
Lecture 8, November 21, 2019

More about uniform convergence. The Moore–Osgood theorem 1
and 2. Exchange of limit and integration/differentiation (without

proofs)

The uniform Bolzano–Cauchy condition. One of the basic results of
the theory of limits of real sequences (an) ⊂ R is the equivalence

∃ a ∈ R : lim an = a ⇐⇒ ∀ ε > 0 ∃n0 ∈ N : m, n ≥ n0 ⇒ |am − an| < ε

— a sequence (an) converges if and only if it is Cauchy. This is one of the
main theorems in Mathematical Analysis I. We generalize it to sequences of
functions.

Proposition (the uniform B.–C. condition). Let fn : M → R, n ∈ N,
be real functions defined on a set M . Then

∃ (f : M → R) : fn ⇒ f (on M)

⇐⇒ ∀ ε > 0 ∃n0 ∈ N : m, n ≥ n0, x ∈M ⇒ |fm(x)− fn(x)| < ε .

On the left side of the equivalence one can instead of fn ⇒ f (on M) write
lim fn = f , with convergence in the norm ‖ · ‖∞. The right side of the
equivalence is called the uniform Bolzano–Cauchy condition.

Proof. Implication ⇒. If fn converge uniformly on M to f , we take n0 in N
such that for every n ≥ n0 and every x ∈ M , |fn(x) − f(x)| < ε

2
. Then for

every m,n ≥ n0 and x ∈M we have (by the ∆ inequality)

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |f(x)− fm(x)| < ε

2
+
ε

2
= ε .

The sequence (fn) therefore satisfies the uniform Bolzano–Cauchy condition.
Implication⇐. The sequence of functions (fn) ⊂ N is a Cauchy sequence

in the (metric or normed) space of functions (N, ‖·‖) whereN = {f | f : M →
R}. By Exercise 6 in lecture 6 N is a complete space. Hence there is a
function f ∈ N such that lim fn = f . So fn ⇒ f (on M). 2

The notation fn ⇒ (on M) and fn
loc

⇒ (on M) therefore makes sense: the
sequence (fn) ⊂ N satisfies on M a uniform Bolzano–Cauchy condition, or it
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satisfies it locally, and therefore it uniformly, or locally uniformly, converges
on M to a function f .

The Dini theorem. In some situations one can deduce from the pointwise
or only locally uniform convergence the uniform convergence. An example of
such situation is Exercise 8 in lecture 6. Now we generalize it.

Proposition (compactness ⇒⇒). If functions fn : M → R, n ∈ N, are

defined on a compact metric space (M,d) and fn
loc

⇒ (on M) then fn ⇒ (on
M).

Proof. For every a ∈M we take a ball Ba = B(a, ra), ra > 0, with fn ⇒ (on
Ba). These balls cover M and the compactness of M implies that for some
finitely many points a1, . . . , ak ∈M ,

M =
k⋃
i=1

Bai .

For a given ε > 0 let ni ∈ N be such that if m,n ≥ ni and x ∈ Bai then
|fm(x)− fn(x)| < ε. Then for every m,n ≥ max1≤i≤k ni and x ∈M ,

|fm(x)− fn(x)| < ε

as well. 2

A sequence of functions fn : M → R, n ∈ N and M is a set, is monotone if
for every a ∈ M one has f1(a) ≤ f2(a) ≤ . . . or for every a ∈ M one has
f1(a) ≥ f1(a) ≥ . . . .

Theorem (Dini’s). Let fn → f (on M) for a monotone sequence of con-
tinuous real functions fn, n ∈ N, and a continuous real function f , with all
functions defined on a compact metric space (M,d). Then fn ⇒ f (on M).

Proof. For a given ε > 0 and n ∈ N we define sets

In = {a ∈M | |fn(a)− f(a)| < ε} .

By the continuity of fn and f all sets In are open. By the pointwise conver-
gence of fn to f , the In cover M . Due to the compactness of M there exist
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indices n1, . . . , nk such that M =
⋃k
i=1 Ini

. Since the sequence (fn) is mono-
tone, I1 ⊂ I2 ⊂ . . . . Hence M = In for every n ≥ n0 = max(n1, . . . , nk). For
every n ≥ n0 and every x ∈M = In we thus have |fn(x)− f(x)| < ε. 2

The theorem was discovered by the Italian mathematician Ulisse Dini (1845–
1918) who was teaching on the universities in Pisa.

The Moore–Osgood theorem. As we know, exchange of limits may
change the result:

lim
x→1−

lim
n→∞

xn = lim
x→1−

0 = 0, but lim
n→∞

lim
x→1−

xn = lim
n→∞

1 = 1 .

