
Lecture 13, January 9, 2020

Two Cauchy formulas. Proofs of Theorems 1–3. The residue
theorem. Summing

∑
n−2k

Proof. 1. The linearity of
∫

follows at once from the linearity of
∫
∂R

. 2.
We take some rectangles Rn containing a inside and shrinking to it. The
ML bounds show that the integrals

∫
∂Rn

f go to 0 because per(Rn) → 0 as

n → ∞ and |f | is bounded on the deleted neighborhood. So
∫
f = 0. 3. It

is easy to see that if S is the square with vertices ±1 ± i and a + S is its
shift, then by the definition of

∫
∂R

we have
∫
∂(a+S)

1
z−a =

∫
∂S

1
z

= ρ. 4. The

ML bounds on the integrals
∫
∂R

(f − fn) =
∫
∂R
f −

∫
∂R
fn show that they go

to 0: per(R) is constant but now maxz∈∂R |f(z)− fn(z)| → 0 as n→∞. 2

We will need a supplement to the proposition on the constant ρ.

Proposition (other negative powers). Let R be a rectangle, a ∈ int(R)
be a point, and k ∈ N with k ≥ 2 be a number. Then∫

∂R

1

(z − a)k
= 0 .

Proof. Omitted for the lack of time but you can ponder it in Exercise 1 . 2

The Cauchy formulas are another important result in Complex Analysis.
They express the value of a holomorphic function and its derivatives at a point
by values in far away points, which demonstrates strange and fascinating
non-locality of holomorphic functions. For simplicity we state and prove the
formulas only for entire functions (and only the first derivative).

Theorem (two Cauchy formulae). Let f : C → C be an entire function
and a ∈ C. Then, with ρ (= 2πi) being the above constant,

f(a) =
1

ρ

∫
f(z)

z − a
and f ′(a) =

1

ρ

∫
f(z)

(z − a)2
.

Proof. The existence of f ′(a) implies that f(z)−f(a)
z−a is bounded on a deleted

neighborhood of a. Thus by properties 1–3 of
∫

we have

0 =

∫
f(z)− f(a)

z − a
=

∫
f(z)

z − a
− f(a)

∫
1

z − a
=

∫
f(z)

z − a
− f(a)ρ .
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Since ρ 6= 0 by the proposition in the last lecture, the first Cauchy formula
follows.

To prove the second one, for a given point a ∈ C we take a rectangle
R with a inside.1 For any point b inside R but b 6= a we have by the first
Cauchy formula and by the linearity of

∫
∂R

that

f(a)− f(b)

a− b
=

1

ρ

∫
∂R

f(z)

(z − a)(z − b)
=

1

ρ

∫
∂R

f(z)

(z − a)2
+

+
b− a
ρ

∫
∂R

f(z)

(z − a)2(z − b)
.

The ML bound shows that for every b close enough to a the last integral is
in | · | bounded by a constant independent of b. Thus if b goes to a but is
different from it, the left side goes to f ′(a) and the last term to 0, which
gives the second Cauchy formula. 2

The proofs of Theorems 1–3. We prove Liouville’s Theorem 2. Let
f : C → C be entire and bounded, |f(z)| < c for every z ∈ C and a real
constant c > 0. Let a, b ∈ C be two (distinct) points. By Exercise 2 it is
easy to find for every n ∈ N a square S with side length s ≥ n and such that
a, b ∈ int(S) and for every z ∈ ∂S one even has that |z − a|, |z − b| > s

3
=

per(S)
12

. Then by the first Cauchy formula and linearity of
∫
∂R

,

f(a)− f(b) =
a− b
ρ

∫
∂S

f(z)

(z − a)(z − b)
.

The ML bound of this integral gives that in | · | it is at most

c

per(S)2/144
· per(S) ≤ 36c

n

which for n→∞ goes to 0. Hence f(a) = f(b) and f is a constant function.
To prove continuity of f ′ for any entire function f : C→ C in Theorem 3

we use the second Cauchy formula: for a fixed a ∈ C and any b ∈ C the
formula and the linearity of

∫
∂R

give that

f ′(a)− f ′(b) =
1

ρ

∫
∂R

f(z)

(z − a)2
− 1

ρ

∫
∂R

f(z)

(z − b)2

=
a− b
ρ

∫
∂R

f(z)(2− a− b)
(z − a)2(z − b)2

1I suppress the use of functional
∫
from now. As I see it, its introduction was not really

needed.
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where R is any rectangle containing a and b in its interior. The ML bound
shows that for every b close enough to a the last integral is in | · | bounded
by a constant independent on b. Thus if b goes to a then f ′(b) goes to f ′(a)
and f ′ is continuous at a.

