
Lecture 4, October 24, 2019

Homeomorphisms. Handcuffs. Connected spaces. Complete
spaces

Absoluteness of compactness. In contrast with openness and closedness,
compactness is an absolute property and does not depend on the space or
subspace we consider the given set in (Exercise 1).

Proposition (compactness and homeomorphism). If f : M → N is a
continuous and injective map between metric spaces and M is compact, then
the inverse map f−1 : f(M) → M is continuous. The map f is therefore a
homeomorphism between the spaces M and f(M) (where the last one is given
as a subspace of the space N).

Proof. By Exercise 6 in the last lecture f(M) is a compact subset of the
space N . By the definition of a compact set in lecture 2 the space f(M) is
compact. Let X ⊂ M be an arbitrary closed subset of the space M . By
Exercise 3 in the last lecture X is compact. By Exercise 6 in the last lecture
f(X) is a compact subset of the space f(M). By Exercise 4 in the last lecture
f(X) is a closed subset of the space f(M). But(

f−1
)−1

(X) = f(X)

— the preimage of any closed subset of the space M in the map f−1 is a
closed subset of the space f(M). The map f−1 : f(M) → M is therefore
continuous by Exercise 2 in the last lecture. 2

Euclidean spaces [a, b] and S1. At the closing of the last lecture we
mentioned a continuous bijection between the Euclidean spaces [0, 2π) ⊂ R
and

S1 = {(x, y) ∈ R2 | x2 + y2 = 1} ⊂ R2 (the unit circle) ,

with a discontinuous inverse. We promised to show that both spaces are not
homeomorphic. But this is obvious (Exercise 2) because the former is not
compact, but the latter is (for example by Exercise 5 in the last lecture).
This leads naturally to the next question.

Are the Euclidean spaces [a, b] and S1 homeomorphic?
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(Here a, b ∈ R with a < b.) Both are compact and therefore the previous
argument does not apply. A student asked in the lecture how is it with a
bijection between [a, b] and S1. A bijection between [a, b) and S1 is clear,
it is easy to wind this interval bijectively around the circle. Last time we
explicitly defined such winding for [0, 2π), but how do we bijectively “wind”
[a, b]? With the help of the Cantor–Bernstein theorem (Exercise 3): If there
are injections f : A→ B and g : B → A (A and B are sets) then there exists
a bijection h : A→ B (and always h(x) = f(x) or h(x) = g−1(x)). Before we
resolve by means of connected spaces the problem whether [a, b] and S1 are
homeomorphic, we consider a puzzle that is related to homeomorphisms.

A puzzle with handcuffs. In our three-dimensional space R3 with the
coordinates (x, y, z), three sets P,K1, K2 ⊂ R3 are given. The set P is
three-dimensional “handcuffs”, two rings joined by a bar, and K1, K2 is
a one-dimensional circle in two positions; P ∩ K1 = P ∩ K2 = ∅. We
analytically describe and define all three sets below. In the first position
P ∪ K1 the circle K1 and each of the two rings are linked. In the second
position P ∪ K2 the circle K2 and only one ring are linked. The task is
to transform the first position in the second (or the other way around),
by only using continuous and injective transformations. The circle is
made from a perfectly elastic wire which can be arbitrarily stretched and
bent. The handcuffs is made of a perfectly deformable material, perhaps
of some ideal modeling clay, and one can form it and mould arbitrarily.
But only in a continuous and injective way, material cannot non-injectively
penetrate through itself nor can be discontinuously broken. For example,
the transformation when one ring of the handcuffs is broken, the circle
slides out through the gap, and the broken ring is glued back, is not
admissible. What manipulation transforms the position with the circle
linked in both rings in the position where it is linked in only one ring? It
seems impossible: if the circle is linked in a ring, then without breaking
it or the ring or without miraculously moving the circle through the ring
they cannot be unlinked? The hint is to fully use the three-dimensionality
and plasticity of the handcuffs. (For a solution see for example p. 25 in
https://mskrieger.files.wordpress.com/2015/12/6305 nishiyama.pdf)

As a small workout in the analytic geometry and metric spaces we describe
the handcuffs and the circle(s) by equations. We work in the Euclidean metric
space R3 = (R3, d2). For X ⊂ R3 and δ > 0 we introduce the set

(X)δ = {a ∈ R3 | ∃ b ∈ X : d2(a, b) ≤ δ} .
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It is the three-dimensional hull of X with thickness δ. For u, v, r ∈ R with
r > 0 we define the sets

K(u, v, r) = {(x, y, z) ∈ R3 | z = 0 & (x− u)2 + (y − v)2 = r2}

and

L(u, v, r) = {(x, y, z) ∈ R3 | y = 0 & (x− u)2 + (z − v)2 = r2} .

