Lecture 8, November 21, 2019

More about uniform convergence. The Moore–Osgood theorem 1 and 2. Exchange of limit and integration/differentiation (without proofs)

The uniform Bolzano–Cauchy condition. One of the basic results of the theory of limits of real sequences $(a_n) \subset \mathbb{R}$ is the equivalence

 $\exists a \in \mathbb{R} : \lim a_n = a \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : m, n \ge n_0 \Rightarrow |a_m - a_n| < \varepsilon$

— a sequence (a_n) converges if and only if it is Cauchy. This is one of the main theorems in *Mathematical Analysis I*. We generalize it to sequences of functions.

Proposition (the uniform B.–C. condition). Let $f_n: M \to \mathbb{R}$, $n \in \mathbb{N}$, be real functions defined on a set M. Then

$$\exists (f \colon M \to \mathbb{R}) \colon f_n \rightrightarrows f \quad (on \ M) \\ \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon m, \ n \ge n_0, \ x \in M \Rightarrow |f_m(x) - f_n(x)| < \varepsilon .$$

On the left side of the equivalence one can instead of $f_n \rightrightarrows f$ (on M) write $\lim f_n = f$, with convergence in the norm $\|\cdot\|_{\infty}$. The right side of the equivalence is called the uniform Bolzano-Cauchy condition.

Proof. Implication \Rightarrow . If f_n converge uniformly on M to f, we take n_0 in \mathbb{N} such that for every $n \ge n_0$ and every $x \in M$, $|f_n(x) - f(x)| < \frac{\varepsilon}{2}$. Then for every $m, n \ge n_0$ and $x \in M$ we have (by the Δ inequality)

$$|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

The sequence (f_n) therefore satisfies the uniform Bolzano–Cauchy condition.

Implication \Leftarrow . The sequence of functions $(f_n) \subset N$ is a Cauchy sequence in the (metric or normed) space of functions $(N, \|\cdot\|)$ where $N = \{f \mid f \colon M \to \mathbb{R}\}$. By Exercise 6 in lecture 6 N is a complete space. Hence there is a function $f \in N$ such that $\lim f_n = f$. So $f_n \rightrightarrows f$ (on M). \Box

The notation $f_n \rightrightarrows (\text{on } M)$ and $f_n \stackrel{\text{loc}}{\rightrightarrows} (\text{on } M)$ therefore makes sense: the sequence $(f_n) \subset N$ satisfies on M a uniform Bolzano–Cauchy condition, or it

satisfies it locally, and therefore it uniformly, or locally uniformly, converges on M to a function f.

The Dini theorem. In some situations one can deduce from the pointwise or only locally uniform convergence the uniform convergence. An example of such situation is Exercise 8 in lecture 6. Now we generalize it.

Proposition (compactness $\Rightarrow \Rightarrow$). If functions $f_n: M \to \mathbb{R}$, $n \in \mathbb{N}$, are defined on a compact metric space (M, d) and $f_n \stackrel{\text{loc}}{\Rightarrow} (on M)$ then $f_n \Rightarrow (on M)$.

Proof. For every $a \in M$ we take a ball $B_a = B(a, r_a), r_a > 0$, with $f_n \rightrightarrows$ (on B_a). These balls cover M and the compactness of M implies that for some finitely many points $a_1, \ldots, a_k \in M$,

$$M = \bigcup_{i=1}^{k} B_{a_i}$$

For a given $\varepsilon > 0$ let $n_i \in \mathbb{N}$ be such that if $m, n \ge n_i$ and $x \in B_{a_i}$ then $|f_m(x) - f_n(x)| < \varepsilon$. Then for every $m, n \ge \max_{1 \le i \le k} n_i$ and $x \in M$,

$$|f_m(x) - f_n(x)| < \varepsilon$$

as well.

A sequence of functions $f_n: M \to \mathbb{R}$, $n \in \mathbb{N}$ and M is a set, is *monotone* if for every $a \in M$ one has $f_1(a) \leq f_2(a) \leq \ldots$ or for every $a \in M$ one has $f_1(a) \geq f_1(a) \geq \ldots$.

Theorem (Dini's). Let $f_n \to f$ (on M) for a monotone sequence of continuous real functions f_n , $n \in \mathbb{N}$, and a continuous real function f, with all functions defined on a compact metric space (M, d). Then $f_n \rightrightarrows f$ (on M).

