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Abstract

An extremal problem considering sequences related to Davenport-Schinzel sequences is investigated in this
paper. We prove that f(xi
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k, n) = O(n) where the quantity on the left side is defined as the

maximum length m of the sequence u = a1a2..am of integers such that 1) 1 ≤ ar ≤ n, 2) ar = as, r 6= s
implies |r− s| ≥ k and 3) u contains no subsequence of the type xi
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k (xi stands for xx..x i-times).
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Introduction

In this paper we shall deal with finite sequences consisting of some symbols. S(u) denotes the set of all
symbols occuring in the sequence u = a1a2...am, |u| stands for its length (|u| = m) and ‖u‖ stands for the
cardinality of S(u). If ai = a ∈ S(u) then ai is called a-letter. That ai precedes aj (in u) means that i < j.
We write u ≤ v and say that the sequence v contains the sequence u if some subsequence w of v differs
from u only in names of symbols (in particular |w| = |u| and ‖w‖ = ‖u‖). Example: u1 = 1232454 contains
v1 = xxyy (here x, y were renamed to 2,4). The k-regularity of u = a1a2...am means that ai = aj , i 6= j
implies |i− j| ≥ k. Example: v1 above is not 2-regular, u1 is but is not 3-regular. The maximum length of
sequences not containing a given (forbidden) sequence u is measured by the function

f(u, n) = max{|v| | u 6≤ v, ‖v‖ ≤ n, v is ‖u‖-regular}.

We shall show below that the maximum is defined correctly.

The first problem considering f(u, n) was posed by Davenport and Schinzel [DS] in 1965 when they asked
about the asymptotic growth of F = f(ababa, n) and in general of f(ababab . . . , n). They proved F =
O(n log n/ log log n). This was later improved by Szemerédi [Sz] to O(n log∗ n) (for any of those functions,

log∗ n is the minimum number of 2’s in 22..
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making this tower greater or equal to n) but whether F = O(n)
remained unclear. Hart and Sharir [HS] answered this question negatively: F = Θ(nα(n)) where α(n) is
the functional inverse to the Ackermann function and goes to infinity but very slowly. Recently both sharp
upper and lower bounds on the functions f(ababab . . . , n) were found [ASS], [S].

The aim of this paper is to give (linear) upper bounds for extremal functions of forbidden sequences a(i, k) =
xi
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k. Here xj are k distinct symbols and xi stands for xx..x i times. The main result is the

estimate f(a(i, k), n) = O(n).The sequences with a linear upper bound form the set

Lin = {u | f(u, n) = O(n)}

and our result may be reformulated as xi
1x

i
2...x

i
kxi

1x
i
2...x

i
k ∈ Lin. It generalizes the result aibiaibi ∈ Lin

achieved in [AKV]. Finding all elements of Lin seems to be an interesting and not an easy problem (see
concluding remarks).

The linearity of a(i, k) is derived from two statements—Theorem A and Theorem B—which are perhaps of
some independent interest.

1)The symbols a, b are called l-good in the sequence u if at most l b-letters lie between the first a-letter and
the last a-letter or vice versa. A k-regular sequence u is called l-mixed if there are two l-good symbols a, b
among every k elements of S(u).Theorem A states |u| = O(‖u‖) for such u. In fact we prove something
stronger.

2) We write u ≤≤ v if v contains u in all possible ways, i.e. if u ≤ w for any w obtained from v by restricting
v on some ‖u‖ symbols. Suppose i, k are given. Theorem B says that a(i, k) ≤ u whenever ‖u‖ is large and
alblalbl ≤≤ u for large l.

The plan of the paper is as follows. In the first section we recall definitions and introduce several new ones.
Then we derive a(i, k) ∈ Lin from 1) and 2) and prove several auxiliary but useful lemmas. In the second
section results related to 1) are proved. The proof of 2), which is technical, may be found in the third section.
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Section 1

Definition 1.1 Suppose that there are two l-good symbols a, b among every m symbols of a sequence u. This
means that at most l b-letters occur between the first a-letter and the last a-letter or vice versa. In such a
situation u is called (m, l)-mixed (m ≥ 2, l ≥ 0).

