Jacobi's four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 2013

C. Jacobi [2] in 1829 proved that for any integer $n \ge 1$,

$$r_4(n) = \#\{(x_1, x_2, x_3, x_4) \in \mathbb{Z}^4 \mid \sum_{i=1}^4 x_i^2 = n\} = 8\left(\sum_{d \mid n} d - \sum_{4d \mid n} 4d\right).$$

In other words, the number of ways to express n as a sum of four squares of integers equals eight times the sum of the divisors of n not divisible by four. Thus $r_4(n) = 8(1 + ...) \ge 8$ for every $n \ge 1$, which gives as a corollary Lagrange's theorem from 1770 that every natural number is a sum of four squares.

We give a complete and purely formal proof of Jacobi's identity by generating functions; the proof is due to Hirschhorn [1] in 1987. Idea: since $r_g(n)$, the number of expressions of an integer $n \ge 0$ as a sum of g squares of integers, equals to the coefficient of x^n in (the formal power series expansion of)

$$\left(\sum_{n=-\infty}^{+\infty} x^{n^2}\right)^g$$

and $\sum_{d|n} d$ equals to the coefficient of x^n in the Lambert series

$$\sum_{k,n=1}^{\infty} nx^{kn} = \sum_{n=1}^{\infty} \frac{nx^n}{1-x^n} \, .$$

it suffices to derive the identity

$$\left(\sum x^{n^2}\right)^4 = 1 + 8\left(\sum_{n=1}^{\infty} \frac{nx^n}{1-x^n} - \sum_{n=1}^{\infty} \frac{4nx^{4n}}{1-x^{4n}}\right) \tag{1}$$

— Jacobi's identity in the GF language. (We write briefly $\sum \text{ for } \sum_{n=-\infty}^{+\infty}$ and $\prod \text{ for } \prod_{n=1}^{\infty}$.) We achieve it by a succession of the next seven identities.

$$\sum (-1)^n x^{n^2} = \prod \frac{1 - x^n}{1 + x^n} \, .$$

2. JTI:

$$\prod (1 - x^{2n})(1 + zx^{2n-1})(1 + z^{-1}x^{2n-1}) = \sum z^n x^{n^2}.$$

3.

1.

$$(z - z^{-1}) \prod (1 - x^n)(1 - z^2 x^n)(1 - z^{-2} x^n) = \sum (-1)^n z^{2n+1} x^{n(n+1)/2}$$
4.

$$\prod (1 - x^n)^3 = \frac{1}{2} \sum (2n+1)(-1)^n x^{n(n+1)/2} .$$
5.

$$\prod (1 - x^n)^6 = \frac{1}{2} \sum_{r,s} ((2r+1)^2 - (2s)^2) x^{r^2 + r + s^2} .$$

6.

$$\prod (1-x^n)^6 = \prod Q_n \cdot \left[1 - 8\sum_{n=1}^{\infty} \left(\frac{(2n-1)x^{2n-1}}{1+x^{2n-1}} - \frac{2nx^{2n}}{1+x^{2n}}\right)\right],$$

where $Q_n = (1-x^{2n})^2 (1+x^{2n})^2 (1+x^{2n-1})^2.$
7.
$$\prod (1+x^n)^4 (1-x^n)^2 = \prod Q_n.$$

The key identity, from which we derive everything, is 2, the celebrated *Jacobi's triple product identity* (JTI for short), obtained by C. Jacobi in [2]. We first deduce (1) from the identities, then derive the seven identities assuming the JTI, and at the end we give a proof for the JTI.

We have that

$$\left(\sum (-1)^n x^{n^2}\right)^4 \stackrel{\text{(id.1)}}{=} \prod \left(\frac{1-x^n}{1+x^n}\right)^4 = \frac{\text{(the left side of id. 6)}}{\text{(the left side of id. 7)}}$$

equals to the ratio of the right sides

$$1 - 8\sum_{n=1}^{\infty} \left(\frac{(2n-1)x^{2n-1}}{1+x^{2n-1}} - \frac{2nx^{2n}}{1+x^{2n}} \right) \,.$$

