
Lecture 9, November 28, 2019

Series of functions. Power series

Approximation by broken lines and polynomials. Recall that a func-
tion f : [a, b] → R, where a < b are real numbers, is a broken line if f is
continuous and there is a partition a = a0 < a1 < · · · < ak = b of the in-
terval [a, b] such that every restriction f | [ai−1, ai], i = 1, 2 . . . , k, is a linear
function. Recall that for functions f, fn : M → R, where n ∈ N and M is a
set, the notation lim fn = f means that

‖f − fn‖∞ = sup({|f(x)− fn(x)| | x ∈M})→ 0 for n→∞ .

The symbol C[a, b] denotes the set of real functions that are defined and
continuous on the interval [a, b]. In the prof of lemma 3 in lecture 7 we
proved the following result.

Proposition (approximation by broken lines). The set of broken lines
is dense in C[a, b] — for every function f ∈ C[a, b] there is a sequence (fn) ⊂
C[a, b] of broken lines such that lim fn = f .

The disadvantage of broken lines is that they are not everywhere differen-
tiable. The next important theorem, for the proof of which we do not have
time, shows that every continuous function can be approximated to any pre-
cision by functions that have derivatives of all orders.

Theorem (the Weierstrass thm.: approximation by polynomials).
The set of polynomials is dense in C[a, b] — for every function f ∈ C[a, b]
there is a sequence (fn) ⊂ C[a, b] of polynomials such that lim fn = f .

The theorem bears the name of the German mathematician Karl Weierstrass
(1815–1897). Theory of approximations of functions is a large and interesting
discipline of mathematical analysis, from which we had time to mention just
the two previous results.

Primitives to continuous functions.1 A nice application of the previous
proposition and of the last theorem of the previous lecture (exchange of a

1I did not mention this application in the lecture.
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limit and derivative) is the next theorem. A better known proof of it uses
theory of Riemann integration.

Theorem (existence of antiderivatives). Every function f ∈ C[a, b] has
on (a, b) a primitive function. This is a function g : (a, b)→ R such that

g′ = f on (a, b)

(for simplicity we do not consider one-sided derivatives in the endpoints a
and b).

Proof. Let f ∈ C[a, b]. By the previous proposition we have broken lines
(fn) ⊂ C[a, b] such that lim fn = f . It is not hard to see (and without the
(R)

∫
) that every broken line h ∈ C[a, b] has a (unique) primitive function

g ∈ C[a, b] on (a, b) such that g(a+b
2

) = 0 (Exercise 2). For instance, the
function h(x) = 1 for 0 ≤ x ≤ 1

2
and h(x) = 3

2
− x for 1

2
≤ x ≤ 1 has the

primitive g(x) = x− 1
2

for 0 ≤ x ≤ 1
2

and g(x) = 3
2
x− x2

2
− 5

8
for 1

2
≤ x ≤ 1.

For every n ∈ N we take such primitive function gn to fn. By the last
theorem of the previous lecture,

gn
loc

⇒ g (on (a, b))

for a function g : (a, b)→ R such that g′ = f on (a, b). 2

Series of functions. Let M ⊂ R be a nonempty set and f, fn : M → R for
n = 1, 2, . . . be real functions defined on it. Notation

∑
fn =

∞∑
n=1

fn → f (on M)

means that f1 + f2 + · · · + fn → f (on M). Similarly for uniform conver-
gence, and locally uniform convergence (for a metric space M). This way
one generalizes numeric series to parametric systems of series (as we spoke
about it in lecture 1). One easily generalizes the (uniform) Bolzano–Cauchy
condition:

∑∞
n=1 fn ⇒ f on M for a function f if and only if

∀ ε > 0 ∃n0 : m ≥ n ≥ n0, x ∈M ⇒ |fn(x) + fn+1(x) + · · ·+ fm(x)| < ε

(Exercise 1). Thus it suffices to write just
∑∞

n=1 fn ⇒ (on M).
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The following three theorems on series of functions directly follow from
the corresponding theorems on sequences of functions. We do not give proofs
for them either.

Theorem (
∑
↔ limx→x0). If x0 ∈ R∗, δ > 0, fn : P (x0, δ) → R for n =

1, 2, . . . ,
∑
fn ⇒ on P (x0, δ), and for every n there is a finite limx→x0 fn(x),

then the next sum and limit are defined and have equal finite values:

∞∑
n=1

(
lim
x→x0

fn(x)

)
= lim

x→x0

(
∞∑
n=1

fn(x)

)
.

Theorem (
∑
↔
∫

).2 If a < b are real numbers, fn ∈ R[a, b] for n =
1, 2, . . . , and

∑∞
n=1 fn ⇒ on [a, b], then

∑∞
n=1 fn ∈ R[a, b] and

∞∑
n=1

∫ b

a

fn =

∫ b

a

(
∞∑
n=1

fn

)
.

