
Lecture 3, October 17, 2019

Compactness. The Heine–Borel theorem. Relation of a point and
a subset. Homeomorphism

Subspaces. A subspace X ⊂M of a metric space (M,d) is the metric space
(X, d) with the restricted metric (denoted by the same letter as for the whole
space although for X 6= M the two functions are, strictly speaking, different).
It is true that a set A ⊂ X is open (closed) in the subspace X if and only if
there is an open (closed) set Y ⊂M such that A = X ∩ Y (Exercise 10).

One should bear in mind that closedness and openess of a set is a relative
notion: for A ⊂ X ⊂ M the set A need not be simultaneously open (or
closed) both in M and the subspace X. Similarly for A ⊂ X, Y the set
A need not be simultaneously open (or closed) in both spaces X a Y . For
instance, for the Euclidean spaces A = [0, 1) ⊂ X = A, Y = [0, 1] ⊂ R the
set A is closed in the space X, but not in the space Y .

Continuous maps. A map f : M → N between two metric spaces is
continuous if

∀ a ∈M ∀ ε > 0 ∃ δ > 0 : f(B(a, δ)) ⊂ B(f(a), ε) .

The first ball is in the space M and the second in N . Equivalent definitions
of continuity are Heine’s (via limits of sequences, see Exercise 1) and the
topological one: a map f : M → N between two metric spaces is topologically
continuous if for every open (closed) set Y ⊂ N , the preimage

f−1(Y ) = {a ∈M | f(a) ∈ Y } ⊂M

is an open (a closed) set in M (Exercise 2).

Properties of compact sets. We are still reviewing, as in the case of the
topological definition of continuity, material taught in “Matematická analýza
II”. Let (M,d) and (N, e) be two metric spaces and let X ⊂ M . If M is
compact and X is a closed set, then X is compact (Exercise 3). If M is a
general metric space and X is a compact set, then X is a closed and bounded
set (Exercise 4). Recall that a set X ⊂M is bounded if X ⊂ B for a ball B in
M . The opposite implication in general does not hold, in the next chapter on
sequences and series of functions we give an example of a closed and bounded
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but non-compact set in a certain metric space of functions, but it does hold
in Euclidean spaces (Exercise 5).

If f : M → N is a continuous map and X ⊂M is a compact subset, then

f(X) = {f(a) | a ∈ X} ⊂ N

is compact too (Exercise 6). The maximum-minimum principle holds (Ex-
ercise 7): if f : M → R (R is the usual Euclidean real line) is a continuous
map and X ⊂ M is a compact subset, then there exist two points a, b ∈ X
such that

∀x ∈ X : f(a) ≤ f(x) ≤ f(b) .

Thus f attains on X both its smallest and its largest value. This result
is perhaps the main motivation to introduce general abstract definitions of
compactness.

Topological definition of compactness. We say that a subset A ⊂ M
of a metric space (M,d) is topologically compact, if for every system of open
sets Xi, i ∈ I, in M we have:⋃

i∈I

Xi ⊃ A⇒ ∃ finite J ⊂ I :
⋃
i∈J

Xi ⊃ A .

In words and less formally: “every open cover of the set A has a finite sub-
cover”. We prove that this definition is equivalent to the original definition
of compactness.

Theorem (Heine–Borel). A subset A ⊂ M of a metric space (M,d) is
compact if and only if it is topologically compact.

Proof. Without loss of generality we can take A = M (Exercise 8). We prove
the implication ⇒ first. Let (M,d) be a compact metric space and

M =
⋃
i∈I

Xi

be its open cover (every set Xi is open); we will find its finite subcover. First
we prove that

∀ δ > 0 ∃ a finite set Sδ ⊂M :
⋃
a∈Sδ

B(a, δ) = M .
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For else there would be a δ0 > 0 and a sequence (an) ⊂M such that 1 ≤ m <
n ⇒ d(am, an) ≥ δ0 — but this contradicts the assumed compactness of M
because this sequence has no convergent subsequence (Exercise 9). Indeed,
if (we negate the above claim on δ and Sδ) there existed a δ0 > 0 such that
for every finite set S ⊂ M one had M \

⋃
a∈S B(a, δ0) 6= ∅, then for already

defined points a1, a2, . . . , an with d(ai, aj) ≥ δ0 for every 1 ≤ i < j ≤ n we
could take an a ∈ M \

⋃n
i=1B(ai, δ0) and set an+1 = a (this a = an+1 has

from each point a1, a2, . . . , an distance at least δ0 too). In this way we could
define the mentioned sequence (an).

For contradiction we now assume that the above open cover of M by the
sets Xi has no finite subcover. We claim that it follows from this that (the
finite sets Sδ are defined above)

∀n ∈ N ∃ bn ∈ S1/n ∀ i ∈ I : B(bn, 1/n) 6⊂ Xi .