The first is the horizontal circle in the plane z = 0 with the radius r and
center (u, v, 0). The second is the vertical circle in the plane y = 0 with the
radius r and center (u, 0, v). We set

P = (K(−6, 0, 4))1 ∪ ({(x, y, z) | − 2 ≤ x ≤ 2, y = z = 0})1 ∪ (K(6, 0, 4))1

and
K1 = L(0, 0, 6), K2 = L(12, 0, 6) .

It is not hard to check (Exercise 4) that P ∪Ki, i = 1, 2, are the two positions
of the handcuffs and the circle.

But what is meant by the “continuous and injective transformations” that
are allowed for transforming P ∪K1 in P ∪K2? We give more details here
later.

Connected spaces. A subset X ⊂M in a metric space (M,d) is clopen, if
it is both open and closed, like the sets ∅ and M . A space M is connected,
if it has no nontrivial (differing from ∅ and M) clopen subset. A (sub)set
X ⊂M is connected, if the subspace (X, d) is connected. Else, if M or X has
a nontrivial clopen subset, we speak of a disconnected space or a disconnected
subset. For instance X = {0} ∪ {1} ∪ (11, 14] ⊂ R is a disconnected set (in
the Euclidean space R) because {1} is one of its nontrivial clopen subsets
(Exercise 5). Like compactness, connectedness or disconnectedness of X is
an absolute property (Exercise 6).

We give an equivalent definition of disconnectedness. In set theory or in
combinatorics we mean by a partition of a set A a set B with the properties:
(i) ∅ 6∈ B, (ii) C,D ∈ B and C 6= D ⇒ C ∩D = ∅, and (iii)

⋃
B = A. It is

easy to see that the following is an equivalent definition of disconnectedness
of a subset X ⊂M :

A subset X ⊂ M is disconnected if it has an open (a closed)
partition {Y, Z}, a partition of X with set Y, Z ⊂ X that are
open (closed) in X.
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Because of the characterization of open and closed sets in a subspace (Ex-
ercise 10 in the previous lecture) we can also say that a subset X ⊂ M is
disconnected if and only if there exist open (closed) subsets A,B ⊂ M such
that {A∩X,B∩X} is a partition of X. Intuitively, a space is disconnected if
it decomposes in two nonempty and separated parts. Connectedness means
that there is no such decomposition.

Proposition (connected sets and continuous maps). If f : M → N is
a continuous map between metric spaces and X ⊂ M is connected, then the
image f(X) ⊂ N is also connected.

Proof. We show that disconnectedness of f(X) implies disconnectedness of
X. Since f(X) is disconnected, there are open subsets A,B ⊂ N such that
P = {A ∩ f(X), B ∩ f(X)} is a partition of f(X). We claim that then

{f−1(A) ∩X, f−1(B) ∩X}

is an open partition of X. Both inverse images are open sets in M (by
Exercise 2 in the last lecture). The two intersections are disjoint: if both
x ∈ f−1(A)∩X and x ∈ f−1(B)∩X then we would have f(x) ∈ A∩B∩f(X),
contradicting that P is a partition of f(X). As A ∩ f(X) 6= ∅, we can take
an a ∈ A ∩ f(X). Then any x ∈ X with f(x) = a satisfies x ∈ f−1(A), thus
f−1(A) ∩X 6= ∅. In the same way we show that f−1(B) ∩X 6= ∅. Finally, if
x ∈ X is arbitrary, then f(x) lies in A ∩ f(X) or in B ∩ f(X) (because P is
a partition of f(X)), hence x lies in f−1(A) or in f−1(B) and the union of
the two intersections is X. 2

Thus two homeomorphic metric spaces are both connected or both discon-
nected.