Proof. For a given $\varepsilon > 0$ and $n \in \mathbb{N}$ we define sets

$$I_n = \{a \in M \mid |f_n(a) - f(a)| < \varepsilon\}.$$

By the continuity of f_n and f all sets I_n are open. By the pointwise convergence of f_n to f, the I_n cover M. Due to the compactness of M there exist

indices n_1, \ldots, n_k such that $M = \bigcup_{i=1}^k I_{n_i}$. Since the sequence (f_n) is monotone, $I_1 \subset I_2 \subset \ldots$. Hence $M = I_n$ for every $n \ge n_0 = \max(n_1, \ldots, n_k)$. For every $n \ge n_0$ and every $x \in M = I_n$ we thus have $|f_n(x) - f(x)| < \varepsilon$. \Box

The theorem was discovered by the Italian mathematician *Ulisse Dini* (1845–1918) who was teaching on the universities in Pisa.

The Moore–Osgood theorem. As we know, exchange of limits may change the result:

$$\lim_{x \to 1^{-}} \lim_{n \to \infty} x^{n} = \lim_{x \to 1^{-}} 0 = 0, \text{ but } \lim_{n \to \infty} \lim_{x \to 1^{-}} x^{n} = \lim_{n \to \infty} 1 = 1.$$

We show that with uniform convergence this cannot happen. We first state and prove the theorem for the real axis $M = \mathbb{R}$, and then give its generalization for any set M. Recall the notation for the deleted neighborhoods on the real line: if $\delta > 0$ then

$$P(x_0, \delta) = (x_0 - \delta, x_0 + \delta) \setminus \{x_0\} \text{ for } x_0 \in \mathbb{R},$$
$$P(x_0, \delta) = (-\infty, -1/\delta) \text{ for } x_0 = -\infty$$

and

$$P(x_0, \delta) = (1/\delta, +\infty)$$
 for $x_0 = +\infty$.

Theorem (Moore–Osgood 1). Let $x_0 \in \mathbb{R}^*$ (the values $x_0 = \pm \infty$ are allowed), $\delta > 0$, $f_n, f \colon P(x_0, \delta) \to \mathbb{R}$, $n \in \mathbb{N}$, $f_n \rightrightarrows f$ (on $P(x_0, \delta)$), and for every $n \in \mathbb{N}$ there exists a finite limit $\lim_{x\to x_0} f_n(x) =: a_n \in \mathbb{R}$. Then there exists a finite limit

$$\lim_{n \to \infty} a_n = L, \quad and \quad \lim_{x \to x_0} f(x) = L \; .$$

Thus we can exchange limits without changing the result,

$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = L .$$

Proof. Since $f_n \rightrightarrows$ (on $P(x_0, \delta)$), for the given $\varepsilon > 0$ there is an index n_0 such that

$$m, n \ge n_0, x \in P(x_0, \delta) \Rightarrow |f_m(x) - f_n(x)| < \varepsilon$$

For fixed m and n the limit transition $x \to x_0$ preserves the inequality or makes it an equality and

$$m, n \ge n_0 \Rightarrow |a_m - a_n| \le \varepsilon$$
.

Thus $(a_n) \subset \mathbb{R}$ is a Cauchy sequence and has a finite limit $\lim_{n\to\infty} a_n = L \in \mathbb{R}$.

For every $n \in \mathbb{N}$ and every $x \in P(x_0, \delta)$ the triangle inequality gives

$$|f(x) - L| \le \underbrace{|f(x) - f_n(x)|}_A + \underbrace{|f_n(x) - a_n|}_B + \underbrace{|a_n - L|}_C.$$

Let an $\varepsilon > 0$ be given. We select large enough $n_0 \in \mathbb{N}$ such that for every $x \in P(x_0, \delta)$ and $n = n_0$ one has $A, C < \frac{\varepsilon}{3}$. We choose a $\delta_0 \in (0, \delta)$ such that for $n = n_0$ and every $x \in P(x_0, \delta_0)$ one has $B < \frac{\varepsilon}{3}$. Then

$$x \in P(x_0, \delta_0), \ n = n_0 \Rightarrow |f(x) - L| \le A + B + C < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon .$$

