Lecture 12, December 19, 2019

The constant $\rho=2 \pi i$. The Cauchy-Goursat theorem. The functional \int

Several integrals. We are continuing in the proof of Theorems 1, 2, and 3 of the previous lecture. For $k \in \mathbb{N}$ and a segment u, the k-equipartition of u is the partition of u in k subsegments of the same length $\frac{1}{k}|u|$, which is the image of the partition $0<\frac{1}{k}<\frac{2}{k}<\cdots<\frac{k-1}{k}<1$ of the unit interval.

Proposition ($\int_{u, \partial R}$ of a lin. function). Let $a, b, \alpha, \beta \in \mathbb{C}$ with $a \neq b$, $f(z)=\alpha z+\beta$, and R be a rectangle.

1. It is true that

$$
\int_{a b} f=\int_{a b}(\alpha z+\beta)=g(b)-g(a), \text { where } g(z)=\alpha \frac{z^{2}}{2}+\beta z \text {. }
$$

2. Also,

$$
\int_{\partial R} f=\int_{\partial R}(\alpha z+\beta)=0 .
$$

Proof. 1. It is not hard to compute this as $\lim C\left(f, p_{n}\right)$ where the p_{n} are the n-equipartitions of $a b$. We leave it as Exercise 1.
2. Let the canonic vertices of R be a, b, c, d. By the definition of $\int_{\partial R}$ and part 1 we have

$$
\int_{\partial R} f=g(b)-g(a)+g(c)-g(b)+g(d)-g(c)+g(a)-g(d)=0 .
$$

The proof of the next reduction of $\int_{u} f$ to the Riemann integral is left as Exercise 2.

Proposition $\left(\int_{u}\right.$ and $\left.(R) \int_{a}^{b}\right)$. Let $a, b \in \mathbb{C}$ with $a \neq b, f: a b \rightarrow \mathbb{C}$ be a continuous function, and $\varphi=t(b-a)+a:[0,1] \rightarrow \mathbb{C}$ be the parameterization defining the segment $u=a b$. Then

$$
\begin{aligned}
\int_{u} f & =(R) \int_{0}^{1} \operatorname{re}\left(f(\varphi(t)) \cdot \varphi^{\prime}(t)\right) d t+i \cdot(R) \int_{0}^{1} \operatorname{im}\left(f(\varphi(t)) \cdot \varphi^{\prime}(t)\right) d t \\
& =(b-a)\left((R) \int_{0}^{1} \operatorname{re}(f(\varphi(t))) d t+i \cdot(R) \int_{0}^{1} \operatorname{im}(f(\varphi(t))) d t\right)
\end{aligned}
$$

For completeness we mention the standard definition of the integral $\int_{\varphi} f$ of f along a curve φ which is a basic notion in complex analysis. If

$$
f: U \rightarrow \mathbb{C}, \text { and } \varphi:[a, b] \rightarrow U
$$

is a piecewise smooth and continuous function, then

$$
\int_{\varphi} f:=(R) \int_{a}^{b} \operatorname{re}\left(f(\varphi(t)) \cdot \varphi^{\prime}(t)\right) d t+i \cdot(R) \int_{a}^{b} \operatorname{im}\left(f(\varphi(t)) \cdot \varphi^{\prime}(t)\right) d t
$$

if these Riemann integrals exist.
The next result is an under-appreciated pillar of complex analysis: if the constant ρ in it were 0 , no Cauchy formulae, which we derive next time, would exist and the complex analysis would collapse.

Proposition (the constant $\rho=2 \pi i$). Let S be the square with vertices $\pm 1 \pm i$. Then

$$
\rho:=\int_{\partial S} \frac{1}{z} \neq 0, \quad \text { in fact } \operatorname{im}(\rho) \geq 4 .
$$

Proof. The canonic vertices of S are $a=-1-i, b=1-i, c=1+i$, and $d=-1+i$. Let $p_{n}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ be the n-equipartition of the segment $a b$. The multiplication by i geometricly means the rotation around 0 by the angle $\pi / 2$ in the positive direction (counter-clockwisely). Thus $q_{n}:=i p_{n}=$ $\left(i a_{0}, i a_{1}, \ldots, i a_{n}\right)$ is the n-equipartition of $b c$. Similarly $r_{n}:=i q_{n}=-p_{n}$ and $s_{n}:=i r_{n}=-i p_{n}$ are the n-equipartitions of the segments $c d$ and $d a$, respectively. Surprisingly, for $f(z)=\frac{1}{z}$ we have

$$
C\left(f, p_{n}\right)=C\left(f, q_{n}\right)=C\left(f, r_{n}\right)=C\left(f, s_{n}\right) .
$$

