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C. Jacobi [2] in 1829 proved that for any integer n ≥ 1,

r4(n) = #{(x1, x2, x3, x4) ∈ Z4 |
∑4

i=1 x
2
i = n} = 8

(∑
d |n

d−
∑
4d |n

4d
)
.

In other words, the number of ways to express n as a sum of four squares
of integers equals eight times the sum of the divisors of n not divisible by
four. Thus r4(n) = 8(1 + . . .) ≥ 8 for every n ≥ 1, which gives as a corollary
Lagrange’s theorem from 1770 that every natural number is a sum of four
squares.

We give a complete and purely formal proof of Jacobi’s identity by gen-
erating functions; the proof is due to Hirschhorn [1] in 1987. Idea: since
rg(n), the number of expressions of an integer n ≥ 0 as a sum of g squares of
integers, equals to the coefficient of xn in (the formal power series expansion
of) ( +∞∑

n=−∞

xn2
)g

,

and
∑

d |n d equals to the coefficient of xn in the Lambert series

∞∑
k,n=1

nxkn =
∞∑
n=1

nxn

1− xn
,

it suffices to derive the identity(∑
xn2
)4

= 1 + 8
( ∞∑

n=1

nxn

1− xn
−
∞∑
n=1

4nx4n

1− x4n

)
(1)

— Jacobi’s identity in the GF language. (We write briefly
∑

for
∑+∞

n=−∞
and

∏
for
∏∞

n=1.) We achieve it by a succession of the next seven identities.
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1. ∑
(−1)nxn2

=
∏ 1− xn

1 + xn
.

2. JTI: ∏
(1− x2n)(1 + zx2n−1)(1 + z−1x2n−1) =

∑
znxn2

.

3.

(z − z−1)
∏

(1− xn)(1− z2xn)(1− z−2xn) =
∑

(−1)nz2n+1xn(n+1)/2 .

4. ∏
(1− xn)3 = 1

2

∑
(2n + 1)(−1)nxn(n+1)/2 .

5. ∏
(1− xn)6 = 1

2

∑
r,s

((2r + 1)2 − (2s)2)xr2+r+s2 .

6. ∏
(1− xn)6 =

∏
Qn ·

[
1− 8

∞∑
n=1

((2n− 1)x2n−1

1 + x2n−1 − 2nx2n

1 + x2n

)]
,

where Qn = (1− x2n)2(1 + x2n)2(1 + x2n−1)2.

7. ∏
(1 + xn)4(1− xn)2 =

∏
Qn .

The key identity, from which we derive everything, is 2, the celebrated Ja-
cobi’s triple product identity (JTI for short), obtained by C. Jacobi in [2]. We
first deduce (1) from the identities, then derive the seven identities assuming
the JTI, and at the end we give a proof for the JTI.

We have that(∑
(−1)nxn2

)4 (id.1)
=

∏(1− xn

1 + xn

)4
=

(the left side of id. 6)

(the left side of id. 7)

equals to the ratio of the right sides

1− 8
∞∑
n=1

((2n− 1)x2n−1

1 + x2n−1 − 2nx2n

1 + x2n

)
.
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Replacing x with −x, we obtain the identity(∑
xn2
)4

= 1 + 8
∞∑
n=1

((2n− 1)x2n−1

1− x2n−1 +
2nx2n

1 + x2n

)
,

which is similar to (1). We rewrite the last sum as

∞∑
n=1

((2n− 1)x2n−1

1− x2n−1 +
2nx2n

1− x2n

)
−
∞∑
n=1

( 2nx2n

1− x2n
− 2nx2n

1 + x2n

)
.

The first sum equals
∑∞

n=1
nxn

1−xn by regrouping, and the summand in the

second sum equals, by subtracting the two fractions, to 4nx4n

1−x4n . Thus the
obtained identity is not just similar to but indeed identical to (1).

We start from identity 2, the JTI, and derive from it the rest.
2 ; 1. We set z = −1 in the JTI and get that

∑
(−1)nxn2

equals to∏
(1− x2n)(1− x2n−1)2 .

Since
∏

(1− x2n)(1− x2n−1) =
∏

(1− xn) and (1− xn) = (1− x2n)/(1 + xn),
regrouping yields the right side of 1.

2 ; 3. We set z = −xz2 in the JTI, then x = x1/2 and multiply the
result by z.

3 ; 4. We differentiate 3 by z, set z = 1 and multiply the result by 1
2
.

4 ; 5. Squaring 4 gives∏
(1− xn)6 = 1

4

∑
m,n

(2m + 1)(2n + 1)(−1)m+nx(m2+m+n2+n)/2 .

