Lecture 9, November 28, 2019
Series of functions. Power series

Approximation by broken lines and polynomials. Recall that a func-
tion f: [a,b] — R, where a < b are real numbers, is a broken line if f is
continuous and there is a partition a = ag < a; < -+ < a, = b of the in-
terval [a, b] such that every restriction f|[a;_1,a;], i =1,2... k, is a linear
function. Recall that for functions f, f,,: M — R, where n € N and M is a
set, the notation lim f,, = f means that

lf = falloo = sup({|f(z) = fu(z)| |z € M}) = 0 for n — oo .

The symbol Cla,b] denotes the set of real functions that are defined and
continuous on the interval [a,b]. In the prof of lemma 3 in lecture 7 we
proved the following result.

Proposition (approximation by broken lines). The set of broken lines
is dense in Cla, b] — for every function f € Cla,b] there is a sequence (f,) C
Cla, b] of broken lines such that lim f, = f.

The disadvantage of broken lines is that they are not everywhere differen-
tiable. The next important theorem, for the proof of which we do not have
time, shows that every continuous function can be approximated to any pre-
cision by functions that have derivatives of all orders.

Theorem (the Weierstrass thm.: approximation by polynomials).
The set of polynomials is dense in Cla,b] — for every function f € Cla,b]
there is a sequence (f,) C Cla,b] of polynomials such that lim f, = f.

The theorem bears the name of the German mathematician Karl Weierstrass
(1815-1897). Theory of approximations of functions is a large and interesting
discipline of mathematical analysis, from which we had time to mention just
the two previous results.

Primitives to continuous functions.! A nice application of the previous
proposition and of the last theorem of the previous lecture (exchange of a

T did not mention this application in the lecture.



limit and derivative) is the next theorem. A better known proof of it uses
theory of Riemann integration.

Theorem (existence of antiderivatives). FEvery function f € Cla,b| has
on (a,b) a primitive function. This is a function g: (a,b) — R such that

g =1[ on (ab)

(for simplicity we do not consider one-sided derivatives in the endpoints a
and b).

Proof. Let f € Cla,b]. By the previous proposition we have broken lines
(fn) C Cla, b] such that lim f,, = f. It is not hard to see (and without the
(R) [) that every broken line h € Cla,b] has a (unique) primitive function
g € Cla,b] on (a,b) such that g(“t2) = 0 (Exercise 2). For instance, the
function h(z) =1 for 0 < z < % and h(z) = % — ¢ for % < x < 1 has the
primitive g(z) =2 — 5 for 0 <z < 3 andg(m)z%az—%—%for%ﬁxgl.

For every n € N we take such primitive function g, to f,. By the last

theorem of the previous lecture,

loc

gn =g (on (a,b))
for a function g: (a,b) — R such that ¢’ = f on (a,b). O

Series of functions. Let M C R be a nonempty set and f, f,,: M — R for
n=1,2,... be real functions defined on it. Notation

means that f; + fo+---+ f, — f (on M). Similarly for uniform conver-
gence, and locally uniform convergence (for a metric space M). This way
one generalizes numeric series to parametric systems of series (as we spoke
about it in lecture 1). One easily generalizes the (uniform) Bolzano-Cauchy
condition: Y > f, = f on M for a function f if and only if

Ve>03dno: m>n>mng, € M = |fulx) + fop1(z) + -+ fr(x)] <€

(Exercise 1). Thus it suffices to write just > >~ f, = (on M).



The following three theorems on series of functions directly follow from
the corresponding theorems on sequences of functions. We do not give proofs
for them either.