Indeed, expanding the fraction by i we get

$$
C\left(f, p_{n}\right)=\sum_{j=1}^{n} \frac{(b-a) / n}{a+j(b-a) / n}=\sum_{j=1}^{n} \frac{(i b-i a) / n}{i a+j(i b-i a) / n}=C\left(f, q_{n}\right)
$$

because $i b=c$ and $i a=b$. The remaining two equalities follow in the same way. Since $b-a=2$ and $a=-1-i$, expanding the fraction by $\frac{2 j}{n}-1+i$
we get

$$
\begin{aligned}
\operatorname{im}\left(C\left(f, p_{n}\right)\right) & =\operatorname{im}\left(\sum_{j=1}^{n} \frac{2 / n}{-1-i+2 j / n}\right)=\operatorname{im}\left(\frac{2}{n} \sum_{j=1}^{n} \frac{2 j / n-1+i}{(2 j / n-1)^{2}+1}\right) \\
& =\frac{2}{n} \sum_{j=1}^{n} \frac{1}{(2 j / n-1)^{2}+1} \geq \frac{2}{n} \sum_{j=1}^{n} \frac{1}{2}=1 .
\end{aligned}
$$

Hence

$$
\operatorname{im}(\rho)=\operatorname{im}\left(\int_{\partial S} \frac{1}{z}\right)=4 \cdot \operatorname{im}\left(\int_{a b} \frac{1}{z}\right)=4 \cdot \lim _{n \rightarrow \infty} \operatorname{im}\left(C\left(1 / z, p_{n}\right)\right) \geq 4
$$

(Exercise 3) and indeed $\rho \neq 0$.
You can calculate in Exercise 5 that $\rho=2 \pi i$. This constant is ubiquitous in the complex analysis.

The Cauchy-Goursat theorem is in complex analysis result number 1: the integral $\int_{\varphi} f$ of a holomorphic function f over a simple closed curve φ (this means that φ is injective, except for $\varphi(a)=\varphi(b)$), which lies in the definition domain of f together with its interior, equals 0 . But we only can integrate over boundaries of rectangles; complicated curves do not interest us.

For the proof of the theorem we need the notion of the diameter diam (X) of a set $X \subset \mathbb{C}$, and we remind an auxiliary result from the proof of the Baire theorem. We define

$$
\operatorname{diam}(X):=\sup (\{|x-y| \mid x, y \in X\}) .
$$

The diameter may be $+\infty$. We leave the proof of the next proposition as Exercise 6, see also Exercises 7 and 8.

Proposition (nested closed sets). If

$$
\mathbb{C} \supset A_{1} \supset A_{2} \supset \ldots
$$

are nonempty and closed sets with $\lim \operatorname{diam}\left(A_{n}\right)=0$, then $\bigcap_{n=1}^{\infty} A_{n} \neq \emptyset$.
We still need the construction of the quarters of a rectangle R with canonic vertices a, b, c, d. If $e=\frac{a+b}{2}, f=\frac{b+c}{2}, g=\frac{c+d}{2}$, and $h=\frac{d+a}{2}$ are the midpoints
of the sides of R and $j=\frac{a+c}{2}$ is the midpoint of R, the four quarters of R are the rectangles A, B, C, and D with the canonic vertices

$$
(a, e, j, h),(e, b, f, j),(j, f, c, g), \text { and }(h, j, g, d),
$$

respectively, to which is R split by cutting it along the segments eg a $h f$. For each of these quarters $E, \operatorname{per}(E)=\frac{1}{2} \operatorname{per}(R)$ and $\operatorname{diam}(E)=\frac{1}{2} \operatorname{diam}(R)$.