Replacing x with -x, we obtain the identity

$$\left(\sum x^{n^2}\right)^4 = 1 + 8\sum_{n=1}^{\infty} \left(\frac{(2n-1)x^{2n-1}}{1-x^{2n-1}} + \frac{2nx^{2n}}{1+x^{2n}}\right),\,$$

which is similar to (1). We rewrite the last sum as

$$\sum_{n=1}^{\infty} \left(\frac{(2n-1)x^{2n-1}}{1-x^{2n-1}} + \frac{2nx^{2n}}{1-x^{2n}} \right) - \sum_{n=1}^{\infty} \left(\frac{2nx^{2n}}{1-x^{2n}} - \frac{2nx^{2n}}{1+x^{2n}} \right) + \frac{2nx^{2n}}{1-x^{2n}} = \frac{2nx^{2n}}{1+x^{2n}} + \frac{2nx^{2n}}{1-x^{2n}} + \frac{2nx^{2$$

The first sum equals $\sum_{n=1}^{\infty} \frac{nx^n}{1-x^n}$ by regrouping, and the summand in the second sum equals, by subtracting the two fractions, to $\frac{4nx^{4n}}{1-x^{4n}}$. Thus the obtained identity is not just similar to but indeed identical to (1).

We start from identity 2, the JTI, and derive from it the rest.

 $2 \rightarrow 1$. We set z = -1 in the JTI and get that $\sum (-1)^n x^{n^2}$ equals to

$$\prod (1 - x^{2n})(1 - x^{2n-1})^2$$

Since $\prod (1 - x^{2n})(1 - x^{2n-1}) = \prod (1 - x^n)$ and $(1 - x^n) = (1 - x^{2n})/(1 + x^n)$, regrouping yields the right side of 1.

 $2 \rightsquigarrow 3$. We set $z = -xz^2$ in the JTI, then $x = x^{1/2}$ and multiply the result by z.

 $3 \rightsquigarrow 4$. We differentiate 3 by z, set z = 1 and multiply the result by $\frac{1}{2}$. $4 \rightsquigarrow 5$. Squaring 4 gives

$$\prod (1-x^n)^6 = \frac{1}{4} \sum_{m,n} (2m+1)(2n+1)(-1)^{m+n} x^{(m^2+m+n^2+n)/2}$$

We split the sum in two subsums, the first with even m + n and the second with odd m + n. In the first subsum we change the variables to r = (m + n)/2, s = (m-n)/2, and in the second to r = (m-n-1)/2, s = (m+n+1)/2. It is easy to check that in both cases $m^2 + m + n^2 + n$ turns into $2(r^2 + r + s^2)$ and $(-1)^{m+n}(2m+1)(2n+1)$ into $(2r+1)^2 - (2s)^2$. Hence the two subsums coincide and the sign disappears; we get the right side of 5.

 $5, 2 \rightarrow 6$. We write the right side of 5 as a difference of two sums, by the difference $(2r+1)^2 - (2s)^2$, and separate in each sum the variables r and s. Then we express the coefficients by differentiation and obtain

$$\frac{1}{2} \left(\sum_{s} x^{s^2} \cdot (1 + 4x\frac{d}{dx}) \sum_{r} x^{r^2 + r} - \sum_{r} x^{r^2 + r} \cdot 4x\frac{d}{dx} \sum_{s} x^{s^2} \right) \, .$$

We replace each of the four $\sum s$ by a \prod using the JTI, setting z = 1 in \sum_s and z = x in $\sum_r (\frac{1}{2}$ gets cancelled by $1 + x^0$):

$$\prod (1 - x^{2n})(1 + x^{2n-1})^2 \cdot (1 + 4x\frac{d}{dx}) \prod (1 - x^{2n})(1 + x^{2n})^2$$

minus

$$\prod (1 - x^{2n})(1 + x^{2n})^2 \cdot 4x \frac{d}{dx} \prod (1 - x^{2n})(1 + x^{2n-1})^2 .$$

We differentiate the infinite products by means of the identity $(\prod f_n)' = \prod f_n \cdot \sum_{n=1}^{\infty} f'_n / f_n$ and, denoting $a = 1 + x^{2n}$, $b = 1 + x^{2n-1}$, $c = 1 - x^{2n}$ and taking out the factor $Q_n = (abc)^2$, get the expression

$$\prod Q_n \cdot \left[1 + 4x \sum_{n=1}^{\infty} \left(\frac{(a^2 c)'}{a^2 c} - \frac{(b^2 c)'}{b^2 c} \right) \right].$$

The last summand simplifies after an easy calculation to 2(a'/a - b'/b). We get the right side of 6.