Intervals. Recall that X ⊂ R is an interval if

b ∈ X, whenever a, b, c ∈ R satisfy a < b < c and a, c ∈ X .

For a, b ∈ R with a < b, here is the list of all types of intervals, sorted from
the largest one to the smallest: R = (−∞,+∞), (−∞, a], (−∞, a), (a,+∞),
[a,+∞), [a, b], [a, b), (a, b], (a, b), {a}, and ∅.

Proposition (connected sets in R). An Euclidean (sub)space X ⊂ R is
connected if and only if it is an interval.
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Proof. If X ⊂ R is not an interval then there are three real numbers a < b < c
such that a, c ∈ X but b 6∈ X. It is easy to see that then

{X ∩ (−∞, b), X ∩ (b, +∞)}

is an open partition of X which is therefore disconnected. Let us suppose
that X ⊂ R is disconnected and we have its closed partition

P = {X ∩ A, X ∩B}

where A,B ⊂ R are closed subsets. Since the two intersections are nonempty
and disjoint, we can take numbers a ∈ X ∩ A and b ∈ X ∩ B and assume
that a < b. We define the number

c = sup({x ∈ [a, b] | x ∈ A}) ∈ [a, b]

(the supremum c exists because a ∈ A and b is an upper bound of the set).
We distinguish two cases depending on whether c lies in X or not.1 If c 6∈ X
then a < c < b and this triple of points shows that X is not an interval.
Let c ∈ X. By the property of supremum and closedness of A we have that
c ∈ A. Hence c < b because c 6∈ B (as P is a partition of X). If (c, b) ⊂ X
then also (c, b) ⊂ B (because this interval is larger that the supremum c), c
would be a limit of a sequence of points in B, and we would have c ∈ B by
closedness of B, but as we know this is not the case. Thus there is a point
d ∈ (c, b) such that d 6∈ X. The triple a < d < b shows again that X is not
an interval. 2

For instance the unit circle S1 is a connected (Euclidean) space because it
is a continuous image of a connected set, the interval [0, 2π). Using the two
previous propositions and Exercise 7 we can generate many connected spaces.

The spaces [a, b] and S1 are not homeomorphic. Now we prove it.
It would seem that even (dis)connectedness does not help us because both
spaces are connected. However, the set [a, b] \ {c} is disconnected for any
deleted point c ∈ (a, b), but S1\{p} is connected for any deleted point p ∈ S1

(in a moment we justify both). If a homeomorphism f : [a, b] → S1 existed,
for every point c ∈ (a, b) the image f−1(S1 \ {f(c)}) = [a, b] \ {c} of the
connected set S1 \{f(c)} by the continuous map f−1 would be disconnected,

1In the lecture I inadvertently skipped this point.
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contrary to the above proposition. Hence there is no homeomorphism be-
tween [a, b] and S1. The space [a, b] \ {c}, a < c < b, is disconnected by the
last proposition because it is not an interval. The space S1 \{p} is connected
because it is homeomorphic to the connected space R: if p = (0, 1) is the
north pole, the bijection

f : S1 \ {(0, 1)} → X = the x-axis, f(q) = the intersection of ` and X ,

where ` is the line going through the points (0, 1) and q, is a homeomorphism
of both spaces. It is easy to adapt this to other points p ∈ S1. Connectedness
and homeomorphisms are further treated in Exercises 8–11.

Complete spaces. A metric space (M,d) is complete if every Cauchy se-
quence (an) ⊂ M of points in it has a limit lim an = a ∈ M . Let us recall
and in fact define that a sequence (an) ⊂M is Cauchy if

∀ ε > 0 ∃n0 : m,n > n0 ⇒ d(am, an) < ε .

A subset X ⊂ M is complete if the subspace (X, d) is complete. The basic
example of a complete space is of course the Euclidean space R = (R, |x−y|),
as it is well known from the Mathematical Analysis I from the theorem on
convergence of Cauchy sequences.

