
Lecture 6, November 7, 2019

Uniform convergence and normed spaces of functions. Complete
spaces of functions. A continuous function without derivative

Normed spaces of functions. In fact, one can consider the pointwise and
uniform convergence of sequences of functions for real functions f : M → R
defined on any nonempty set M , which need not be a subset of R as we
stated last time. (For locally uniform convergence one needs to endow M
with a metric or a topology, in order to be able to speak about neighbor-
hoods of points.) A better structure to capture uniform convergence than
a metric space is in this situation the structure of a normed (vector) space
N = (N, ‖ · ‖∞) = (N, ‖·‖) where N = {f | f : M → R} and the (supremum
or L∞) norm

‖ · ‖∞ = ‖ · ‖ : N → [0, +∞] = [0, +∞) ∪ {+∞}

is defined by
‖f‖ := sup({|f(x)| | x ∈M}) .

The norm ‖ ·‖ therefore may attain value +∞ and has these basic properties
(for every c ∈ R and f, g ∈ N): (i) ‖f‖ ≥ 0 and ‖f‖ = 0 iff f is the
zero function, (ii) ‖cf‖ = |c| · ‖f‖, and (iii) ‖f + g‖ ≤ ‖f‖ + ‖g‖. We
understand N as a real vector space with the operations f + g of addition
of vectors, which are here functions, and cf of scalar multiplication of a
function f by a real number c. The reader knows their properties from the
linear algebra. We compute with the not so usual value of the norm +∞ as
follows: c(+∞) = +∞ for every real c > 0, 0(+∞) = 0, and (+∞)+(+∞) =
c+ (+∞) = (+∞) + c = +∞ for every real c ≥ 0. If we restrict to bounded
functions then, as we know,

d(f, g) := ‖f − g‖

yields the metric space (N, d).

Uniform convergence and norm. Uniform convergence is equivalent to
convergence with respect to the previous norm. The proof of it is left to the
reader as a simple exercise.
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Proposition (⇒ ⇐⇒ ‖ · ‖∞ → 0). Let N be the normed space of all real
functions defined on a nonempty set M , and let fn, f ∈ N for n ∈ N. Then

fn ⇒ f on M ⇐⇒ lim
n→∞

‖fn − f‖ = lim ‖fn − f‖ = lim d(fn, f) = 0 ,

that is, the functions fn, as points in the space N , converge in N to the limit
f .

Proof. Exercise 1. 2

However, here in general we get infinite distances as values of the metric,
which we did not allow in the definition of a metric space.

More examples. We saw that for fn(x) = xn and f defined as f(x) = 0
for 0 ≤ x < 1 and f(1) = 1 the sequence of functions fn 6⇒ f on [0, 1] nor on
[0, 1). But it is easy to see (Exercise 2) that the previous proposition implies
that

fn
loc

⇒ f on [0, 1) .

If fn(x) = nx
1+n2x2 then fn →≡ 0 on R but because of the values fn( 1

n
) = 1

2

the convergence is not uniform nor is it on R locally uniform (Exercise 3).
But fn ⇒≡ 0 on each set M ⊂ R for which 0 is an exterior point (Exercise
4). Finally

fn(x) =
sin(nx)

n
⇒≡ 0 on R

by the last proposition because ‖fn‖ = 1
n
→ 0 (M = R) for n→∞.

A closed and bounded but non-compact set. We give an example of
such a set X in a metric space. As we know, Rn does not suffice for it and
we need infinitely many dimensions. We take the metric space (N, d), where
N = {f | f : [0, 1] → R and f is bounded} and d is the metric derived from
the norm ‖ · ‖∞, and for n ∈ N set

fn(x) =

{
0 . . . x 6= 1/n ,
1 . . . x = 1/n .

Then (fn) ⊂ N and d(fm, fn) = 1 whenever m 6= n. These distances imply
all three required properties of the set X = {fn | n ∈ N} ⊂ N : it is closed,
bounded, and non-compact (Exercise 5).
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Proposition (1st complete space of functions). If M is any non-empty
set, then the normed space N of all bounded real functions defined on M
is complete, that is, (N, d) with the metric d(f, g) = ‖f − g‖ is a complete
metric space.

Proof. Let (fn) ⊂ N be a Cauchy sequence in the normed space (N, ‖ · ‖),
we show that (fn) has a limit in N . In particular, for each fixed a ∈ M the
sequence (fn(a)) ⊂ R is a Cauchy sequence of real numbers and (by one of
the basic theorems in Mathematical Analysis I) has a finite limit lim fn(a) =:
f(a) ∈ R. We get a function f : M → R such that fn → f on M . We show
that even fn ⇒ f on M .

Let an ε > 0 be given. Because (fn) is a Cauchy sequence, we can take
an n0 such that for every m,n ≥ n0 one has

∀x ∈M : |fm(x)− fn(x)| < ε/2 .

Further let an a ∈ M be given. Since lim fn(a) = f(a), we can take an m
such that |fm(a)− f(a)| < ε/2 and m ≥ n0. Then for every n ≥ n0 one has
(by the triangle inequality)

|fn(a)− f(a)| ≤ |fn(a)− fm(a)|+ |fm(a)− f(a)| < ε/2 + ε/2 = ε .

The first | · · · | < ε
2

because the sequence (fn) is (uniformly) Cauchy, and for
the second absolute value it holds too because of the choice of m. For every
a ∈ M and every n with n ≥ n0 we therefore have |fn(a) − f(a)| < ε, thus
fn uniformly converge to f on M , and lim fn = f in the normed space of all
real functions defined on M .

