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A (binary) Diophantine equation is an equation

F (x, y) = 0 ,

where F ∈ Z[x, y] is a polynomial, with solutions in the integers, x, y ∈ Z.
(We will use x, y to denote both the formal variables and their numeric
values in Z or R.) The 20th century saw great advances in resolution of such
equations, associated with the names of A. Thue, C.-L. Siegel and A. Baker.
But it was at the end of the previous century, in 1887, when C. Runge [2]
in a pioneering result proved finiteness of the number of solutions for a large
class of Diophantine equations; his method is still used today to solve specific
equations. In this lecture we will prove, by generating functions, a particular
case of Runge’s theorem:

Theorem (Runge, a particular case). Suppose that F ∈ Z[x, y] is
nonzero and irreducible in Q[x, y], n = degF = degy F ≥ 2 and the polyno-
mial f(1, y) ∈ Z[y], where f(x, y) is the leading degree n form of F (x, y), is
reducible in Q[y] and has only simple roots. Then the equation

F (x, y) = 0

has only finitely many solutions x, y ∈ Z.

(We write F (x, y) = fn(x, y) + fn−1(x, y) + . . . + f0(x, y), where fj(x, y) is
zero or a homogeneous polynomial with total degree j, and set f = fn.) At
the end of the lecture we state Runge’s theorem in its general form.

For example, the above theorem implies that any equation of the form

yn = (ax)n + an−1x
n−1 + . . .+ a1x+ a0 ,

where n ≥ 2, a, ai ∈ Z, a 6= 0 and the polynomial on the right side is not a
d-th power in Z[x] for any divisor d ≥ 2 of n, has only finitely many solutions
x, y ∈ Z.
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Exercise. Check that this example satisfies assumptions of the theorem.

We prove the above theorem and start with a lemma: If 0 6= P ∈ Z[x, y]
has degy P < degy F (= n) then F (x, y) = P (x, y) = 0 for only finitely
many x, y ∈ Z. Indeed, F is irreducible also in Z(x)[y] (by Gauss lemma)
and since P has in y a lower degree, F and P are coprime in Z(x)[y]. By
Bachet’s identity in this ring, uF + vP = 1 for some u, v ∈ Z(x)[y]. Clearing
denominators in the coefficients of u and v, we get polynomials U, V ∈ Z[x][y]
and 0 6= W ∈ Z[x] such that

UF + V P = W .

Thus x, y ∈ Z and F (x, y) = P (x, y) = 0 implies that W (x) = 0. For any
fixed x ∈ Z there are at most n values y ∈ Z with F (x, y) = 0 (due to
irreducibility of F ). Hence F (x, y) = P (x, y) = 0 for at most n degW values
x, y ∈ Z and the lemma is proven.

We denote the real roots of f(1, y) by α. We show that there is an ε > 0
and at most n polynomials Pα ∈ Z[x, y], indexed by the real roots α, with
the property that each Pα is nonzero, degy Pα < n and if x, y ∈ Z satisfy
F (x, y) = 0 and |x| > 1/ε, then also Pα(x, y) = 0 for some α. By the
previous lemma and its proof, F (x, y) = 0 has at most (1 + 2/ε)n + n2c
solutions x, y ∈ Z, where c = maxα degWα, and we are done.

In order to construct the polynomials Pα, we solve F (x, y) = 0 for x, y ∈ R
and x near ∞. For this we make the change of variables x = 1/t, y = s/t
and consider the integral polynomial

G(t, s) = tnF (1/t, s/t) = gn(s) + tgn−1(s) + . . .+ tng0(s) ,

where gj(s) = tjfj(1/t, s/t) ∈ Z[s] has degree at most j (or is zero). We set
g(s) = gn(s). Since g(s) = f(1, s), the polynomial g(s) ∈ Z[s] has degree
n ≥ 2, is reducible and has no multiple root. Recall that α denotes the real
roots of g(s) = f(1, s). It follows that any pair (t, s) = (0, α) is a solution of

G(t, s) = 0 .

Since ∂sG(0, α) = g′(α) 6= 0 (g has no multiple root), the implicit functions
theorem applies in a neighborhood of the pair (0, α) and tells us that

• there is an ε > 0 such that for every t ∈ (−ε, ε) there exists exactly
one s ∈ (α− ε, α+ ε) with G(t, s) = 0, and the corresponding function
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s = sα(t) is analytic on (−ε, ε):

sα(t) = α + α0t+ α1t
2 + . . .

for some coefficients αj ∈ R.

The power series sα(t) have other useful properties. It is not hard to
prove that they capture every solution close to 0 in t:

• for small enough ε > 0, if t ∈ (−ε, ε) and s ∈ R satisfy G(t, s) = 0,
then s = sα(t) for some α.

Considering the equation G(t, s) = 0 with s ∈ C[[t]] formally, ones sees that
all coefficients αj in sα(t) express rationally in terms of α:

• for every j = 0, 1, . . ., the coefficient αj lies in the number field Q(α).

Exercise. Prove in detail the previous two claims on the power series sα(t).

We return to the variables x, y. All expansions ϕα(x), given by

s/t = y = ϕα(x) = sα(t)/t = xsα(1/x) = αx+ α0 + α1x
−1 + . . . ,

converge for x ∈ R, |x| > 1/ε, for small enough ε > 0. By the second claim
on sα(t), if x, y ∈ Z satisfy F (x, y) = 0 and |x| > 1/ε, then there is an α (a
real root of f(1, s)) such that y = ϕα(x).