We show that with uniform convergence this cannot happen. We first state
and prove the theorem for the real axis M = R, and then give its general-
ization for any set M . Recall the notation for the deleted neighborhoods on
the real line: if δ > 0 then

P (x0, δ) = (x0 − δ, x0 + δ) \ {x0} for x0 ∈ R ,

P (x0, δ) = (−∞, −1/δ) for x0 = −∞

and
P (x0, δ) = (1/δ, +∞) for x0 = +∞ .

Theorem (Moore–Osgood 1). Let x0 ∈ R∗ (the values x0 = ±∞ are
allowed), δ > 0, fn, f : P (x0, δ) → R, n ∈ N, fn ⇒ f (on P (x0, δ)), and for
every n ∈ N there exists a finite limit limx→x0 fn(x) =: an ∈ R. Then there
exists a finite limit

lim
n→∞

an = L, and lim
x→x0

f(x) = L .

Thus we can exchange limits without changing the result,

lim
n→∞

lim
x→x0

fn(x) = lim
x→x0

lim
n→∞

fn(x) = L .

Proof. Since fn ⇒ (on P (x0, δ)), for the given ε > 0 there is an index n0

such that
m, n ≥ n0, x ∈ P (x0, δ)⇒ |fm(x)− fn(x)| < ε .
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For fixed m and n the limit transition x → x0 preserves the inequality or
makes it an equality and

m, n ≥ n0 ⇒ |am − an| ≤ ε .

Thus (an) ⊂ R is a Cauchy sequence and has a finite limit limn→∞ an = L ∈
R.

For every n ∈ N and every x ∈ P (x0, δ) the triangle inequality gives

|f(x)− L| ≤ |f(x)− fn(x)|︸ ︷︷ ︸
A

+ |fn(x)− an|︸ ︷︷ ︸
B

+ |an − L|︸ ︷︷ ︸
C

.

Let an ε > 0 be given. We select large enough n0 ∈ N such that for every
x ∈ P (x0, δ) and n = n0 one has A,C < ε

3
. We choose a δ0 ∈ (0, δ) such that

for n = n0 and every x ∈ P (x0, δ0) one has B < ε
3
. Then

x ∈ P (x0, δ0), n = n0 ⇒ |f(x)− L| ≤ A+B + C <
ε

3
+
ε

3
+
ε

3
= ε .

Thus limx→x0 f(x) = L. 2

The theorem is called after the American mathematicians Eliakim Hastings
Moore (1862–1932) and William Fogg Osgood (1864–1943). With the help
of it we can again prove that the uniform limit of continuous functions is a
continuous function. Let fn, n ∈ N, and f be real functions defined on a
neighborhood U of a point a ∈ R, let the functions fn be continuous at a,
and fn ⇒ f (on U). Then

lim
x→a

f(x) = lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x) = lim
n→∞

fn(a) = f(a)

and f is continuous at a (Exercise 1).
How to generalize the Moore–Osgood theorem to functions defined on

any set?1 For a nonempty set M , any sequence

X = (Xn) ⊂ P(M) with X1 ⊃ X2 ⊃ . . .

of its nested nonempty subsets (thus ∅ 6= Xn ⊂M) is a centered system (on
M). We say that a function f : X1 → R has a limit L ∈ R along X , written
limX f = L, if

∀ ε > 0 ∃n ∈ N : x ∈ Xn ⇒ |f(x)− L| < ε .

1I did not mention this generalization in the lecture.
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This is the same as ∀ ε > 0 ∃n0 : n ≥ n0, x ∈ Xn ⇒ |f(x) − L| < ε—
Exercise 2.

Theorem (Moore–Osgood 2). Let M 6= ∅ be a set, X = (Xn) ⊂ P(M)
be a centered system on M , fn, f : X1 → R, n ∈ N, be functions with fn ⇒ f
(on X1), and for every n ∈ N let there be a finite limit limX fn =: an ∈ R.
Then there exists a finite limit

lim
n→∞

an = L, and lim
X
f = L .

Thus we can exchange limits without changing the result,

lim
n→∞

lim
X
fn = lim

X
lim
n→∞

fn = L .

Proof. Since fn ⇒ (on X1), for a given ε > 0 there exists an index n0 such
that

m, n ≥ n0, x ∈ X1 ⇒ |fm(x)− fn(x)| < ε .