If it were not so then (we negate the previous claim) there would be an
n0 ∈ N0 such that for every b ∈ S1/n0 there is an ib ∈ I with B(b, 1/n0) ⊂ Xib .
But then, since M =

⋃
b∈S1/n0

B(b, 1/n0), the indices J = {ib | b ∈ S1/n0} ⊂ I

give a finite subcover of the set M , contrary to our assumption.
The displayed claim on n and bn therefore holds and we can take the

sequence (bn) ⊂ M . By the assumption it has a convergent subsequence
(bkn) ⊂ (bn) with lim bkn = b ∈ M . Since the Xi cover M , b ∈ Xj for some
j ∈ I. Due to openess of Xj there is an r > 0 such that B(b, r) ⊂ Xj.
We take n ∈ N large enough so that 1/kn < r/2 and d(b, bkn) < r/2. For
every x ∈ B(bkn , 1/kn) then the triangle inequality implies that d(x, b) ≤
d(x, bkn) + d(bkn , b) < r/2 + r/2 = r. Thus

B(bkn , 1/kn) ⊂ B(b, r) ⊂ Xj ,

in contradiction with the above property of the points bn. The assumption
of non-existence of a finite subcover leads to a contradiction, hence the cover
of M by the sets Xi, i ∈ I, does have a finite subcover.

We prove the implication ⇐ which is easier. We assume that every open
cover of the set M has a finite subcover, and deduce that every given sequence
(an) ⊂M has a convergent subsequence. First we show that the assumption

∀ b ∈M ∃ rb > 0 : Mb := {n ∈ N | an ∈ B(b, rb)} is a finite set

leads to a contradiction. Indeed, from the open cover M =
⋃
b∈M B(b, rb) we

would choose a finite subcover given by a finite set N ⊂ M and we would
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deduce that there is an n0 with n > n0 ⇒ an 6∈
⋃
b∈N B(b, rb) because the

set of indices
⋃
b∈N Mb is finite (it is a finite union of finite sets). But this is

a contradiction because
⋃
b∈N B(b, rb) = M . The assumption therefore does

not hold and on the contrary (we again take a negation) it is true that

∃ b ∈M ∀ r > 0 : Mr := {n ∈ N | an ∈ B(b, r)} is an infinite set .

Now it is easy to select in (an) a convergent subsequence (akn) with the limit
b. Suppose we have already defined indices 1 ≤ k1 < k2 < · · · < kn such
that d(b, aki) < 1/i for i = 1, 2, . . . , n. The index set M1/(n+1) is infinite
and therefore there is a kn+1 ∈ N such that kn+1 > kn and kn+1 ∈ M1/(n+1).
Then also d(b, akn+1) < 1/(n+ 1). In this way we define a subsequence (akn)
converging to b. 2

Relation of a point and a subset. Let (M,d) be a metric space, a ∈M ,
andX ⊂M . In the following definitions the symbol U denotes a neighborhood
of the point a, an open set U ⊂M with a ∈ U . We say that a is

• an interior point of the set X if ∃U with U ⊂ X.

• an exterior point of the set X if ∃U with U ⊂M \X.

• a boundary point of the set X if ∀U : U ∩X 6= ∅ 6= U ∩ (M \X).

• a limit point of the set X if for ∀U the intersection U ∩X is infinite.

• an isolated point of the set X if ∃U such that U ∩X = {a}.

The interior and isolated points of the set X lie in it and the exterior points
lie outside it. The boundary and limit points may lie both in X and outside
it. An example illustrating these notions is in Exercise 11.

Homeomorphism. Let (M,d) and (N, e) be metric spaces and f : M → N
be a map. We say that f is a homeomorphism if it is a bijection and both
maps f and f−1 are continuous. Two spaces are homeomorphic if there is
a homeomorphism between them. Homeomorphic spaces cannot be distin-
guished only by open sets. For instance, the Euclidean spaces (a, b) (where
a < b are real numbers) and the whole R are homeomorphic (Exercise 12).
For (a, b) = (−π/2, π/2) the function tanx : (a, b)→ R is a homeomorphism.
On the other hand, the map

f : [0, 2π)→ S1 = {(x, y) ∈ R2 | x2 + y2 = 1} ⊂ R2, f(t) = (cos t, sin t) ,
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between two Euclidean spaces is not their homeomorphism. It is a continuous
bijection, but its inverse f−1 is not continuous at the point (1, 0). In the next
lecture we prove that the two spaces are in fact non-homeomorphic. The next
proposition is closely related to the previous example.

Proposition (compactness and homeomorphism). If f : M → N is a
continuous and injective map between metric spaces and M is compact, then
the inverse map f−1 : f(M) → M is continuous. The map f is therefore a
homeomorphism between the spaces M and f(M) (where the last one is given
as a subspace of the space N).

We prove it carefully next time.

Exercises

1. State Heine’s definition of continuity and prove that it is equivalent
with the original definition.

2. Prove that both versions of topological definition of continuity, with
open and with closed sets, are equivalent with the original definition.

3. Prove that every closed subset of a compact space is compact.

4. Prove that every compact subset of a metric space is closed and
bounded.

5. Recall the proof of the theorem: if X ⊂ Rn is a closed and bounded
set in an Euclidean space Rn then X is compact.

6. Prove that the image of a compact set by a continuous map is a compact
set.

7. Recall the proof of the maximum-minimum principle.

8. Why can we in the proof of the Heine–Borel theorem restrict to the
case of the whole space?

9. Why a sequence (an) ⊂ M satisfying d(am, an) ≥ δ0 > 0 whenever
m 6= n has no convergent subsequence?

10. Prove the characterization of open and closed sets in a subspace via
open and closed sets of the whole space.
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11. Let (M,d) = (R2, d2) and X ⊂ M be given by X = {(x, y) ∈ R2 | 0 <
x2 + y2 < 1} ∪ {(4, 4)}. Describe the interior, exterior, border, limit,
and isolated points of the set X.

12. Prove that the Euclidean spaces (a, b), a < b are real, and R are home-
omorphic.
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