We fix an α and prove that for h ∈ N large enough in terms of n, there
exist polynomials A0, A1, . . . , An−1 ∈ Z[x], not all of them zero, such that
each degAi ≤ h and in (the expansion of)

Φα(x) =
n−1∑
i=0

Ai(x)ϕα(x)i

every power xk with k ≥ 0 has zero coefficient. By the third claim on sα(t),
each αj is a Q-linear combination of the d powers 1, α, α2, . . . , αd−1, where

d = deg(α) = [Q(α) : Q] .

There are h+n powers xk in Φα(x) with k ≥ 0. The requirement on existence
of the Ai is equivalent to a nontrivial solvability in Z of a homogeneous linear
system with rational coefficients and with d(h+ n) equations (each of the d
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coordinates — the coefficients of 1, α, α2, . . . , αd−1 — of each coefficient of
xk with k ≥ 0 is set to 0) and n(h+ 1) unknowns (the unknown coefficients
in the polynomials Ai). By a well-known lemma, if the number of unknowns
exceeds the number of equations, in our case if

n(h+ 1) > d(h+ n) ,

then the system has a nontrivial solution (not everything is zero).

Exercise. Prove this lemma.

Crucially, by the assumed reducibility of f(1, y), d ≤ n − 1 and the above
inequality is satisfied for large h, for example for h = n2. With this choice of
h, the existence of the polynomials Ai is proven.

Now, with such Ais, we set

Pα(x, y) =
n−1∑
i=0

Ai(x)yi ∈ Z[x, y] .

We check that the polynomials Pα have the property stated at the beginning.
Clearly, each Pα is nonzero and in y has degree less than n. If x, y ∈ Z satisfy
F (x, y) = 0 and |x| is large enough, then (by the second claim on sα(t)) we
have y = ϕα(x) and Pα(x, y) = Φα(x) for some α. But if |x| is large enough,

|Pα(x, y)| = |Φα(x)| < 1 ,

because the expansion of Φα(x) contains only powers of x with negative
exponents and Φα(x)→ 0 if |x| → +∞. But, for x, y ∈ Z, Pα(x, y) ∈ Z and
so |Pα(x, y)| < 1 implies Pα(x, y) = 0. This proves the remaining part of the
property of the polynomials Pα. The theorem is proven. 2

The previous proof is taken from Sprindžuk [3, pp. 11–13].
And what does original Runge’s theorem say? We write

F (x, y) =
m∑
i=1

n∑
j=1

ai,jx
iyj, ai,j ∈ Z ,

and assume that degx F = m, degy F = n with m,n ≥ 1. We denote by `
the line x/m+y/n = 1, which goes through the points (m, 0) and (0, n), and
consider the two sets of lattice points

S = {(i, j) ∈ Z2 | ai,j 6= 0} and T = {(i, j) ∈ S | (i, j) ∈ `} .
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We state Runge’s theorem in the natural contrapositive form. (In the litera-
ture one can find many different formulations of Runge’s theorem; sometimes
under “Runge’s theorem” goes only its particular case.)

Theorem (Runge, 1887). Suppose that F ∈ Z[x, y] is as above, is irre-
ducible in Q[x, y], and the equation

F (x, y) = 0

has infinitely many solutions x, y ∈ Z. Then

1. no point of S lies above the line ` (hence (m, 0), (0, n) ∈ T );

2. the `-leading part of F satisfies∑
(i,j)∈T

ai,jx
iyj = apk ,

where 0 6= a ∈ Z, k ∈ N and p = p(x, y) ∈ Z[x, y] is an irreducible
polynomial;

3. F (x, y) = 0 with x, y ∈ C and x near ∞ determines an algebraic (mul-
tivalued) function whose all Puiseux expansions are pairwise conjugate.

Equivalently, if an irreducible F violates one of the conditions 1–3, then
F (x, y) = 0 has only finitely many integral solutions.

Exercise. Check that the initial theorem is indeed a particular case of Runge’s
theorem.

The disadvantage of Runge’s theorem is that it does not apply to many
important and natural equations, such as x3 − 2y3 = a, a ∈ Z (which has
only finitely many solutions x, y ∈ Z too, as proven by A. Thue in 1909).
The big advantage is effectivity, since Runge’s method gives explicit upper
bounds on the size of solutions.

Exercise. Convince yourself that the above proof provides an explicit upper
bound on max(|x|, |y|) if x, y ∈ Z and F (x, y) = 0.

As for concrete explicit bounds, A. Grytczuk and A. Schinzel [1] proved,
among other results, that, denoting h = max |ai,j|, if F is irreducible and
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am,j 6= 0 for some j > 0 (i.e., S ∩ (x = m) has a point above `), then any
solution x, y ∈ Z of F (x, y) = 0 satisfies

|x| ≤
(

(m+ 1)(n+ 1)(mn+ 1)2/nh
)2n(mn+1)3

and

|y| ≤
(

(m+ 1)(n+ 1)(mn+ 1)2/nh
)2(mn+1)3

.

Let d = max(m,n) (and again h = max |ai,j|). The results of P. G. Walsh in
[4] and the correction [5] give the following general bound: if F is irreducible
and violates one of the conditions 1–3 of Runge’s theorem, then for x, y ∈ Z
with F (x, y) = 0 one has

max(|x|, |y|) < (2d)2d+18d7h12d
6

.

For fixed d these bounds are polynomial in the height h of F , which are very
strong bounds indeed.

References

[1] A. Grytczuk and A. Schinzel, On Runge’s theorem about Diophantine
equations, in: G. Halász, L. Lovász, D. Miklós and T. Szönyi (editors),
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