Definition 1.2 A sequence u is called weakly (m, l)-mixed (m ≥ 2, l ≥ 0) if the sequence u∗ is (m, l)-mixed.
The sequence u∗ is obtained from u by deleting all l-outer letters. A letter in u is l-outer if belongs to the
first l or to the last l x-letters for some x ∈ S(u).

In case u is k-regular and m = k we shall say simply that u is (weakly) l-mixed.

Definition 1.3We say that a letter ai may be c-deleted from a k-regular sequence u = a1a2...am if it is
possible to delete ai with at most c − 1 other letters in such a way that the remaining sequence is still
k-regular.

It may be easily seen that any letter may be 2-deleted from any 2-regular sequence. It is not the case for
three- and more regular sequences: in the sequence

...xyzxyzxyzayxzyxzyxz...

which is 3-regular it is impossible to delete the single a-letter and to preserve 3-regularity without deleting
many x, y, z-letters. We shall see below that under the condition of not containing a forbidden sequence
c-deleting is possible for general k-regularity.

Definition 1.4 We define a greedy algorithm A(k) that choses from a given sequence u = a1a2...am a k-
regular subsequence v in the following way. At first v = a1 and i = 1. Let j be a minimum integer with
respect to j > i, vaj is k-regular. If such j exists then we put v = vaj, i = j and repeat. Otherwise the
algorithm terminates. Observe that ‖I‖ ≤ k − 1 for any interval I in u such that I ∩ v = ∅.

Theorem A Let m ≥ k ≥ 2, l ≥ 0 be integers and let u, k ≥ ‖u‖ be a sequence. Suppose the sequence v is
k-regular, weakly (m, l)-mixed and u 6≤ v. Then |v| ≤ c‖v‖ where the constant c = c(k, l,m, u) depends on
the indicated parameters.

Recall that u ≤≤ v means that for any S ⊂ S(v), |S| = ‖u‖ there is a u-copy ū in v such that S(ū) = S.

Theorem B For all positive integers i and k there exist integers n and l such that a(i, k) ≤ u whenever
‖u‖ ≥ n and xlylxlyl ≤≤ u.

To derive the main result from Theorem A and Theorem B one more lemma is needed.

Lemma 1.5
a) If x2l+1y2l+1x2l+1y2l+1 ≤≤ u then u is not weakly (‖u‖, l)-mixed.
b) If u is not weakly (‖u‖, l)-mixed then xmymxmym ≤≤ u where m = [(l + 1)/2].
c) If a(2l + 1, k) ≤ u then u is not weakly (k, l)-mixed.

Proof: Both a) and c) follow immediately from definitions. We prove b). Suppose u is not weakly (‖u‖, l)-
mixed and a, b ∈ S(u) are two distinct symbols. The violation of the weak mixness on a, b means that there
are two intervals v and w in u such that v starts and finishes with an a-letter, w starts and finishes with an
b-letter, the first letter of v precedes the first letter of w, v contains at least l + 1 b-letters, w contains at
least l + 1 a-letters, neither the first nor the last letter of v belongs to the l-outer a-letters and similarily for
w. We split v = v1v2 in such a way that either vi contains m b-letters. If there are at least m a-letters in
the intersection v1 ∩w then l b-letters lie before w, m a-letters lie in v1 ∩w, m b-letters lie in v2 and finally
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l a-letters lie after v—bmambmam ≤ u. Otherwise there are l a-letters before v, m b-letters lie in v1, the
remaining at least m a-letters lie in w and finally l b-letters lie after w—ambmambm ≤ u.

♥

Theorem 1.6 (main result) a(i, k) ∈ Lin.

Proof: Let v be a k-regular sequence not containing a(i, k). We show that v satisfies the hypothesis of
Theorem A for parameters m = n(i, k), k = k, l = 2l(i, k), u = a(i, k) where l(i, k) and n(i, k) are the
integers of Theorem B. Suppose on the contrary that v is not weakly (m, l)-mixed. Then according to
Lemma 1.5 b) there exists a subsequence w of v such that ‖w‖ = n(i, k) and xl(i,k)yl(i,k)xl(i,k)yl(i,k) ≤≤ w.
Theorem B yields a(i, k) ≤ w which is a contradiction. Thus, according to Theorem A, |v| ≤ c‖v‖, c = c(i, k).

