
Lecture 10, December 5, 2019

Fourier series

Two more results on power series. Before F. series we mention without
proofs two results on the limit behavior of functions given as sums of power
series.

Proposition (nonnegative coefficients). Let
∑

n≥0 anx
n be a power se-

ries with nonnegative real coefficients, c > 0 be a real number, and let us
suppose that the given power series converges for every x ∈ [0, c). Then the
following limit and infinite sum always exist and are equal,

lim
x→c−

∞∑
n=0

anx
n =

∞∑
n=0

anc
n ,

no matter whether they are finite or +∞.

Theorem (Abel’s). Let
∑

n≥0 anx
n be a power series with real coefficients,

c > 0 be a real number, and let us suppose that the numeric series
∑

n≥0 anc
n

converges. Then the given power series converges for every x ∈ [0, c), the
next limit exists, and one has the equality

lim
x→c−

∞∑
n=0

anx
n =

∞∑
n=0

anc
n .

The theorem bears the name of the Norwegian mathematician Niels H. Abel
(1802–1829). Here is one application:

1− 1

2
+

1

3
− 1

4
+ · · · = log 2 (Exercise 1) .

Fourier series. The rest of lecture 10 is a crash-course on Fourier series, no
proofs. These series of functions bear the name of the French mathematician
and physicist Joseph Fourier (1768–1830). A trigonometric series F (x) is
determined by real coefficients a0, a1, . . . and b1, b2, . . . and it is the series of
functions

F (x) =
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) .
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The exceptional summand a0
2

is explained in Exercise 5. In contrast with
power series, trigonometric series may sum, as we will see, to discontinuous
or non-smooth functions, which is their advantage. For two functions f, g ∈
R[−π, π] (i.e. f and g are Riemann-integrable on [−π, π]) we define the
operation

〈f, g〉 :=

∫ π

−π
fg .

It is almost a scalar product: it has the property of symmetry

〈f, g〉 = 〈g, f〉 ,

the property of bilinearity

〈αf + βg, h〉 = α〈f, g〉+ β〈g, h〉

(α, β ∈ R and h ∈ R[−π, π]), and the property of positive semidefinitness

〈f, f〉 ≥ 0

(Exercise 2). But in general the property 〈f, f〉 = 0 ⇒ f ≡ 0 is missing
(Exercise 3), so this operation is not a true scalar product.

Proposition (orthogonality of sines and cosines). For every two inte-
gers m,n ≥ 0,

〈sin(mx), cos(nx)〉 = 0 .

For every two integers m,n ≥ 0, except m = n = 0,

〈sin(mx), sin(nx)〉 = 〈cos(mx), cos(nx)〉 =

{
π . . . m = n
0 . . . m 6= n .

Finally,

〈sin(0x), sin(0x)〉 = 0 and 〈cos(0x), cos(0x)〉 = 2π .

The Fourier series of a function. As we know (from MA I), one can
associate with a function f , defined near 0 and with derivatives f (n)(0) ∈ R
of all orders n = 0, 1, . . . , the power series

∞∑
n=0

f (n)(0)

n!
xn ,
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so called Taylor series of f . Often but not always it sums to f(x). We
similarly assign to a function f ∈ R[−π, π] a certain trigonometric series, so
called Fourier series of f . In favorable circumstances it sums to f(x).

For every function f ∈ R[−π, π] we first define its cosine Fourier coeffi-
cients

an =
〈f(x), cos(nx)〉

π
=

1

π

∫ π

−π
f(x) cos(nx) dx, n = 0, 1, . . . ,

and its sine Fourier coefficients

bn =
〈f(x), sin(nx)〉

π
=

1

π

∫ π

−π
f(x) sin(nx) dx, n = 1, 2, . . .

(Exercise 4). The trigonometric series

Ff (x) :=
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

with these coefficients is the Fourier series of the function f . By means of
〈·, ·〉, the previous proposition, and by exchanging summation and integration
under uniform convergence one can prove the

Proposition (on Fourier coefficients). Let f ∈ R[−π, π] and a0, a1, . . .
and b1, b2, . . . be such real numbers that

a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) ⇒ f(x) (on [−π, π]) .

Then an and bn are the Fourier coefficients of the function f .

If a trigonometric series expresses a given (integrable) function f as its uni-
form sum, the coefficients in the series are inevitably the Fourier coefficients
of f . Moreover, these coefficients satisfy the next inequality.

Theorem (the Bessel inequality). If an and bn are the Fourier coefficients
of f ∈ R[−π, π] then

a20
2

+
∞∑
n=1

(
a2n + b2n

)
≤ 〈f, f〉

π
=

1

π

∫ π

−π
f 2 .
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The inequality is named after the German mathematician and astronomer
Friedrich W. Bessel (1784–1846). It is not hard to deduce from it (in Exercise
6) the

Corollary (the Riemann–Lebesgue lemma). For every function f in
R[−π, π],

lim
n→∞

∫ +π

−π
f(x) cos(nx) dx = lim

n→∞

∫ +π

−π
f(x) sin(nx) dx = 0 .