 $\emptyset \rightsquigarrow 7$. We have

$$\prod Q_n = \prod (1 - x^{2n})^2 (1 + x^{2n})^2 (1 + x^{2n-1})^2 .$$

Since $1 - x^{2n} = (1 - x^n)(1 + x^n)$ and $\prod (1 + x^{2n})(1 + x^{2n-1}) = \prod (1 + x^n)$, regrouping gives the left side of 7.

It remains to prove the JTI

$$\prod (1 - x^{2n})(1 + zx^{2n-1})(1 + z^{-1}x^{2n-1}) = \sum z^n x^{n^2} \, .$$

We give a purely formal proof. Let S(z, x) be the product on the left side. It follows that

$$zx \cdot S(zx^2, x) = S(z, x) ,$$

because the substitution $z \mapsto zx^2$ almost preserves the two arithmetic progressions of odd positive integers in the two exponents of x: it just adds to S(z,x) the factor $(1 + z^{-1}x^{-1})/(1 + zx) = 1/zx$. Therefore if we expand S(z,x) in the integral powers of z as

$$S(z,x) = \sum a_n z^n = \sum a_n(x) z^n$$

(*n* runs through the whole \mathbb{Z}) with the power series coefficients $a_n \in \mathbb{C}[[x]]$, comparison of the coefficients of z^n on both sides of the functional equation gives the relation

$$x^{2n-1}a_{n-1} = a_n, \ n \in \mathbb{Z}$$

Thus $a_1 = xa_0 = a_{-1}$ (n = 1, 0), $a_2 = x^3a_1 = x^3a_{-1} = a_{-2}$ (n = 2, -1) and $a_2 = x^4a_0 = a_{-2}$. In general,

$$a_n = a_{-n} = x^{n^2} a_0, n = 1, 2, \dots$$

since $1 + 3 + 5 + \ldots + (2n - 1) = n^2$. (The equality $a_n = a_{-n}$ is immediate also from the symmetry $S(z, x) = S(z^{-1}, x)$.) So we have deduced that

$$S(z,x) = \prod (1-x^{2n})(1+zx^{2n-1})(1+z^{-1}x^{2n-1}) = a_0(x) \sum z^n x^{n^2}$$

and are almost done — it 'only' remains to be shown that $a_0 = 1$. This we prove by three specializations of the last identity (the JTI with the undetermined coefficient $a_0(x)$): (i) z = x = 0, (ii) z = i and (iii) $z = -1, x = x^4$. Then (i) gives that $a_0(0) = 1$, (ii) gives that

$$\prod (1 - x^{2n})(1 + x^{4n-2}) = a_0(x) \sum (-1)^n x^{(2n)^2}$$

and (iii) gives that

$$\prod (1 - x^{8n})(1 - x^{8n-4})^2 = a_0(x^4) \sum (-1)^n x^{4n^2} \, .$$

Clearly, the sums on the right sides are equal. So are the products on the left sides, despite appearance: since $\prod (1 - x^{8n})(1 - x^{8n-4}) = \prod (1 - x^{4n}), 1 - x^{8n-4} = (1 - x^{4n-2})(1 + x^{4n-2})$ and $\prod (1 - x^{4n})(1 - x^{4n-2}) = \prod (1 - x^{2n}),$ the product of (iii) equals to that of (ii). Hence the remaining factors have to be equal too, $a_0(x) = a_0(x^4)$, which forces that $a_0(x) = a_0(0) = 1$, as we needed to show. This completes the proof of the JTI and of Jacobi's four squares identity.

Exercise. Justify rigorously formal manipulations in the above proof. In particular, clarify in what sense does the formal equality

$$\prod (1 - x^{2n})(1 + zx^{2n-1})(1 + z^{-1}x^{2n-1}) = \sum a_n(x)z^n$$

hold and why it is preserved by the substitution $z \mapsto zx^2$.

References

- M. D. Hirschhorn, A simple proof of Jacobi's four-square theorem, Proc. Amer. Math. Soc. 101 (1987), 436–438.
- [2] C. G. J. Jacobi, *Fundamenta nova theoriae functionum ellipticarum*, Sumtibus fratrum, 1829.