Let m,n ≥ n0 be fixed. By the definition of limit along X there exist
indices k1, k2 ∈ N such that x ∈ Xk1 ⇒ |fm(x) − am| < ε and x ∈ Xk2 ⇒
|fn(x) − an| < ε. For k0 = max(k1, k2) we have by the triangle inequality
that

x ∈ Xk0 ⇒ |am − an| ≤ |am − fm(x)|+ |fm(x)− fn(x)|+ |fn(x)− an|
< ε+ ε+ ε = 3ε .

The sequence (an) ⊂ R is again Cauchy and limn→∞ an = L ∈ R.
For every n ∈ N and every x ∈ X1 the triangle inequality gives

|f(x)− L| ≤ |f(x)− fn(x)|︸ ︷︷ ︸
A

+ |fn(x)− an|︸ ︷︷ ︸
B

+ |an − L|︸ ︷︷ ︸
C

.

Let an ε > 0 be given. We take large enough n0 ∈ N such that for every
x ∈ X1 and n = n0, A,C < ε

3
(recall that fn ⇒ f (on X1) and an → L for

n→∞). We select a k ∈ N such that for n = n0 and every x ∈ Xk, B < ε
3
.

Then

x ∈ Xk, n = n0 ⇒ |f(x)− L| ≤ A+B + C <
ε

3
+
ε

3
+
ε

3
= ε .
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Hence limX f = L. 2

This theorem generalizes its first version (Exercise 5).

The exchange of limit and integration/differentiation. Because of
lack of time we will not prove the corresponding theorems.

Theorem (exchange of limn→∞ and
∫

).2 Let fn, f : [a, b] → R, where
a < b are real numbers and n ∈ N, are functions, fn are Riemann-integrable
on [a, b], and fn ⇒ f (on [a, b]). Then f is Riemann-integrable on [a, b] too
and

lim
n→∞

∫ b

a

fn =

∫ b

a

f .

Theorem (exchange of limn→∞ and d
dx

). Let −∞ ≤ a < b ≤ +∞ with
a, b ∈ R∗ and fn : (a, b) → R, n ∈ N, be such functions that (i) every fn

has on (a, b) derivative f ′n, (ii) f ′n
loc

⇒ g (on (a, b)) for a function g : (a, b)→
R, and (iii) there is a point c ∈ (a, b) such that the sequence (fn(c)) ⊂ R
converges. Then

fn
loc

⇒ f (on (a, b))

for a function f : (a, b)→ R such that f ′ = g on (a, b).

Integration improves functions, discontinuous ones become continuous, but
differentiation spoils them, derivative of a continuous function may be dis-
continuous. Thus the hypotheses of the last theorem have to involve the
sequence of derivatives (f ′n) rather than (fn).

We give three examples illustrating necessity of hypotheses of the last
theorem. The functions

fn(x) =
sin(nx)

n
⇒ 0

on R, but the sequence of derivatives (cos(nx)) does not converge pointwisely
for many numbers x ∈ R (Exercise 3). Thus the uniform convergence of (fn)
does not imply the convergence of (f ′n). The functions

fn(x) =

√
x2 +

1

n2
⇒ |x|

2Better theorems on exchange of a limit and (Riemann) integration are known. I will
mention them here later.
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on R (Exercise 4) and have derivatives f ′n(x) on R, but the limit function
f(x) = |x| does not have derivative at 0. The uniform convergence (fn)
to f therefore does not ensure the existence of f ′. Finally, the functions
fn(x) = n have derivatives (f ′n) = (0) clearly converging on R uniformly
to the zero function, but the original sequence (fn) does not converge even
pointwisely. Thus assumptions (i) and (ii) are met, but not (iii), and the
conclusion of the theorem does not hold.

Exercises

1. Explain each equality in the computation proving (by means of the
Moore–Osgood theorem 1) continuity of the uniform limit at a point a.

2. Prove equivalence of the two definitions of the limit along X .

3. Find some x ∈ R such that (cos(nx)) does not converge.

4. Show that
√
x2 + 1

n2 ⇒ |x| (on R).

5. Explain why the Moore–Osgood theorem 2 generalizes the Moore–
Osgood theorem 1.

6. Is it true that

lim
n→∞

∫ 1

0

fn =

∫ 1

0

lim
n→∞

fn ,

if fn(x) = nx(1− x)n?

7. Compute the limit

lim
n→∞

∫ π/2

0

(sinn+1 x− sinn x) dx

and justify your computation.

8. Compute the limit

lim
n→∞

∫ 1

0

(1 + x/n)n dx

and justify your computation.
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9. This was probably mentioned before in a particular case but we still
give the general version. Let fn → f on M but fn 6⇒ f on M . Prove
that there does not exist an inclusion-maximal set A ⊂ M such that
fn ⇒ f on A.
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