♥

In the rest of Section 1 we prove four auxiliary lemmas which will be needed in the following sections.

Lemma 1.7 Consider a generalization of the function f(u, n)

f(u, n, l) = max{|v| | u 6≤ v, ‖v‖ ≤ n, v is l-regular}.

a) f(u, n, l) is finite for any sequence u and all integers n ≥ 1, l ≥ ‖u‖.
b) f(u, n, l) ≤ f(u, n, k) ≤ (1+ f(u, l− 1, k))f(u, n, l) for any sequence u and all integers n ≥ 1, l > k ≥ ‖u‖.

Proof of a): If 1 ≤ n < l then trivially f(u, n, l) ≤ n. Let n ≥ l. We prove u ≤ v whenever v is l-regular,
‖v‖ ≤ n and |v| ≥ ‖u‖(1 +

(
n
‖u‖

)
(|u| − 1)). Let v = v1v2..vcw where |vi| = ‖vi‖ = ‖u‖, c =

(
n
‖u‖

)
(|u| − 1) + 1.

The Dirichlet principle implies S(vi1) = S(vi2) = ... = S(vi|u|) for some |u| indices 1 ≤ i1 < i2 < ... < i|u| ≤ c.
Thus u ≤ vi1vi2 ...vi|u| .
Proof of b): The first inequality is obvious. We prove the second one. Suppose v = a1a2...am is k-regular,
u 6≤ v and ‖v‖ ≤ n. It suffices to apply the greedy algorithm A(l) on v. We obtain an l-regular subsequence
v∗ of v such that |v| ≤ |v∗|(1 + f(u, l − 1, k)) because ‖I‖ ≤ l − 1 for any interval I in v omitted by A(l).
Hence |v| ≤ (1 + f(u, l − 1, k))f(u, n, l) .

♥

Lemma 1.8 Suppose v is k-regular, v 6≥ u and k ≥ ‖u‖. Then any letter may be c = c(k, u)-deleted from v.

Proof: One can assume |v| ≥ 2k − 1 + f(u, 3k − 3, k). Consider the partition v = v1v2v3v4v5 where
|v2| = ‖v2‖ = |v4| = ‖v4‖ = k−1, the letter ai choosen to be deleted occurs in v3 and |v3| = f(u, 3k−3, k)+1.
Hence ‖v3‖ ≥ 3k − 2 and there are k − 1 symbols S ⊂ S(v3) such that S ∩ ({ai} ∪ S(v2) ∪ S(v4)) = ∅. We
choose such k − 1 letters b1, b2, ..., bk−1 in v3 that {b1, b2, ..., bk−1} = S and delete from v3 all other letters
(i.e. we delete exactly f(u, 3k − 3, k) + 2− k letters). What remains is still a k-regular sequence.

♥

Lemma 1.9 Suppose v is k-regular and weakly l-mixed. Then any letter may be c = c(k, l)-deleted from v.

Proof: According to Lemma 1.5 c) a(2l + 1, k) 6≤ v and the previous lemma applies.
♥

Lemma 1.10 Let k, l ≥ 2 be integers and let u be a k-regular sequence. Then there exists a subsequence v of
u such that
1) v is k-regular,
2) between any two x-letters in v there are at least l − 1 x-letters in u and
3) |v| ≥ |u| 1

k2l(l−1)+kl .

