xi and Yi + bi ⊂ Xi. 2

Note that for an l-cube in Xi some aj may be as large as, say, aj > ni/2, but
together we have a1 + a2 + · · ·+ al < ni.

A δ-sequence (Xi, ni) is saturated if for every ε > 0 there is an m such that,
for every i, if A ⊂ [ni] is an AP with |A| ≥ m then

|Xi ∩A|
|A|

< δ + ε .

If X ⊂ [n] and A = {a, a+ d, . . . , a+ (m− 1)d} ⊂ [n] is an AP, we set

X |A = {j ∈ [m] | a+ (j − 1)d ∈ X} = (x 7→ a+ (x− 1)d)−1(X ∩A) .

The restriction X |A records the positions of the elements of X in the AP A.
Note that |X |A| = |X ∩ A|, X ∩ A is an AP if and only if X |A is an AP and
that one has this transitivity: if B ⊂ [m] is another AP then (X |A) |B = X |C
where C ⊂ A is the unique AP with C |A = B.

Lemma 2. For every δ-sequence (Xi, ni) there exist indices i1 < i2 < . . . and
APs Aj ⊂ [nij ] with lengths mj such that m1 < m2 < . . . and

(Yj ,mj) = (Xij |Aj ,mj)

is a saturated δ′-sequence with δ′ ≥ δ.

Proof. If (Xi, ni) is saturated we do nothing and set ij = j, Aj = Xj and
δ′ = δ. Else there exist a δ0 > δ, indices i1 < i2 < . . . and APs Aj ⊂ [nij ]
such that |A1| < |A2| < . . . and |Xij ∩ Aj |/|Aj | > δ0 for every j. Let δ′ be the
supremum of all δ0 with this property. By the definition of δ′ there exist indices
i1 < i2 < . . . and APs Aj ⊂ [nij ] such that |A1| < |A2| < . . . and

|Xij ∩Aj |
|Aj |

> δ′ − 1

j

2



for every j ∈ N. This is the sequence of indices and APs we seek. By the
maximality of δ′, |Xij ∩ Aj |/|Aj | = |Xij |Aj |/|Aj | → δ′ as j → ∞. Also,
(Xij |Aj , |Aj |) is saturated, for else the above mentioned transitivity would give
for the original δ-sequence indices and APs producing a value δ0 with δ0 > δ′,
contradicting the definition of δ′. 2

By Szemerédi’s theorem, any δ-sequence contains an l-term AP for any l; thus
Lemma 2 holds in fact with |Yj |/mj = 1 for every j.

If X ⊂ N and d ∈ N, the d-decomposition of X is the unique expression of
X as a disjoint union

X =

r⋃
j=1

Aj

of nonempty APs Aj with the same common difference d and the property that,
for every j, both minAj − d 6∈ X and maxAj + d 6∈ X. We obtain it by
intersecting X with the d congruence classes modulo d, and then partitioning
each nonempty intersection into maximal intervals of consecutive elements.

Lemma 3. The d-decomposition X =
⋃r

j=1Aj of X has the following proper-
ties.

1. The number of progressions is bounded by r ≤ |(X + d)\X|.

2. Let m,n ∈ N with n ≥ md and let X ⊂ [n]. Define X ′ =
⋃r

j=1A
′
j ⊂

X where each A′j arises from Aj by deleting the first m and the last m
elements (A′j 6= ∅ iff |Aj | > 2m). Then in the d-decomposition of the
complement

[n]\X ′ =

s⋃
j=1

Bj

each AP Bj has length at least m.

Proof. 1. The mapping Aj 7→ maxAj + d is an injection and goes from
{A1, . . . , Ar} to (X + d)\X.

2. By the definition, Bj is a maximal interval of C ∩ ([n]\X ′) where C is a
mod d congruence class. If Bj is in C ∩ [n] followed or preceded by a nonempty
A′k, then Bj contains the first m or the last m elements of Ak and |Bj | ≥ m.
If there is no such A′k then Bj = C ∩ [n] and we have |Bj | ≥ m due to the
assumption that n ≥ md. 2

Szemerédi’s proof of Roth’s theorem. We prove that every δ-sequence
(Xi, ni) contains a 3-term AP. By Lemma 2 and the observations on X |A, we
may assume that (Xi, ni) is saturated. We split each [ni] into three intervals
(which are also APs)

[ni] = Ii ∪ Ji ∪Ki = [bni/4c] ∪ [bni/4c+ 1, bni/2c] ∪ [bni/2c+ 1, ni] .
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Ii, Ji and Ki have respective lengths, up to errors O(1), ni/4, ni/4 and ni/2.
We set

Ui = Xi ∩ Ii, Vi = Xi ∩ Ji and Wi = Xi ∩Ki .