Theorem (> » lim,,,,). If 2o € R*, § > 0, fu: P(x9,0) = R forn =
1,2,..., > fu = on P(xo,9), and for every n there is a finite lim, ., f.(z),
then the next sum and limit are defined and have equal finite values:

Z (35?0 fola)) = lim (i fn(l’)> |

n=1

Theorem (3. < [).2 If a < b are real numbers, f, € Rla,b] for n =
L2,...,and Y 07 fn, =% on [a,b], then Y, f, € Rla,b] and

SLeef(55)

Theorem (Y. «» L). Ifa < b are real numbers, g, f,: (a,b) — R for
n=1,2,... are functions, on (a,b) there exist derwatives f), > >, fr =X g

on (a,b), and there is an xo € (a,b) such that the numeric series Y -, fn(zo)
converges, then >~ f, = f on (a,b) for a function f: (a,b) — R such that
f'=g on (a,b). Thus, under these assumptions,

<an> oy

Convergence criteria for series of functions. Most often one uses the
first of the following two criteria.

Theorem (the Weierstrass test). Let f, forn =1,2,... be real functions.
If f. are defined on a set M and the nonnegative numeric series (possibly
with +00 summands)

> M, Z [full = Zsup({|fn( )| |z € M})

2Better theorems on exchange of a sum and a Riemann integral are known. I will
mention them here later.




converges, then > > f, = on M.

n=1
Proof. We check that ) 7, f, satisfies the uniform B.-C. condition: for
every x € M and m > n > 1 the triangle inequality implies that

(@) + farr(@) +- -+ fn(@)] < |fa(@)] + | fapr(2)] - 4 [fn(2))]

By the assumption for every given € > 0 there is an ng such that ift m > n >
no then the last sum is smaller than ¢ (the Cauchy condition for numeric
series). The uniform B.-C. condition for the given series of functions is
therefore satisfied. O

Theorem (the Dini criterion). If the functions f,, are defined, continuous
and nonnegative on a compact metric space M and their pointwise sum is
continuous too, then >~ | fn =2 on M.

Proof. This is an immediate corollary of the Dini theorem in the last lecture
(Exercise 11). O

How to define a function f: R — R invariant to differentiation, that is,
satisfying

f'=f on R?
And does such a function exist at all? (Suppose we forgot a lot from Math-
ematical Analysis 1) As (%) = % for n > 1 and (”(")—?)’ = 0, formal

exchange of summation and differentiation gives

So if the function f(z) = >.°7 7 is correctly defined and the exchange of

n=0 n! 1
summation and differentiation is permissible, this f has the required prop-
erty that f* = f. Both conditions are satisfied: by the Weierstrass test
> oL =2 on every interval (—R, R) with R > 0 (Exercise 3), so f(z) is
indeed correctly defined, and by the earlier theorem the exchange of summa-
tion and differentiation is permissible. We have proven that the exponential

function exp(z) = e* = Y7 (£ does not change when differentiated.



Power series. For real numbers zy and ag,a,... we define the series of

functions
o0

flx) = Z an(x — x0)" .
n=0
This is a power series centered at xo and with coefficients a,, n € Ny. It
always converges at its center and f(z9) = ag, but it may happen that it
converges for no other x # xy (Exercise 4). In sequel we restrict for simplicity
to power series centered at zero.

Theorem (Hadamard’s on the convergence radius). Let ) .ja,z"
be a power series centered at 0 and the quantity R € [0,+00) U {400} be
defined by the formula

1

" limsup, . |an|/"

where we set % = 400 and ++.o = 0. Then for every x € R we have

|lz] < R = Zanx” absolutely converges and
n>0

lz| > R = Zanx” diverges .
n>0

We call R the convergence radius (of the power series -, a,z"), and the
interval (—R, R) the convergence interval.

Proof. If 0 < R < 400 and z € R then

lim sup |a,z™|"/" = || lim sup |a,|"/" 12

n—oo n—oo E '
By the Cauchy root test (see MA I) the series ) ., a,z" absolutely con-
verges for || < R, and diverges for |z| > R. For R = +oo one has
limsup,, .. |a,|"/" = 0, thus the last equality in the computation turns in
= 0. By the Cauchy root test our series absolutely converges for every = € R.

