
Lecture 1, October 3, 2019

Chapter 1: metric spaces

Definition of metric spaces, isometry. Metric spaces formalize phe-
nomenon of distance. A metric space is a pair (M,d) of a set M and a
bivariate map

d : M ×M → R

called a metric or a distance, that for any x, y, z ∈M satisfies the next three
axioms.

a) d(x, y) = 0 ⇐⇒ x = y.
b) d(x, y) = d(y, x) (symmetry).
c) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The axioms easily imply (Exercise 3) that always d(x, y) ≥ 0 — distances are
nonnegative.

An isometry of two metric spaces (M,d) and (N, e) is a bijection

f : M → N

preserving distances: d(x, y) = e(f(x), f(y)) for every x, y ∈ M . If such a
bijection exists, spaces (M,d) and (N, e) are called isometric. It means that
they are indistinguishable for all practical purposes.

Examples of metric spaces. Axioms a) and b) are usually easy to verify,
but see Exercise 9. To prove the triangle inequality is usually harder, see
exercises at the end.

Example 1. M = Rn for n ∈ N = {1, 2, . . . } and p ≥ 1 is a real number.
We define the distances dp(x, y) by

dp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). For n = 1 we get the
classical metric |x − y| on R. For p = 2 and n ≥ 2 we get the Euclidean
metric

d2(x, y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 .
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By an Euclidean space we mean any metric space of the form (X, d2), where
X ⊂ Rn, with restricted Euclidean metric. For p = 1 and n ≥ 2 we get the
Manhattan metric

d1(x, y) =
n∑
i=1

|xi − yi| ,

and for p→∞ the maximum metric

d∞(x, y) = max
1≤i≤n

|xi − yi| .

Example 2. M is the set of all bounded functions f : X → R defined
on a set X. Then we have the supremum metric

d(f, g) = sup
x∈X
|f(x)− g(x)| .

If M = C[a, b] (the set of real functions defined and continuous on the interval
[a, b]), the supremum is attained and we get the maximum metric

d(f, g) = max
x∈[a, b]

|f(x)− g(x)| .

Example 3. We take M = C[a, b] and a real number p ≥ 1. Like in the
first example we have metrics

dp(f, g) =

(∫ b

a

|f(x)− g(x)|p dx
)1/p

(Riemann integral) .

The value p = 1 yields the integral metric and p → ∞ gives the maximum
metric of the second example (Exercise 8). The case p = 2 again stands
apart. Why is the exponent p = 2 exceptional? It turns out that the metric
d2(·, ·), both in the 1st and the 3rd example, comes from a scalar product on
a vector space and therefore has several nice properties.

For the larger class of functions M = R[a, b] (Riemann-integrable func-
tions on [a, b]) the function dp(f, g) is well defined, but the axiom a) does
not hold and we do not get a metric. Changing the value of a function
f ∈ R[a, b] in a single point we get a different function f0 ∈ R[a, b], but still
dp(f, f0) = 0. This problem is removed by replacing R[a, b] with R[a, b]/∼
for an appropriate equivalence relation ∼.

Example 4. A connected graph G = (M,E) with the vertex set M
bears a metric

d(u, v) = the # of edges on any shortest path in G joining u and v .
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Example 5. For any set (alphabet) A we have on the set M = Am of all
words over A with length m the so called Hamming metric or edit distance
(u = a1a2 . . . am, v = b1b2 . . . bm)

d(u, v) = the number of coordinates i with ai 6= bi

— the minimum number of changes in letters needed to overwrite u in v.
Example 6. On the two-dimensional sphere

M = S2 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1}

we have the metric

d(x, y) = the length of the shortest curve in S2 joining x and y .

In more details, for x 6= y the distance d(x, y) equals to the length of the
shorter of the two circular arcs of the main circle K(x, y) that are determined
by the points x and y, and d(x, x) = 0. Here K(x, y) is the intersection of
S2 with the plane determined by the origin (which is the center of S2) and
the points x and y on S2. If these three points are collinear (x and y are
antipodes) then K(x, y) is not uniquely determined, but the value d(x, y) = π
is uniquely determined. Always 0 ≤ d(x, y) ≤ π. We call this metric the
spherical metric. One can restrict it to a subset of S2, for example to the
upper hemisphere

S+
2 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1, x3 ≥ 0} .

We prove that S+
2 with the spherical metric is not isometric to any Euclidean

space. Thus the same holds for the whole sphere, or more generally for any
spherical region containing a hemisphere: it cannot be “squashed” in the
plane or any other Euclidean space with all distances preserved.

Proposition (sphere is not flat). No two metric spaces (S+
2 , d) and

(X, d2), where the former is the upper hemisphere with the spherical met-
ric and the latter with X ⊂ Rn is Euclidean, are isometric.

Proof. We describe a property of quadruples of points t, u, v, w ∈ Rn in the
Euclidean space that is not valid in the spherical metric. It is expressed by
the implication

d2(t, u) = d2(t, v) = d2(u, v) > 0 & d2(t, w) = d2(w, u) =
d2(t, u)

2
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⇒ d2(w, v) =

√
3 · d2(t, v)

2
< d2(t, v) .