Since (Xi, ni) is a δ-sequence and is saturated, for large i we have

|Ui|, |Vi| ≥ δni/5 = δni/4− δni/20 ,

because |Ui|, |Vi| < δni/4+δni/60, |Wi| < δni/2+δni/60 and |Ui|+|Vi|+|Wi| =
|Xi| > δni − δni/60 for large i. We show that for large i there is a 3-term AP
u, v = u+ d,w = u+ 2d in Xi with u ∈ Ui, v ∈ Vi and w ∈ Xi. As u+w = 2v,
this is equivalent with finding such elements u ∈ Ui and v ∈ Vi that 2v− u is in
Xi. Note that 2v − u ∈ [ni] for every v ∈ Ji and u ∈ Ii.

Using saturatedness of (Xi, ni), we fix a large m ∈ N such that

|Xi ∩A|
|A|

< δ + δ2/40

whenever A ⊂ [ni] is an AP with |A| ≥ m. Then we fix a large l ∈ N such that
2m/l < δ/10. By Lemma 1, for each large i the set Vi contains an (l+2m)-cube:

∅ 6= Q1 ⊂ Q2 ⊂ . . . ⊂ Ql+2m+1 = Vi with Qj +aj ⊂ Qj+1 for 1 ≤ j ≤ l+2m ,

for some setsQj and positive integers a1, a2, . . . , al+2m (for simplicity of notation
we do not mark explicitly their dependence on i). Now

a1 + a2 + · · ·+ al+2m < ni ,

and thus aj > ni/2m only for at most 2m indices j. Without loss of generality,
the big ajs are the last ones. Hence

2m/l < δ/10 and 2ajm ≤ ni, j = 1, 2, . . . , l .

We define

Dj = 2Qj − Ui = {2v − u | v ∈ Qj , u ∈ Ui}, 1 ≤ j ≤ l + 1 .

Clearly,

D1 ⊂ D2 ⊂ . . . ⊂ Dl+1 ⊂ [ni], Dj + 2aj ⊂ Dj+1 and ni ≥ |Dj | ≥ |D1| ≥ |Ui| .

It follows that |Dj+1\Dj | < ni/l for some j, 1 ≤ j ≤ l. We consider the
2aj-decomposition

Dj =

r⋃
t=1

At

for this j, and the set

Ei =

r⋃
t=1

A′t ⊂ Dj ,
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with A′t obtained by deleting the first and last m elements of the AP At. Thus
|Dj\Ei| ≤ 2mr. By the two properties of d-decompositions in Lemma 3,

r ≤ |(Dj + 2aj)\Dj | ≤ |Dj+1\Dj | < ni/l and [ni]\Ei =

s⋃
t=1

Bt, |Bt| ≥ m ,

where the Bt are disjoint APs with common difference 2aj . Each Bt has indeed
length at least m because 2ajm ≤ ni.

For large i, due to the selection of m and l, due to saturatedness of (Xi, ni)
and due to the fact that each |Bt| ≥ m, we have

|Ei| ≥ |Dj | − 2mr ≥ |Ui| − (2m/l)ni > δni/5− δni/10 = δni/10

and

|Xi ∩ Ei| = |Xi| − |Xi ∩ ([ni]\Ei)|

> δni − δ2ni/40−
s∑

t=1

|Xi ∩Bt|

> δni − δ2ni/40− (δ + δ2/40)

s∑
t=1

|Bt|

= δni − δ2ni/40− (δ + δ2/40)(ni − |Ei|)
> δ|Ei| − δ2ni/20 > δ2ni/10− δ2ni/20

= δ2ni/20 .

Hence Xi ∩Ei 6= ∅ and w ∈ Xi ∩Ei for large i. Since Ei ⊂ Dj = 2Qj − Ui and
Qj ⊂ Vi, this means that w = 2v − u ∈ Xi with v ∈ Vi and u ∈ Ui, and we get
the desired 3-term AP {u, v, w} ⊂ Xi. 2

Remarks. I took the proof from the book [1] of Moreno and Wagstaff (it also
contains Szemerédi’s proof of Szemerédi’s theorem). The small gap that I did
not realize until recently is the missing of the reduction from (l + 2m)-cube to
l-cube to purge large 2ajs. Without this purge, if we pick up a bad index j
with 2aj > ni/m, the final calculation does not work as all APs Bt are short.
This gap is present in the rendering of the proof in the book [1] (and maybe
elsewhere). Of course, once one realizes it, it is easy to fix it but it brings
a humbling experience. The minor innovation of mine is the introduction of
δ-sequences in the proof, which makes some arguments cleaner (seems to me)
and reduces necessary calculations. The transition to saturated subsequence in
Lemma 2 corresponds, in other renderings of Szemerédi’s proof, to the step of
proving by Fekete’s lemma that limn→∞ r3(n)/n exists.
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[4] E. Szemerédi, On sets of integers containing no four elements in arithmetic
progression, Acta Math. Acad. Sci. Hungar., 20 (1969), 89–104.

6