For R = 0 one has limsup,,_, |a,|'/™ = +oo, thus for every nonzero z € R
the last equality in the computation turns in = 4+o00. Again by the Cauchy
root test our series diverges for every nonzero x € R. O



This is one of the best known results on power series, due to the French
mathematician Jacques Hadamard (1865-1963). R is called convergence ra-
dius because for power series in complex domain (with a,,z € C) R is the
radius of the closed disc centered at the origin, inside which the power series
absolutely converges, and outside of which it diverges. What happens for
x = £R, or in the complex domain on the circle |z| = R, the theorem does
not say and it must be determined separately.

Clearly, > -, nlz" has convergence radius R = 0 (Exercise 4), >
has R = +oo, and all three power series

oo ™
n=0 n!

2 ZE3

l+z+a®+2°+. .., 1—x+%—§+... and 1+ a4 22% 432 + ...
have R = 1, because of the limit lim n'/® = 1 (Exercise 5). The first and
third power series diverge for both values x = 41, but the second one diverges
only for x = —1 and (non-absolutely) converges for x = 1.

loc
Proposition (on = of power series). If a power series ), -, a,z" has

convergence radius R > 0 (possibly +00) then

o loc
Zanx” = (on(—R,R)).
n=0

Proof. 1If S € (0, R) and z € [—S, S|, by the Cauchy root test the series

00 00
D lanz"| =) lan|S™
n=0 n=0

converges (because limsup,_, . [a,S"|"/" = 2 < 1). Hence by the Weierstrass
test D, 5oanz™ = on [=S,S], which is equivalent to the locally uniform
convergence on (—R, R). O

Corollary (differentiation and integration of power series). Suppose
that a power series f(z) = 3, - a,2™ has convergence radius R > 0 (possibly
+00). Then the power series

- an$n+1 S n—1
g(x) = Z 1 and h(z) = Znanx
n=0 n=1



have the same convergence radius R, and on the interval (—R, R) their sums
satisfy that
g=f and f'=h.

Proof. Equality of the convergence radii of g(z) and h(z) to R follows from
the Hadamard formula and from limn'/™ = 1. The equalities ¢ = f and
f" = h follow from the previous proposition and from the theorem on the
exchange of summation and differentiation. O

Thus a function given as a sum of power series has derivatives of all orders
(and primitives of all orders). The function f: R — R given as f(z) = 0
for z < 0 and f(z) = 2 for > 0 does not equal to the sum of a power
series on any interval (—d,6), § > 0, because f”(0) does not exist. Functions
expressed by sums of power series resemble polynomials, but only to some
extent (Exercise 8). Sums and products of two power series are treated in
Exercises 9 and 10.

Exercises

1. Prove that uniform convergence of a series of functions is equivalent to
satisfaction of the uniform B.—C. condition.

2. Prove that every broken line f: [a,b] — R has a primitive on (a,b),
even with arbitrarily prescribed value g(c¢) = d for any ¢ in (a,b). Give
a direct proof without using the Riemann integral.

3. Does Y7 (L =% on R?
4. Prove that the power series > ., nlz" converges for no z # 0.

5. Let p € R[z] be arbitrary polynomial. What is the convergence radius
of the power series ) -, p(n)z"?

6. Determine the convergence radii of the power series

o0 4 n o0
Y o and Y (57— 200n% + T — 2019)a”" |
no st —2n+l n=20



10.

11.

Determine the convergence radii of the power series

5 (7)ot S

n=0

Yes or no: a nonzero function f(z) =Y . a,2™: R — R that is given
as a sum of power series has, like a nonzero polynomial, only finitely
many zeros (points a € R for which f(a) = 0).

If >, 50an2™ and 3 - b,a™ are power series with positive radii of
convergence, what can be said about the convergence radius of the
power series

> (an + by)a"?

n>0

If Y, o 0an2™ and ) - b,a™ are power series with positive radii of
convergence, what can be said about the convergence radius of the

power series
n
S (S wbae)

n>0 \ k=0

(This is so called Cauchy’s product of power series.)

Prove the Dini criterion of uniform convergence of series of functions.