Proof: Let ax
1 , ax

2 , ... be all x-letters in u numerated from left to right for all x ∈ S(u). The sequence u∗

is defined as consisting of those ax
i that i ≡ 1(mod l). The desired sequence v is obtained from u∗ by the
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greedy algorithm A(k). The sequence v posesses obviously properties 1) and 2). It remains to prove that v is
sufficiently long. We define S as the set of all intervals in u∗ into which v divides u∗. Let I ∈ S. We decompose
I = JIKI = I1I2...IpKI , |Ii| = k, |KI | ≤ k−1. The definition of A(k) yields ‖I‖ ≤ k−1. Thus in any Ii some
symbol repeats. The construction of u∗ implies that there are another l − 1 letters of that symbol between
those two letters in u. But u is k-regular so together there are at least p(kl − 1− (k − 2)) = p(k(l − 1) + 1)
letters in u\u∗ between the first and the last letter of JI . If we denote the set of those letters as RI ⊂ (u\u∗)
then

|JI | = pk ≤ |RI |
k

k(l − 1) + 1
.

The union L of all JI and the union M of all KI , I ∈ S form a partition u∗ = v ∪ L ∪ M . Obviously
|u∗| ≥ 1

l |u| and |u\u∗| ≤ l−1
l |u|. Thus

|L| ≤ k

k(l − 1) + 1
ΣI∈S |RI | ≤

k

k(l − 1) + 1
|u\u∗| ≤ k

k(l − 1) + 1
l − 1

l
|u|.

Further

|M ∪ v| = |u∗| − |L| ≥ 1
l
|u| − k

k(l − 1) + 1
l − 1

l
|u| = 1

kl(l − 1) + l
|u|.

The mapping that maps KI on the precedessor (in u∗) of the first letter of I is an injection from {KI | I ∈ S}
to v and |KI | ≤ k − 1 for all I. Therefore k|v| ≥ |M ∪ v| and

|v| ≥ |u| 1
k2l(l − 1) + kl

.

♥

Lemma 1.8 and Lemma 1.10 have interesting consequences for the structure of Lin—see the concluding
remarks.

Section 2

In this section Theorem A will be proved.

Theorem 2.1 Any k-regular and 1-mixed sequence w satisfies |w| ≤ (k2 + k)‖w‖+ k.

Proof: Let us take such a w. Suppose the pair of symbols a, b ∈ S(w) is 1-good. There are exactly five
possible configurations in which all a-letters and b-letters in w may lie (we restrict w to {a, b}):

a) a...ab...b b) a...ab...ba...a c) a...ab...bab...ba...a d) a...ab...bab...b and e) a...aba...ab...b.

Here a...a stands for ai, i ≥ 1 and the first a-letter is supposed to precede the first b-letter. The situation
c) is denoted as a > b and the central a-letter as a(b). In order to estrimate |w| we estimate the number p
in the splitting w = w1w2...wpv where |wi| = k and |v| ≤ k − 1. Some two symbols x, y ∈ S(wi) must be
1-good for any wi. Thus (see the configurations a)–e)) any wi contains the first letter of some symbol or
contains the last letter of some symbol or contains an element of the set M = {a(b) | a, b ∈ S(w), a > b} (in
the worst c) case). Obviously

|w| ≤ pk + k − 1 < k(p + 1) ≤ k(2‖w‖+ |M |+ 1)

and it suffices to estimate the size of M .
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For this purpose we define a mapping F that maps M into the set of all last letters in w. We put F (a0) =
the last element of {b0 | b0 is the last b-letter, a > b, a0 = a(b)}. We prove |F−1(b0)| ≤ k − 1 for any last
b-letter b0, b ∈ S(w). If it is done we conclude —

|w| ≤ k(2‖w‖+ |M |+ 1) ≤ k(2‖w‖+ (k − 1)‖w‖+ 1) = k(k + 1)‖w‖+ k.

Suppose on the contrary that F (x̄1) = F (x̄2) = ... = F (x̄k) = ȳ where x̄i is an xi-letter, ȳ is the last
y-letter, xi and y are k + 1 different symbols, xi > y and x̄i = xi(y). Some two symbols of x1, x2, ..., xk

must be 1-good. Thus xr > xs for some r, s because only c) can occur. It may be easily checked that
x̄r = xr(y) = xr(xs) which is a contradiction with the definition of F because ȳ precedes the last xs-letter.