Theorem (
∑
↔ d

dx
). If a < b are real numbers, g, fn : (a, b) → R for

n = 1, 2, . . . are functions, on (a, b) there exist derivatives f ′n,
∑∞

n=1 f
′
n ⇒ g

on (a, b), and there is an x0 ∈ (a, b) such that the numeric series
∑∞

n=1 fn(x0)
converges, then

∑∞
n=1 fn ⇒ f on (a, b) for a function f : (a, b)→ R such that

f ′ = g on (a, b). Thus, under these assumptions,(
∞∑
n=1

fn

)′
=
∞∑
n=1

f ′n .

Convergence criteria for series of functions. Most often one uses the
first of the following two criteria.

Theorem (the Weierstrass test). Let fn for n = 1, 2, . . . be real functions.
If fn are defined on a set M and the nonnegative numeric series (possibly
with +∞ summands)

∞∑
n=1

Mn :=
∞∑
n=1

‖fn‖ =
∞∑
n=1

sup({|fn(x)| | x ∈M})

2Better theorems on exchange of a sum and a Riemann integral are known. I will
mention them here later.
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converges, then
∑∞

n=1 fn ⇒ on M .

Proof. We check that
∑∞

n=1 fn satisfies the uniform B.–C. condition: for
every x ∈M and m ≥ n ≥ 1 the triangle inequality implies that

|fn(x) + fn+1(x) + · · ·+ fm(x)| ≤ |fn(x)|+ |fn+1(x)|+ · · ·+ |fm(x)|
≤ Mn +Mn+1 + · · ·+Mm .

By the assumption for every given ε > 0 there is an n0 such that if m ≥ n ≥
n0 then the last sum is smaller than ε (the Cauchy condition for numeric
series). The uniform B.–C. condition for the given series of functions is
therefore satisfied. 2

Theorem (the Dini criterion). If the functions fn are defined, continuous
and nonnegative on a compact metric space M and their pointwise sum is
continuous too, then

∑∞
n=1 fn ⇒ on M .

Proof. This is an immediate corollary of the Dini theorem in the last lecture
(Exercise 11). 2

How to define a function f : R → R invariant to differentiation, that is,
satisfying

f ′ = f on R ?

And does such a function exist at all? (Suppose we forgot a lot from Math-
ematical Analysis I.) As (x

n

n!
)′ = xn−1

(n−1)! for n ≥ 1 and (x
0

0!
)′ = 0, formal

exchange of summation and differentiation gives(
∞∑
n=0

xn

n!

)′
=
∞∑
n=1

xn−1

(n− 1)!
=

∞∑
m=0

xm

m!
(m = n− 1) .

So if the function f(x) =
∑∞

n=0
xn

n!
is correctly defined and the exchange of

summation and differentiation is permissible, this f has the required prop-
erty that f ′ = f . Both conditions are satisfied: by the Weierstrass test∑∞

n=0
xn

n!
⇒ on every interval (−R,R) with R > 0 (Exercise 3), so f(x) is

indeed correctly defined, and by the earlier theorem the exchange of summa-
tion and differentiation is permissible. We have proven that the exponential
function exp(x) = ex =

∑∞
n=0

xn

n!
does not change when differentiated.
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Power series. For real numbers x0 and a0, a1, . . . we define the series of
functions

f(x) =
∞∑
n=0

an(x− x0)n .

This is a power series centered at x0 and with coefficients an, n ∈ N0. It
always converges at its center and f(x0) = a0, but it may happen that it
converges for no other x 6= x0 (Exercise 4). In sequel we restrict for simplicity
to power series centered at zero.

Theorem (Hadamard’s on the convergence radius). Let
∑

n≥0 anx
n

be a power series centered at 0 and the quantity R ∈ [0,+∞) ∪ {+∞} be
defined by the formula

R =
1

lim supn→∞ |an|1/n
,

where we set 1
0

= +∞ and 1
+∞ = 0. Then for every x ∈ R we have

|x| < R ⇒
∑
n≥0

anx
n absolutely converges and

|x| > R ⇒
∑
n≥0

anx
n diverges .

We call R the convergence radius (of the power series
∑

n≥0 anx
n), and the

interval (−R,R) the convergence interval.

Proof. If 0 < R < +∞ and x ∈ R then

lim sup
n→∞

|anxn|1/n = |x| lim sup
n→∞

|an|1/n =
|x|
R

.