We split the sum in two subsums, the first with even m + n and the second
with odd m + n. In the first subsum we change the variables to r = (m +
n)/2, s = (m−n)/2, and in the second to r = (m−n−1)/2, s = (m+n+1)/2.
It is easy to check that in both cases m2 +m+n2 +n turns into 2(r2 +r+s2)
and (−1)m+n(2m+ 1)(2n+ 1) into (2r+ 1)2− (2s)2. Hence the two subsums
coincide and the sign disappears; we get the right side of 5.

5, 2 ; 6. We write the right side of 5 as a difference of two sums, by the
difference (2r + 1)2 − (2s)2, and separate in each sum the variables r and s.
Then we express the coefficients by differentiation and obtain

1
2

(∑
s

xs2 · (1 + 4x d
dx

)
∑
r

xr2+r −
∑
r

xr2+r · 4x d
dx

∑
s

xs2
)
.
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We replace each of the four
∑

s by a
∏

using the JTI, setting z = 1 in
∑

s

and z = x in
∑

r (1
2

gets cancelled by 1 + x0):∏
(1− x2n)(1 + x2n−1)2 · (1 + 4x d

dx
)
∏

(1− x2n)(1 + x2n)2

minus ∏
(1− x2n)(1 + x2n)2 · 4x d

dx

∏
(1− x2n)(1 + x2n−1)2 .

We differentiate the infinite products by means of the identity (
∏

fn)′ =∏
fn ·

∑∞
n=1 f

′
n/fn and, denoting a = 1 + x2n, b = 1 + x2n−1, c = 1− x2n and

taking out the factor Qn = (abc)2, get the expression∏
Qn ·

[
1 + 4x

∞∑
n=1

((a2c)′

a2c
− (b2c)′

b2c

)]
.

The last summand simplifies after an easy calculation to 2(a′/a− b′/b). We
get the right side of 6.
∅; 7. We have∏

Qn =
∏

(1− x2n)2(1 + x2n)2(1 + x2n−1)2 .

Since 1 − x2n = (1 − xn)(1 + xn) and
∏

(1 + x2n)(1 + x2n−1) =
∏

(1 + xn),
regrouping gives the left side of 7.

It remains to prove the JTI∏
(1− x2n)(1 + zx2n−1)(1 + z−1x2n−1) =

∑
znxn2

.

We give a purely formal proof. Let S(z, x) be the product on the left side.
It follows that

zx · S(zx2, x) = S(z, x) ,

because the substitution z 7→ zx2 almost preserves the two arithmetic pro-
gressions of odd positive integers in the two exponents of x: it just adds to
S(z, x) the factor (1 + z−1x−1)/(1 + zx) = 1/zx. Therefore if we expand
S(z, x) in the integral powers of z as

S(z, x) =
∑

anz
n =

∑
an(x)zn

(n runs through the whole Z) with the power series coefficients an ∈ C[[x]],
comparison of the coefficients of zn on both sides of the functional equation
gives the relation

x2n−1an−1 = an, n ∈ Z .
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Thus a1 = xa0 = a−1 (n = 1, 0), a2 = x3a1 = x3a−1 = a−2 (n = 2,−1) and
a2 = x4a0 = a−2. In general,

an = a−n = xn2

a0, n = 1, 2, . . . ,

since 1 + 3 + 5 + . . . + (2n − 1) = n2. (The equality an = a−n is immediate
also from the symmetry S(z, x) = S(z−1, x).) So we have deduced that

S(z, x) =
∏

(1− x2n)(1 + zx2n−1)(1 + z−1x2n−1) = a0(x)
∑

znxn2

and are almost done — it ‘only’ remains to be shown that a0 = 1. This we
prove by three specializations of the last identity (the JTI with the undeter-
mined coefficient a0(x)): (i) z = x = 0, (ii) z = i and (iii) z = −1, x = x4.
Then (i) gives that a0(0) = 1, (ii) gives that∏

(1− x2n)(1 + x4n−2) = a0(x)
∑

(−1)nx(2n)2

and (iii) gives that∏
(1− x8n)(1− x8n−4)2 = a0(x

4)
∑

(−1)nx4n2

.

Clearly, the sums on the right sides are equal. So are the products on the
left sides, despite appearance: since

∏
(1 − x8n)(1 − x8n−4) =

∏
(1 − x4n),

1− x8n−4 = (1− x4n−2)(1 + x4n−2) and
∏

(1− x4n)(1− x4n−2) =
∏

(1− x2n),
the product of (iii) equals to that of (ii). Hence the remaining factors have
to be equal too, a0(x) = a0(x

4), which forces that a0(x) = a0(0) = 1, as we
needed to show. This completes the proof of the JTI and of Jacobi’s four
squares identity. 2

Exercise. Justify rigorously formal manipulations in the above proof. In
particular, clarify in what sense does the formal equality∏

(1− x2n)(1 + zx2n−1)(1 + z−1x2n−1) =
∑

an(x)zn

hold and why it is preserved by the substitution z 7→ zx2.
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