Theorem (Cauchy-Goursat). Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function and $R \subset U$ be a rectangle. Then

$$
\int_{\partial R} f=0 .
$$

Proof. Let f, U, and R be as given. We construct such nested rectangles

$$
R=R_{0} \supset R_{1} \supset R_{2} \supset \ldots
$$

that for every $n \in \mathbb{N}_{0}, R_{n+1}$ is a quarter of R_{n} and

$$
\left|\int_{\partial R_{n+1}} f\right| \geq \frac{1}{4}\left|\int_{\partial R_{n}} f\right| .
$$

Let $R_{0}, R_{1}, \ldots, R_{n}$ have been already defined and A, B, C, and D be the quarters of the rectangle R_{n}. We claim that

$$
\int_{\partial R_{n}} f=\int_{\partial A} f+\int_{\partial B} f+\int_{\partial C} f+\int_{\partial D} f
$$

This identity follows by applying part 3 of the theorem on properties of \int. Expanding each $\int_{\partial A} f, \ldots, \int_{\partial D} f$ as a sum of four integrals over the sides yields 16 terms on the right side. Eight of them that correspond to the sides of the quarters lying inside R_{n} cancel out because they form four pairs of opposite orientations of four segments. The remaining eight terms that correspond to the sides of the quarters lying on ∂R_{n} sum up to the integral on the left side. The identity implies by the triangle inequality that there is a quarter $E \in\{A, B, C, D\}$ such that $\left|\int_{\partial E} f\right| \geq \frac{1}{4}\left|\int_{\partial R_{n}} f\right|$. We set $R_{n+1}=E$.

By the last proposition there exists a point z_{0} such that

$$
z_{0} \in \bigcap_{n=0}^{\infty} R_{n} .
$$

As $R_{0}=R \subset U$, also $z_{0} \in U$. Now we use the existence of the derivative $f^{\prime}\left(z_{0}\right)$. For a given $\varepsilon>0$ there is a $\delta>0$ such that $B\left(z_{0}, \delta\right) \subset U$ and for some function $\Delta: B\left(z_{0}, \delta\right) \rightarrow \mathbb{C}$ we have for every $z \in B\left(z_{0}, \delta\right)$ that $|\Delta(z)|<\varepsilon$ (Exercise 9) and

$$
f(z)=\underbrace{f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}_{g(z)}+\underbrace{\Delta(z)\left(z-z_{0}\right)}_{h(z)} .
$$

We consider the marked functions $g(z)$ and $h(z)$. Clearly, $g(z)$ is linear and $h(z)=f(z)-g(z)$ is continuous. Suppose that $n \in \mathbb{N}_{0}$ is so big that $R_{n} \subset B\left(z_{0}, \delta\right)$. By part 2 of the first proposition (and by the linearity of the integral) we have

$$
\int_{\partial R_{n}} f=\int_{\partial R_{n}} g+\int_{\partial R_{n}} h=\int_{\partial R_{n}} h .
$$

By the ML bound (part 2 of the theorem on properties of \int),

$$
\begin{aligned}
\left|\int_{\partial R_{n}} h\right| & \leq \max _{z \in \partial R_{n}}\left|\Delta(z)\left(z-z_{0}\right)\right| \cdot \operatorname{per}\left(R_{n}\right) \\
& <\varepsilon \cdot \operatorname{diam}\left(R_{n}\right) \cdot \operatorname{per}\left(R_{n}\right)=\varepsilon \cdot \frac{\operatorname{diam}(R)}{2^{n}} \cdot \frac{\operatorname{per}(R)}{2^{n}} \\
& <\varepsilon \cdot \frac{\operatorname{per}(R)^{2}}{4^{n}} .
\end{aligned}
$$

We used the above mentioned decrease for quarters of both the diameter and the perimeter to a half, and that the diameter of a rectangle is less than the perimeter. Thus

$$
\frac{1}{4^{n}}\left|\int_{\partial R} f\right| \leq\left|\int_{\partial R_{n}} f\right|=\left|\int_{\partial R_{n}} h\right|<\varepsilon \cdot \frac{\operatorname{per}(R)^{2}}{4^{n}}
$$

and $\left|\int_{\partial R} f\right|<\varepsilon \cdot \operatorname{per}(R)^{2}$. This is true for every $\varepsilon>0$ and $\int_{\partial R} f=0$.
It is a remarkable proof, isn't it? The author of the theorem is the French mathematician Augustin-Louis Cauchy (1789-1857) who during his political emigration lived in 1833 also in Prague. But Cauchy always assumed in his arguments that f^{\prime} was continuous, and it was another French mathematician Édouard Goursat (1858-1936) who proved the theorem in 1900 only under the assumption of existence of f^{\prime}, in
E. Goursat, Sur la définition générale des fonctions analytiques, d'après Cauchy, Trans. Amer. Math. Soc. 1 (1900), 14-16.

The functional \int. We define for compact sets $A \subset \mathbb{C}$-recall that these sets A are closed and bounded - the sets of holomorphic functions

$$
H_{A}:=\{f: \mathbb{C} \backslash A \rightarrow \mathbb{C} \mid f \text { is holomorphic }\} \text { and } H:=\bigcup_{A \subset \mathbb{C} \text { is compact }} H_{A}
$$

Thus H consists of the functions that are holomorphic on the complement of a compact set.