By the Cauchy root test (see MA I) the series
∑

n≥0 anx
n absolutely con-

verges for |x| < R, and diverges for |x| > R. For R = +∞ one has
lim supn→∞ |an|1/n = 0, thus the last equality in the computation turns in
= 0. By the Cauchy root test our series absolutely converges for every x ∈ R.
For R = 0 one has lim supn→∞ |an|1/n = +∞, thus for every nonzero x ∈ R
the last equality in the computation turns in = +∞. Again by the Cauchy
root test our series diverges for every nonzero x ∈ R. 2
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This is one of the best known results on power series, due to the French
mathematician Jacques Hadamard (1865–1963). R is called convergence ra-
dius because for power series in complex domain (with an, x ∈ C) R is the
radius of the closed disc centered at the origin, inside which the power series
absolutely converges, and outside of which it diverges. What happens for
x = ±R, or in the complex domain on the circle |x| = R, the theorem does
not say and it must be determined separately.

Clearly,
∑

n≥0 n!xn has convergence radius R = 0 (Exercise 4),
∑∞

n=0
xn

n!

has R = +∞, and all three power series

1 + x+ x2 + x3 + . . . , 1− x+
x2

2
− x3

3
+ . . . and 1 + x+ 2x2 + 3x3 + . . .

have R = 1, because of the limit lim n1/n = 1 (Exercise 5). The first and
third power series diverge for both values x = ±1, but the second one diverges
only for x = −1 and (non-absolutely) converges for x = 1.

Proposition (on
loc

⇒ of power series). If a power series
∑

n≥0 anx
n has

convergence radius R > 0 (possibly +∞) then

∞∑
n=0

anx
n

loc

⇒ (on (−R,R)) .

Proof. If S ∈ (0, R) and x ∈ [−S, S], by the Cauchy root test the series

∞∑
n=0

‖anxn‖ =
∞∑
n=0

|an|Sn

converges (because lim supn→∞ |anSn|1/n = S
R
< 1). Hence by the Weierstrass

test
∑

n≥0 anx
n ⇒ on [−S, S], which is equivalent to the locally uniform

convergence on (−R,R). 2

Corollary (differentiation and integration of power series). Suppose
that a power series f(x) =

∑
n≥0 anx

n has convergence radius R > 0 (possibly
+∞). Then the power series

g(x) =
∞∑
n=0

anx
n+1

n+ 1
and h(x) =

∞∑
n=1

nanx
n−1
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have the same convergence radius R, and on the interval (−R,R) their sums
satisfy that

g′ = f and f ′ = h .

Proof. Equality of the convergence radii of g(x) and h(x) to R follows from
the Hadamard formula and from limn1/n = 1. The equalities g′ = f and
f ′ = h follow from the previous proposition and from the theorem on the
exchange of summation and differentiation. 2

Thus a function given as a sum of power series has derivatives of all orders
(and primitives of all orders). The function f : R → R given as f(x) = 0
for x ≤ 0 and f(x) = x2 for x ≥ 0 does not equal to the sum of a power
series on any interval (−δ, δ), δ > 0, because f ′′(0) does not exist. Functions
expressed by sums of power series resemble polynomials, but only to some
extent (Exercise 8). Sums and products of two power series are treated in
Exercises 9 and 10.

Exercises

1. Prove that uniform convergence of a series of functions is equivalent to
satisfaction of the uniform B.–C. condition.

2. Prove that every broken line f : [a, b] → R has a primitive on (a, b),
even with arbitrarily prescribed value g(c) = d for any c in (a, b). Give
a direct proof without using the Riemann integral.

3. Does
∑∞

n=0
xn

n!
⇒ on R?

4. Prove that the power series
∑

n≥0 n!xn converges for no x 6= 0.

5. Let p ∈ R[x] be arbitrary polynomial. What is the convergence radius
of the power series

∑
n≥0 p(n)xn?

6. Determine the convergence radii of the power series

∞∑
n=0

4xn

3n − 2n+ 1
and

∞∑
n=20

(5n − 200n2 + 7n− 2019)x3n .
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7. Determine the convergence radii of the power series

∞∑
n=0

(
2n

n

)
xn and

∞∑
n=0

(−1)nxn
2

.

8. Yes or no: a nonzero function f(x) =
∑

n≥0 anx
n : R→ R that is given

as a sum of power series has, like a nonzero polynomial, only finitely
many zeros (points a ∈ R for which f(a) = 0).

9. If
∑

n≥0 anx
n and

∑
n≥0 bnx

n are power series with positive radii of
convergence, what can be said about the convergence radius of the
power series ∑

n≥0

(an + bn)xn ?

10. If
∑

n≥0 anx
n and

∑
n≥0 bnx

n are power series with positive radii of
convergence, what can be said about the convergence radius of the
power series ∑

n≥0

(
n∑

k=0

akbn−k

)
xn ?

(This is so called Cauchy’s product of power series.)

11. Prove the Dini criterion of uniform convergence of series of functions.
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