But we have only bounded functions and therefore still have to show that
f is bounded. If it were not, the sequence (fn) would not have a limit in N .
We take an n such that ‖f − fn‖ ≤ 1 (which is possible since fn ⇒ f on
M). Because fn is bounded, there is a real c with ‖fn‖ ≤ c. By the triangle
inequality we have ‖f‖ ≤ ‖f − fn‖+ ‖fn‖ ≤ 1 + c, thus f is bounded. 2

We required bounded functions in N only in order that an “ordinary” metric
results, without infinite distances (Exercise 6).

Theorem (2nd complete space of functions). For every metric space
(M,d) the normed space N = (N, ‖ · ‖∞) of all continuous real functions
defined on M is complete.
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Proof. Let (fn) ⊂ N be a Cauchy sequence in the normed space N of all
continuous functions from the metric space M to real numbers, we show that
(fn) has a limit in N . The previous proof shows the existence of a function
f : M → R such that fn ⇒ f on M . It remains to show that f is continuous.

We show that f is continuous at a given point a ∈M . Let also an ε > 0
be given. Since fn ⇒ f on M , we can select an m such that

∀x ∈M : |fm(x)− f(x)| < ε/3 .

Because fm is a continuous function (at every point of M), there is a δ > 0
such that

x ∈ B(a, δ)⇒ |fm(x)− fm(a)| < ε/3 .

The ball B(a, δ) lies in the metric space (M,d). Then for every x ∈ B(a, δ)
we also have

|f(x)− f(a)| ≤ |f(x)− fm(x)|+ |fm(x)− fm(a)|+ |fm(a)− f(a)| < ε .

The first and third | · · · | < ε
3

because of the choice of m, and the second
absolute value satisfies it too due to the continuity of fm at a. Hence f is
continuous at a. 2

A continuous function on a non-compact metric space (such as R) need not
be bounded, hence we get again in general a “metric” ‖f − g‖ with infinite
distances. The theorem actually says that the uniform limit of continuous
functions is a continuous function (Exercise 7).

Corollary (the complete space C[a, b]). For any two real numbers a ≤ b
the normed space C[a, b] = (C[a, b], ‖ · ‖∞) of all continuous real functions
defined on the interval [a, b] is complete.

Proof. This is a particular case of the previous theorem, but because of the
boundedness of continuous real functions on compact sets, and the intervals
[a, b] are compact, we now have bounded functions and therefore a “proper”
metric with only finite distances. 2

The previous complete spaces of functions are derived in a straightforward
way from the complete Euclidean space R, the real axis, which makes its role
as a basic complete metric space clear.

A continuous function without derivative. Now we give, or at least
begin, the promised proof of the existence of a continuous function f : [0, 1]→
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R that for no a ∈ [0, 1] has finite f ′(a). It applies the Baire theorem in the
complete space C[0, 1].

Theorem (a continuous function without derivative). There exists a
continuous function f : [0, 1] → R such that for every x ∈ [0, 1] and every
δ > 0,

sup

({∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ∣∣∣∣ y ∈ P (x, δ) ∩ [0, 1]

})
= +∞ .

Such f does not have for any x ∈ (0, 1) finite f ′(x), nor it has finite f ′+(0)
and finite f ′−(1).

We remind that P (x, δ) = (x−δ, x+δ)\{x} denotes the deleted neighborhood
of the point x. The property sup(. . . ) = +∞ of the function f has the
following geometric meaning. For every x ∈ [0, 1], every δ > 0, and every
large c > 0 (like c = 10100), one finds in [0, 1] a number y different from x, but
closer to x than δ, such that the secant line of the graph of f corresponding
to the numbers x and y, which is the line in the plane R2 going through
the points (x, f(x)) and (y, f(y)), is quite steep, rises or falls with the slope

|f(y)−f(x)
y−x | > c. Clearly, such function f does not have at the point (number)

x finite derivative (a tangent line).
Briefly, the proof goes as follows. For n ∈ N we define subsets An ⊂ C[0, 1]

by

An = {f ∈ C[0, 1] | ∃x ∈ [0, 1] ∀ y ∈ [0, 1] : y 6= x⇒ |f(y)−f(x)
y−x | ≤ n} .

It turns out that they are meager, and therefore by the Baire theorem there
is a function f in C[0, 1] \

⋃∞
n=1An. It follows from this that such f has the

property in the theorem. I will tell you the proof of the theorem in detail
next time.

Exercises

1. Prove the first proposition in the lecture.

2. Prove that fn
loc

⇒ f on [0, 1), where fn(x) = xn and f is the pointwise
limit of the functions fn on [0, 1), the zero function.

3. Prove that for fn(x) = nx
1+n2x2 the sequence of functions fn 6

loc

⇒≡ 0 on
R.
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4. Prove that the convergence of the fn(x) in the previous exercise is
uniform on (−∞,−δ) ∪ (δ,+∞) for every δ > 0.

5. Prove that the set of functions X = {f1, f2, . . . } ⊂ N defined in the
lecture is closed and bounded but not compact.

6. Prove that the normed space of all real functions defined on a nonempty
set is complete.

7. How does exactly follow from the first theorem in the lecture that the
uniform limit of continuous functions is a continuous function?

8. Prove that for finite M , fn → f on M implies fn ⇒ f on M .

9. Let fn ⇒ f on M and gn ⇒ g on M . Determine if then also fn + gn ⇒
f + g on M .

10. Let fn ⇒ f on M and gn ⇒ g on M . Determine if then also fngn ⇒ fg
on M .
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