Its assumption says that the points t, u, and v form an equilateral triangle
with side length x > 0, and that w has from both t and u distance x/2. For
the points t, u, and w the triangle inequality then holds as an equality:

d2(t, u) = d2(t, w) + d2(w, u) .

By the geometry of Euclidean spaces then w lies on the segment tu and at
the same time in the hyperplane of points with equal distances to t and u.
Therefore w is the midpoint of the segment tu (Exercise 16). Our four points
are therefore coplanar (all lie in one plane) and the segment vw is the height
in the equilateral triangle from v to the side tu. By the Pythagorean theorem
its length d2(v, w) equals (

√
3/2)x, which is the conclusion of the implication.

If we find on the upper hemisphere four points t, u, v, w ∈ S+
2 satisfying

the assumption of the implication but not the conclusion, we will be done:
there is no isometry between the hemisphere and the Euclidean space because
every isometry by definition preserves the implication. We take the points

t = (1, 0, 0), u = (0, 1, 0), v = (0, 0, 1), and w = (1/
√

2, 1/
√

2, 0) .

One sees easily that d(t, u) = d(t, v) = d(u, v) = π
2

and d(t, w) = d(w, u) =
d(t,u)

2
= π

4
. The point v is the “north pole” (x3 = 1), t, u, and w lie on the

“equator” (x3 = 0), and w is the midpoint of the arc tu. But all points on the
equator have the same distance π

2
from the pole v. Hence d(w, v) = d(t, v)

and the conclusion of the implication does not hold. 2

In nutshell, we have found such four points on the upper hemisphere that
their six mutual spherical distances cannot be realized as Euclidean distances.
Would not three points be enough (Exercise 12)? And what about replacing
the hemisphere with a small spherical region, in which our configuration of
four points does not fit (Exercise 11)?

Example 7. Let (M,d) be a metric space. We say that d is a non-
archimedean metric or an ultrametric, if every three points x, y, z ∈M satisfy
the strong triangle inequality

d(x, y) ≤ max(d(x, z), d(z, y)) .

4



It is stronger than the triangle inequality, and therefore every ultrametric is
a metric. Important properties of any ultrametric are stated in Exercise 14.

The basic example of an ultrametric space is the p-adic metric (Q, dp)
on the set of fractions (Exercise 13); now p denotes prime numbers, p =
2, 3, 5, 7, 11, . . . , and has a different meaning than in Examples 1 and 3. This
metric expresses simply in terms of the p-adic norm

‖ · ‖p : Q→ [0, +∞)

as dp(x, y) = ‖x− y‖p. And what is the definition of the p-adic norm? For a
nonzero fraction a

b
∈ Q as ∥∥∥a

b

∥∥∥
p

:=

(
1

p

)m
where m ∈ Z is the uniquely determined integer (Exercise 15) such that

a

b
= pm · c

d
,
c

d
∈ Q, and p does not divide cd .

For zero we set ‖0‖p = 0. Basic properties of the p-adic norm are: (i)
‖α‖p ≥ 0 and is 0 iff α = 0, (ii) ‖αβ‖p = ‖α‖p · ‖β‖p, and

(iii) ‖α + β‖p ≤ max(‖α‖p, ‖β‖p) .

From this one easily deduces that dp satisfies the strong triangle inequality.
The fraction 1

p
in the definition of ‖ · ‖p can be replaced by any constant

c ∈ (0, 1) and nothing changes, (i)–(iii) are preserved, but there is a reason
for the choice c = 1

p
which we explain in the next lecture.

Exercises

1. Prove the triangle inequality for the Hamming metric.

2. Prove the triangle inequality for the graph metric.

3. Show that the axioms of a metric space imply that metric is nonnega-
tive.

4. Is symmetry implied by the other axioms of metric?
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5. Prove the formula for the maximum metric: limp→+∞ dp(x, y) =
d∞(x, y).

6. Deduce from the Cauchy–Schwarz inequality (ai, bi ∈ R)

(a1b1 + · · ·+ anbn)2 ≤ (a21 + · · ·+ a2n)(b21 + · · ·+ b2n)

the triangle inequality for the Euclidean metric. Prove the Cauchy–
Schwarz inequality as well.

7. Check the triangle inequality for the supremum metric.

8. Prove the formula for the maximum metric for functions: if f is con-
tinuous on [a, b] then

lim
p→+∞

(∫ b

a

|f(x)|p dx
)1/p

= max
x∈[a,b]

|f(x)| .

9. Verify the axiom a) of metric in Example 3 for M = C[a, b].

10. Prove the triangle inequality for the spherical metric.

11. Prove that no spherical cap (a part of the sphere S2 cut off by a plane)
with the spherical metric is isometric to an Euclidean space.

12. Can any spherical triangle be isometricly realized in the plane (with
Euclidean metric)?

13. Check that the p-adic metric is really an ultrametric.

14. Prove that in an ultrametric space every triangle is isosceles and that if
d(x, z) 6= d(z, y) then the strong triangle inequality holds as an equality.

15. Prove that the number m ∈ Z from the definition of ‖ · ‖p is uniquely
determined.

16. Prove in detail that if x, y, z ∈ Rn satisfy d2(x, z) = d2(z, y) =
d2(x, y)/2 > 0, then z is the midpoint of the segment xy.
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