Finally we prove Theorem 1 that every entire function f : C → C has
a power series expansion (centered at 0). Let a ∈ C be arbitrary and R
be a large enough rectangle such that 0, a ∈ int(R) and for every z ∈ ∂R
one has |a/z| = |a|/|z| < 1

2
and |z − a| > 1 (Exercise 3). Let m ∈ N be

arbitrary. By means of the first Cauchy formula and the identity 1
1−x =

1 + x+ x2 + · · ·+ xm + xm+1

1−x we get that

f(a) =
1

2πi

∫
∂R

f(z)

z − a
=

1

2πi

∫
∂R

f(z)

z

( m∑
n=0

(a/z)n +
(a/z)m+1

1− a/z

)
=

m∑
n=0

(
1

2πi

∫
∂R

f(z)

zn+1

)
an +

1

2πi

∫
∂R

f(z)(a/z)m+1

z − a

=:
m∑
n=0

cna
n +

Im+1

2πi
.

By the ML bound we are done: for m→∞,

|Im+1| ≤ max
z∈∂R
|f(z)| · (1/2)m+1

1
· per(R)→ 0 .

Thus for every a ∈ C we have

f(a) =
∞∑
n=0

cna
n where cn =

1

2πi

∫
∂S

f(z)

zn+1

with S being any rectangle with 0 inside.

Meromorphic functions, residues. We considerably generalize the
proposition on ρ in the previous lecture. A set A ⊂ C is discrete if every
ball B(z, r) ⊂ C contains only finitely many of its elements. A holomorphic
function

f : U \ A→ C ,

where the set A ⊂ U is discrete, is a meromorphic function with the set of
poles A if every point a ∈ A has a neighborhood Ua ⊂ U with Ua ∩ A = {a}
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such that for a holomorphic function ga : Ua → C and some numbers ka ∈ N0

and cj,a ∈ C, j = 1, 2, . . . , ka, one has for every z ∈ Ua \ {a} that

f(z) = ga(z) +
ka∑
j=1

cj,a
(z − a)j

.

For ka = 0 we define the sum as 0 (f = ga is then holomorphic on Ua).
The coefficient c1,a is so called residue of f at a, denoted res(f, a) := c1,a.
The first Cauchy formula implies that res(f, a) is uniquely determined by the
function f (Exercise 4).

Theorem (on residues). Let f : U \ A → C be a meromorphic function
with poles A and R ⊂ U be a rectangle such that ∂R∩A = ∅. Then the next
sum is finite and

1

2πi

∫
∂R

f =
∑

a∈A∩int(R)

res(f, a) =
∑

a∈A∩R

res(f, a) .

Thus the integral of f over ∂R, divided by 2πi, equals to the sum of residues
of f at the poles inside R.2

Proof. Infinitely many elements of A in int(R) would mean a limit point of
A in R, contrary to the discreteness of A (Exercise 5). For every a ∈ R ∩ A
we take a square Sa ⊂ int(R) ∩ Ua centered at a and such that all these
squares are disjoint. Then we split R in rectangles including all squares
{Sa | a ∈ R ∩ A}. We have∫

∂R

f =
∑

a∈A∩R

∫
∂Sa

f =
∑

a∈A∩R

∫
∂Sa

(
ga(z) +

ka∑
j=1

cj,a
(z − a)j

)
=

∑
a∈A∩R

2πi · res(f, a)

and are done. The first equality follows by part 3 of the theorem on properties
of
∫
u

via an argument we applied already twice (Exercise 6). The second
equality uses the definition of meromorphic functions. The third equality

2An advanced mathematical joke should be now understandable. Do you know that
the contour integral of that function around the boundary of France is zero? ??? All Poles
are in the eastern Europe!
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follows from the linearity of integrals, the C.-G. theorem, the proposition on
ρ, and the first proposition of this lecture. 2

Generalization of the Basel problem. As an application of the theorem
on residues and the complex analysis in general we determine the sum of the
series

ζ(2k) :=
∞∑
n=1

1

n2k
, k ∈ N .