Thus $\lim_{x \to x_0} f(x) = L.$

The theorem is called after the American mathematicians *Eliakim Hastings* Moore (1862–1932) and William Fogg Osgood (1864–1943). With the help of it we can again prove that the uniform limit of continuous functions is a continuous function. Let f_n , $n \in \mathbb{N}$, and f be real functions defined on a neighborhood U of a point $a \in \mathbb{R}$, let the functions f_n be continuous at a, and $f_n \Rightarrow f$ (on U). Then

$$\lim_{x \to a} f(x) = \lim_{x \to a} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to a} f_n(x) = \lim_{n \to \infty} f_n(a) = f(a)$$

and f is continuous at a (Exercise 1).

How to generalize the Moore–Osgood theorem to functions defined on any set?¹ For a nonempty set M, any sequence

$$\mathcal{X} = (X_n) \subset \mathcal{P}(M) \text{ with } X_1 \supset X_2 \supset \dots$$

of its nested nonempty subsets (thus $\emptyset \neq X_n \subset M$) is a *centered system* (on M). We say that a function $f: X_1 \to \mathbb{R}$ has a limit $L \in \mathbb{R}$ along \mathcal{X} , written $\lim_{\mathcal{X}} f = L$, if

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : \ x \in X_n \Rightarrow |f(x) - L| < \varepsilon .$$

¹I did not mention this generalization in the lecture.

This is the same as $\forall \varepsilon > 0 \exists n_0 : n \ge n_0, x \in X_n \Rightarrow |f(x) - L| < \varepsilon$ — Exercise 2.

Theorem (Moore–Osgood 2). Let $M \neq \emptyset$ be a set, $\mathcal{X} = (X_n) \subset \mathcal{P}(M)$ be a centered system on M, $f_n, f: X_1 \to \mathbb{R}$, $n \in \mathbb{N}$, be functions with $f_n \rightrightarrows f$ (on X_1), and for every $n \in \mathbb{N}$ let there be a finite limit $\lim_{\mathcal{X}} f_n =: a_n \in \mathbb{R}$. Then there exists a finite limit

$$\lim_{n \to \infty} a_n = L, \quad and \quad \lim_{\mathcal{X}} f = L \; .$$

Thus we can exchange limits without changing the result,

$$\lim_{n \to \infty} \lim_{\mathcal{X}} f_n = \lim_{\mathcal{X}} \lim_{n \to \infty} f_n = L$$

Proof. Since $f_n \rightrightarrows$ (on X_1), for a given $\varepsilon > 0$ there exists an index n_0 such that

$$m, n \ge n_0, x \in X_1 \Rightarrow |f_m(x) - f_n(x)| < \varepsilon$$

Let $m, n \geq n_0$ be fixed. By the definition of limit along \mathcal{X} there exist indices $k_1, k_2 \in \mathbb{N}$ such that $x \in X_{k_1} \Rightarrow |f_m(x) - a_m| < \varepsilon$ and $x \in X_{k_2} \Rightarrow |f_n(x) - a_n| < \varepsilon$. For $k_0 = \max(k_1, k_2)$ we have by the triangle inequality that

$$x \in X_{k_0} \Rightarrow |a_m - a_n| \leq |a_m - f_m(x)| + |f_m(x) - f_n(x)| + |f_n(x) - a_n|$$

$$< \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

The sequence $(a_n) \subset \mathbb{R}$ is again Cauchy and $\lim_{n\to\infty} a_n = L \in \mathbb{R}$.

For every $n \in \mathbb{N}$ and every $x \in X_1$ the triangle inequality gives

$$|f(x) - L| \le \underbrace{|f(x) - f_n(x)|}_A + \underbrace{|f_n(x) - a_n|}_B + \underbrace{|a_n - L|}_C.$$

Let an $\varepsilon > 0$ be given. We take large enough $n_0 \in \mathbb{N}$ such that for every $x \in X_1$ and $n = n_0$, $A, C < \frac{\varepsilon}{3}$ (recall that $f_n \rightrightarrows f$ (on X_1) and $a_n \rightarrow L$ for $n \rightarrow \infty$). We select a $k \in \mathbb{N}$ such that for $n = n_0$ and every $x \in X_k$, $B < \frac{\varepsilon}{3}$. Then

$$x \in X_k, \ n = n_0 \Rightarrow |f(x) - L| \le A + B + C < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
.