Definition (the functional \int). We define \int, a function on the set H, by

$$
\int: H \rightarrow \mathbb{C}, \quad \int f=\int_{\partial R} f
$$

where $f \in H_{A}$ and R is an arbitrary rectangle such that $\operatorname{int}(R) \supset A$.
Before we state and in the next last lecture prove various properties of the functional \int, we show that its value is independent of the selection of the rectangle R and the definition is therefore correct.

For a function $f \in H_{A}$ and every two rectangles R and S with $A \subset$ $\operatorname{int}(R) \cap \operatorname{int}(S)$ we prove that

$$
\int_{\partial R} f=\int_{\partial S} f
$$

Let first $S \subset \operatorname{int}(R)$. Extending the sides of S we split R in nine rectangles R_{1}, \ldots, R_{8}, S. The same geometric argument as in the last proof gives the first of the next two equalities:

$$
\int_{\partial R} f=\sum_{i=1}^{8} \int_{\partial R_{i}} f+\int_{\partial S} f=\int_{\partial S} f .
$$

The second one, that always $\int_{\partial R_{i}} f=0$, follows from the Cauchy-Goursat theorem because $R_{i} \subset \mathbb{C} \backslash A$. The general position of R and S reduces to this case. By Exercise 10 for every two rectangles R and S and every nonempty compact set A with $A \subset \operatorname{int}(R) \cap \operatorname{int}(S)$ there exists a rectangle T such that

$$
A \subset \operatorname{int}(T) \text { and } T \subset \operatorname{int}(R) \cap \operatorname{int}(S)
$$

Here the property of rectangles that the intersection of every two of them, if their interiors intersect, is again a rectangle is useful. For discs or triangles this does not hold. Thus

$$
\int_{\partial R} f=\int_{\partial T} f=\int_{\partial S} f
$$

Theorem (properties of the functional \int). There are four important properties.

1. Linearity: for every $\alpha, \beta \in \mathbb{C}$ and $f, g \in H$,

$$
\int(\alpha f+\beta g)=\alpha \int f+\beta \int g .
$$

But where is $\alpha f+\beta g$ defined? - Exercise 11.
2. Extension of the C.-G. theorem: if $a \in \mathbb{C}$ and a function $f \in H_{\{a\}}$ is bounded on a deleted neighborhood of the point a, then

$$
\int f=0 .
$$

3. Again ρ : for every $a \in \mathbb{C}$,

$$
\int \frac{1}{z-a}=\rho
$$

where $\rho(=2 \pi i)$ is the above constant.
4. Exchange of a limit and \int : if $f, f_{n} \in H_{A}, n=1,2, \ldots, A \subset \operatorname{int}(R)$ for a rectangle R, and $f_{n} \rightrightarrows f$ on ∂R, then

$$
\lim _{n \rightarrow \infty} \int f_{n}=\int f
$$

Exercises

1. Prove that $\int_{a b}(\alpha z+\beta)=\alpha\left(\frac{b^{2}}{2}-\frac{a^{2}}{2}\right)+\beta(b-a)$.
2. Prove the proposition reducing \int_{u} to $(R) \int_{a}^{b}$.
3. Let $\left(z_{n}\right)$ be a convergent sequence of complex numbers. Prove that $\operatorname{im}\left(\lim z_{n}\right)=\operatorname{limim}\left(z_{n}\right)$.
4. Prove that $\operatorname{re}(\rho)=0$.
5. If $a=-1-i$ and $b=1-i$, compute that

$$
\int_{a b} \frac{1}{z}=\frac{\pi i}{2} . \text { Hence } \rho=4(\pi i / 2)=2 \pi i
$$

6. Prove the proposition on nested closed sets in \mathbb{C}.
7. Prove that this proposition holds even if we only assume (instead of $\lim \operatorname{diam}\left(A_{n}\right)=0$) that A_{1} is bounded.
8. But show that this is not true in a general complete metric space.
9. What is the value at z_{0} of the function $\Delta(z)$ in the proof of the C.-G. theorem?
10. Prove the lemma on the rectangle T in the proof of the correctness of the definition of \int.
11. If $f, g \in H$ and $\alpha, \beta \in \mathbb{C}$, where is $\alpha f+\beta g$ defined?
12. $\int 1 / z^{2}=$?