Piecewise smooth functions. Roughly speaking, these are the functions
which are sums of their F. series. A function f : [a, b]→ R, where a < b are
real numbers, is piecewise smooth if there is a partition

a = a0 < a1 < a2 < · · · < ak = b, k ∈ N ,

of the interval [a, b] such that on each interval (ai−1, ai), i = 1, 2, . . . , k, the
function f has continuous derivative f ′, for every i = 1, 2, . . . , k there exist
proper one-sided limits

f(ai − 0) := lim
x→a−i

f(x) and f ′(ai − 0) := lim
x→a−i

f ′(x) ,

and for every i = 0, 1, . . . , k − 1 there exist proper one-sided limits

f(ai + 0) := lim
x→a+i

f(x) and f ′(ai + 0) := lim
x→a+i

f ′(x) .

A piecewise smooth function may be discontinuous at a few points in the
interval [a, b], but in each point of discontinuity it has proper one-sided limits
and it has in these points defined one-sided non-vertical tangents. There are
many examples of piecewise smooth functions (Exercise 7).

We present (without proofs) two theorems on sums of Fourier series. From
esthetic reasons we consider instead of functions f : [−π, π) → R the 2π-
periodic functions f : R → R, which are the functions satisfying for every
x ∈ R the equality f(x+2π) = f(x). It is clear how the two kinds of functions
mutually correspond (Exercise 8). A 2π-periodic function f : R → R is
piecewise smooth if the restriction f | [−π, π] is piecewise smooth.
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Theorem (on ⇒ of a F. series). Suppose that f : R → R is 2π-periodic,
continuous, and piecewise smooth. Then

Ff (x) ⇒ f(x) (on R) .

Theorem (Dirichlet’s on F. series). Suppose that f : R → R is 2π-
periodic and piecewise smooth. Then

Ff (x)→ f(x− 0) + f(x+ 0)

2
(on R) .

If x0 ∈ R is a point of discontinuity of the function f , the Fourier series of
f has sum Ff (x0) equal to the arithmetic mean of the one-sided limits of f
at x0. If f is continuous at x0 then Ff (x0) = f(x0). Peter G. L. Dirichlet
(1805–1859) was a German-French mathematician.

The Basel Problem. This was the problem to sum
∑

1/n2. It was resolved
by Leonhard Euler (1707–1783) who in fact was born in Basel. We obtain
this sum by expanding the function

f : [−π, π]→ R, f(x) = x2 ,

in Fourier series. Since f(−π) = f(π), we can regard f as a 2π-periodic and
everywhere defined function f : R → R. It is an even function; in general a
function g : R → R is even if for every x ∈ R, g(−x) = g(x). A function
g : R → R is odd if for every x ∈ R, g(−x) = −g(x). Let a > 0 be a real
number and g ∈ R[−a, a]. Then we have the identities

g is even ⇒
∫ a

−a
g = 2

∫ a

0

g and g is odd ⇒
∫ a

−a
g = 0 (Exercise 9) .

Back to the Fourier expansion of our 2π-periodic parabola f(x) = x2. By
the last identity and Exercise 10, all sine Fourier coefficients bn of f are zero.
It suffices to calculate its cosine Fourier coefficients an. By their definition,
the last but one identity, and Exercise 10,

a0 =
2

π

∫ π

0

x2 dx =
2π2

3
,
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and for n ∈ N by two integrations by parts,

an =
2

π

∫ π

0

x2
(sin(nx)/n)′︷ ︸︸ ︷
cos(nx) dx =

2

πn

[
x2 sin(nx)

]π
0︸ ︷︷ ︸

0−0=0

− 4

πn

∫ π

0

x

(− cos(nx)/n)′︷ ︸︸ ︷
sin(nx) dx

=
4

πn2
[x cos(nx)]π0︸ ︷︷ ︸

π(−1)n

− 4

πn2

∫ π

0

cos(nx) dx︸ ︷︷ ︸
0−0=0

= (−1)n
4

n2
.

Since f(x) is continuous and piecewise smooth, by the penultimate theorem
we have that

Ff (x) =
π2

3
+ 4

∞∑
n=1

(−1)n
cos(nx)

n2
⇒ f(x) (on R) .

For x = π we get

π2 = f(π) = Ff (π) =
π2

3
+ 4

∞∑
n=1

(−1)n
(−1)n

n2
, hence

∞∑
n=1

1

n2
=
π2

6
.

Exercises

1. Prove with the help of Abel’s theorem that
∑

n≥1(−1)n+1/n = log 2.

2. Prove the symmetry, bilinearity, and positive semidefinitness of the
operation 〈·, ·〉.

3. Give an example of a non-zero function f ∈ R[−π, π] with 〈f, f〉 = 0.

4. Why are the cosine and sine Fourier coefficients of a function f ∈
R[−π, π] correctly defined?

5. Why is the constant coefficient in trigonometric series a0
2

and not a0?

6. Deduce the Riemann–Lebesgue lemma from the Bessel inequality.

7. Is a broken line a piecewise smooth function?
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8. Let

M1 = {f | f : [−π, π)→ R} and M2 = {f : R→ R | f is 2π-per.} .

Describe a natural bijection between the sets M1 a M2.

9. Prove the stated identities for the integral of an even, resp. odd, func-
tion over a symmetric interval.

10. Prove that the product of two even and two odd functions is an even
function, and that the product of an even and an odd function is an
odd function.

11. Expand in Fourier series the function f(x) = π − x : [−π, π) → R and
by an appropriate specialization deduce the sum 1− 1

3
+ 1

5
− 1

7
+ · · · = π

4
.
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