In lecture 10 we computed by a Fourier series that ζ(2) = π2

6
.

Theorem (
∑
n−2k =?). For every k ∈ N there is a positive fraction αk ∈ Q

such that

ζ(2k) =
∑

n−2k = 1 +
1

22k
+

1

32k
+

1

42k
+ · · · = αkπ

2k .

Proof. There exist fractions B0, B1, . . . , so called Bernoulli numbers, such
that

x

ex − 1
=
∞∑
r=0

Brx
r

r!

(Exercise 7). We consider the meromorphic function H : C \ Z→ C,

H(z) =
2πi

e2πiz − 1
,

with the set of poles Z and the residue res(H,n) = 1 for every n ∈ Z (Exercise
8). It is clear that if f(z) is holomorphic on a neighborhood of n ∈ Z then
res(fH, n) = f(n) (Exercise 12). We choose f(z) = 1/z2k and for N ∈ N
denote by SN the square with the vertices (N + 1

2
)(±1± i). By the theorem

on residues,

1

2πi

∫
∂SN

H(z)

z2k
=

N∑
n=−N

res(H(z)z−2k, n) = res(H(z)z−2k, 0) + 2
N∑
n=1

1

n2k
.

By Exercise 9 there is a constant c > 0 such that for every N ∈ N one has
z ∈ ∂SN ⇒ |H(z)| < c. By the ML bound the last integral is in | · | at most

max
z∈∂SN

∣∣∣∣H(z)

z2k

∣∣∣∣ · per(SN) <
c

N2k
· (8N + 4) ,
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which for N →∞ goes to 0. Hence

∞∑
n=1

1

n2k
= −1

2
res(H(z)z−2k, 0) .

By the definition of the Bernoulli numbers we have

z−2kH(z) =
2πi · z−2k

e2πiz − 1
=
∞∑
r=0

Br(2πi)
rzr−1−2k

r!
.

Hence

res(H(z)z−2k, 0) =
(−1)kB2k(2π)2k

(2k)!

and
∞∑
n=1

1

n2k
=

(−1)k+122k−1

(2k)!
B2kπ

2k

is a rational multiple of π2k. 2

One can show that B2k−1 = 0 for k ≥ 2 (Exercise 10). Further, B0 = 1,
B1 = −1

2
, B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
and so on (Exercise 11). The previous

proof is taken from the book P. D. Lax and L. Zalcman, Complex Proofs of
Real Theorems, AMS, Providence, RI, 2012.

Exercises

1. Prove that for every integer k ≥ 2 and complex number a,∫
(z − a)−k = 0 .

2. Construct for every n ∈ N and a, b ∈ C a square S ⊂ C with s ≥ n,
where s is the length of the side of S, and such that a, b ∈ int(S) and
for every z ∈ ∂S the distances |z − a|, |z − b| are larger than s

3
.

3. Show that for every a ∈ C there is a rectangle R such that 0, a ∈ int(R)
and for every z ∈ ∂R one has |a/z| < 1

2
and |z − a| > 1.

4. Why is the value of the residue of f at a uniquely determined by f?
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5. Prove that every infinite subset of a rectangle R has in R a limit point.

6. Show how to split a rectangle R into sub-rectangles including the pre-
scribed disjoint rectangles R1, R2, . . . , Rk ⊂ int(R) so that the first
equality in the proof of the residue theorem holds.

7. Prove that the Bernoulli numbers are fractions.

8. Prove that the function 2πi
e2πiz−1 has poles exactly in the set of integers

and has all residues 1.

9. Show that this function is uniformly (in N) bounded on the boundaries
of the squares SN .

10. Prove that the Bernoulli numbers with odd indices > 1 are zero.

11. Is it true for the Bernoulli numbers that limBn = 0?

12. Why for f holomorphic near n ∈ Z does one have res(fH, n) = f(n)?
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