Completeness of a subset is again an absolute property (Exercise 12).
Further simple properties of complete spaces are given as exercises. A com-
plete subset is always closed (Exercise 13). Any compact subset is complete
(Exercise 14). Any closed subset of a complete space is complete (Exercise
15). We present two remarkable theorems on complete spaces. We leave the
proof of the first one as Exercise 16 and will give the second one and its proof
in the next lecture.

Banach’s fixed-point theorem. A selfmap f : M →M of a metric space
(M,d) is contractive if there is a real constant c ∈ [0, 1) (less than 1!) such
that

∀x, y ∈M : d(f(x), f(y)) ≤ c · d(x, y)

— f contracts distances in the ratio at least c : 1.

Theorem (S. Banach, 1922). Let (M,d) be a complete metric space and

f : M →M
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be a contractive map. Then there exists exactly one point x0 ∈ M such that
f(x0) = x0 (x0 is a “fixed point” of the map f). For every point a ∈ M the
sequence

(a, f(a), f(f(a)), f(f(f(a))), . . . ) ⊂M

of iterates of the map f starting at a converges to x0.

For hints for a proof see Exercise 16. Complete spaces are equally important
as compact spaces (connected spaces are without doubt in importance behind
them) because in complete spaces we have solutions to all kinds of equations.
For example, we saw in Mathematical Analysis I that x2 = 2 has a solution
in R. Banach’s fixed-point theorem guarantees solvability of a wide class of
differential (and other) equations. Maybe we will hear more about it in the
next chapter. Further properties of complete spaces are given in Exercises
17–20.

Exercises

1. Let A ⊂ X ⊂ M be subsets in a metric space (M,d). Prove that A is
compact in M if and only if it is compact in the subspace X.

2. Prove that two homeomorphic metric spaces are both compact or both
non-compact.

3. How does the existence of a bijection between [a, b] (a < b are real
numbers) and S1 follow from the Cantor–Bernstein theorem?

4. Check that these analytic definitions produce as sets P∪K1 and P∪K2,
the handcuffs and the circle in the two described positions.

5. How many clopen sets are there in the space X = {0}∪{1}∪(11, 14] ⊂
R?

6. Let A ⊂ X ⊂ M be subsets in a metric space (M,d). Prove that A is
connected in M iff A is connected in the subspace X.

7. Suppose that Xi ⊂ M , i ∈ I, are connected sets in a metric space M
and

⋂
i∈I Xi 6= ∅. Prove that then

⋃
i∈I Xi is a connected set.

8. Give an example of a connected union of two disconnected subsets in
a metric space.
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9. Is the Euclidean space X ⊂ R2, given by

X = ({0} × [−1, 1]) ∪ {(t, sin(1/t) | 0 < t ≤ 1)} ,

connected?

10. Prove that the Euclidean spaces [0, 1]× [0, 1] ⊂ R2 (the unit square in
the plane) and S1 ⊂ R2 (the unit circle in the plane) are not homeo-
morphic.

11. Prove that the Euclidean spaces R2 and S2 \ {(0, 0, 1)} ⊂ R3 (the unit
sphere in R3 with the north pole deleted) are homeomorphic.

12. Let A ⊂ X ⊂ M be subsets in a metric space (M,d). Prove that the
set A is complete in M iff it is complete in the subspace X.

13. Prove that any complete subset of a metric space is closed.

14. Prove that any compact subset of a metric space is complete.

15. Prove that any closed subset of a complete metric space is complete.

16. Prove according to the following hints Banach’s fixed-point theorem.

(a) The fixed point is unique: if x0, x1 ∈ M are two fixed points of
the map f then d(x0, x1) = 0.

(b) If a0 ∈M,a1 = f(a0), a2 = f(a1), . . . then for every n ∈ N one has
d(a0, an) ≤ d(a0, a1)(1 + c + c2 + · · · + cn−1). Also, d(an−1, an) ≤
cn−1d(a0, a1).

(c) Thus the sequence (an) of iterates of the map f starting at a
(given in the statement of the theorem) is Cauchy and has the
limit x0 ∈M .

(d) But f is continuous (why?), therefore (f(an)) has the limit f(x0)
and f(x0) = x0. The theorem is proven.

17. Is the Euclidean subspace Q ⊂ R complete?

18. Is the intersection of two complete sets in a metric space complete?

19. And union?

20. And set difference?
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