Hence $\lim_{\mathcal{X}} f = L$.

This theorem generalizes its first version (Exercise 5).

The exchange of limit and integration/differentiation. Because of lack of time we will not prove the corresponding theorems.

Theorem (exchange of $\lim_{n\to\infty}$ and \int).² Let $f_n, f: [a, b] \to \mathbb{R}$, where a < b are real numbers and $n \in \mathbb{N}$, are functions, f_n are Riemann-integrable on [a, b], and $f_n \rightrightarrows f$ (on [a, b]). Then f is Riemann-integrable on [a, b] too and

$$\lim_{n \to \infty} \int_a^b f_n = \int_a^b f$$

Theorem (exchange of $\lim_{n\to\infty}$ and $\frac{d}{dx}$). Let $-\infty \leq a < b \leq +\infty$ with $a, b \in \mathbb{R}^*$ and $f_n: (a, b) \to \mathbb{R}$, $n \in \mathbb{N}$, be such functions that (i) every f_n has on (a, b) derivative f'_n , (ii) $f'_n \stackrel{\text{loc}}{\Rightarrow} g$ (on (a, b)) for a function $g: (a, b) \to \mathbb{R}$, and (iii) there is a point $c \in (a, b)$ such that the sequence $(f_n(c)) \subset \mathbb{R}$ converges. Then

 $f_n \stackrel{\text{loc}}{\rightrightarrows} f \quad (on \ (a, b))$ for a function $f: (a, b) \to \mathbb{R}$ such that f' = g on (a, b).

Integration improves functions, discontinuous ones become continuous, but differentiation spoils them, derivative of a continuous function may be discontinuous. Thus the hypotheses of the last theorem have to involve the sequence of derivatives (f'_n) rather than (f_n) .

We give three examples illustrating necessity of hypotheses of the last theorem. The functions

$$f_n(x) = \frac{\sin(nx)}{n} \rightrightarrows 0$$

on \mathbb{R} , but the sequence of derivatives $(\cos(nx))$ does not converge pointwisely for many numbers $x \in \mathbb{R}$ (Exercise 3). Thus the uniform convergence of (f_n) does not imply the convergence of (f'_n) . The functions

$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}} \rightrightarrows |x|$$

²Better theorems on exchange of a limit and (Riemann) integration are known. I will mention them here later.

on \mathbb{R} (Exercise 4) and have derivatives $f'_n(x)$ on \mathbb{R} , but the limit function f(x) = |x| does not have derivative at 0. The uniform convergence (f_n) to f therefore does not ensure the existence of f'. Finally, the functions $f_n(x) = n$ have derivatives $(f'_n) = (0)$ clearly converging on \mathbb{R} uniformly to the zero function, but the original sequence (f_n) does not converge even pointwisely. Thus assumptions (i) and (ii) are met, but not (iii), and the conclusion of the theorem does not hold.

Exercises

- 1. Explain each equality in the computation proving (by means of the Moore–Osgood theorem 1) continuity of the uniform limit at a point a.
- 2. Prove equivalence of the two definitions of the limit along \mathcal{X} .
- 3. Find some $x \in \mathbb{R}$ such that $(\cos(nx))$ does not converge.
- 4. Show that $\sqrt{x^2 + \frac{1}{n^2}} \Rightarrow |x|$ (on \mathbb{R}).
- 5. Explain why the Moore–Osgood theorem 2 generalizes the Moore– Osgood theorem 1.
- 6. Is it true that

$$\lim_{n \to \infty} \int_0^1 f_n = \int_0^1 \lim_{n \to \infty} f_n ,$$

if $f_n(x) = nx(1-x)^n$?

7. Compute the limit

$$\lim_{n \to \infty} \int_0^{\pi/2} (\sin^{n+1} x - \sin^n x) \, dx$$

and justify your computation.

8. Compute the limit

$$\lim_{n \to \infty} \int_0^1 (1 + x/n)^n \, dx$$

and justify your computation.

9. This was probably mentioned before in a particular case but we still give the general version. Let $f_n \to f$ on M but $f_n \not\rightrightarrows f$ on M. Prove that there does not exist an inclusion-maximal set $A \subset M$ such that $f_n \rightrightarrows f$ on A.