♥

The estimate in Lemma 2.1 may be slightly improved:
a) Even |M | ≤ (k − 1)(‖w‖ − 1) because F−1(the end of w) = ∅. Using this idea we obtain |M | ≤ (k −
1)‖w‖ − ((k − 1) + (k − 2) + ... + 1) = (k − 1)(‖w‖ − k

2 ).
b) 2‖w‖ in |w| ≤ k(2‖w‖+ |M |)+ |v| may be replaced by 2‖w‖− |v| (any letter of v is the last letter of some
symbol).
Thus one can do better a bit: |w| ≤ k(k + 1)‖w‖ − 1

2k2(k − 1), (‖w‖ ≥ k).

Theorem 2.2
a) Any k-regular and l-mixed sequence w satisfies |w| ≤ k2(k + 1)l(k(l − 1) + 1)‖w‖.
b) Any k-regular and weakly l-mixed sequence w satisfies |w| ≤ c‖w‖ where c = c(k, l).

Proof of a): We apply on w Lemma 1.10. The obtained subsequence v is k-regular and according to 2)
of Lemma 1.10 also 1-mixed. The upper bound on |w| is consequence of the previous theorem and of 3) of
Lemma 1.10.
Proof of b): According to Lemma 1.9 any l-outer letter of w can be d = d(k, l)-deleted. The remaining
sequence v is k-regular and l-mixed. According to a) |w| ≤ 2dl‖w‖+ |v| ≤ 2dl‖w‖+k2(k+1)l(k(l−1)+1)‖v‖
and b) follows.

♥

It is possible (but it costs some effort) to prove Theorem 2.2 a) like Theorem 2.1 and to avoid using Lemma
1.10. A substantially better constant in the linear upper bound on |w| is obtained in this way — O(k2l)
instead of O(k4l2).

Theorem A Let m ≥ k ≥ 2, l ≥ 0 be integers and let u be a sequence such that k ≥ ‖u‖. Suppose v is
weakly (m, l)-mixed, k-regular and u 6≤ v. Then |v| ≤ c‖v‖ where c = c(k, l,m, u).

Proof: According to Lemma 1.7 b) (now u 6≤ v is used) it does not matter (up to the constant in O) what
regularity number k is choosen on beginning. For an m-regular sequence v the statement reduces to the
previous theorem b).

♥

Section 3

Here Theorem B will be proved.

Denote by R(r, n) the minimal N such that any colouring of two–term subsets of an N–term set S by r
colours yields a monochromatic n–term subset of S (see [GRS]).

Lemma 3.1 Suppose that xlylxlyl is a subsequence of w = w1w2w3. Then yl is a subsequence of w1 or xl

is a subsequence of w2 or yl is a subsequence of w3.
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Proof: Obvious. ♥

Lemma 3.2 Suppose w contains m + 1 x-letters and m + 1 y-letters x0, x1, ..., xm, y0, y1, ..., ym enumerated
from left to right and x0 precedes y0. Let m = 2i(k − 1). Then one of a)–d) holds.
a) x(a+1)i precedes yai for some a ∈ {0, 1, .., 2k − 2}
b) y(a+1)i precedes xai for some a ∈ {0, 1, .., 2k − 2}
c) xa1 precedes ya1 precedes xa2 ...xak

precedes yak
for some indices 0 ≤ a1 < a2 < . . . < ak ≤ 2k − 2

d) ya1 precedes xa1 precedes ya2 ...yak
precedes xak

for some indices 0 ≤ a1 < a2 < . . . < ak ≤ 2k − 2

Proof: If neither a) nor b) holds for any a ∈ {0, 1, ..., 2k − 2} then x0, y0 precede xi, yi precede...precede
x(2k−2)i, y(2k−2)i and c) or d) occurs for some k indices.

♥

The number of all mutual configurations (with respect to preceding) of the x-letters and y-letters in the
situation in Lemma 3.2 is equal to pm =

(
2m+1
m+1

)
. Suppose that there are k symbols 1x, 2x, ..., kx in Lemma

3.2 instead of two and that m = 2(i− 1)(ik− 1). Suppose further that 1x0 precedes 2x0 ...precedes kx0 and
that the configuration of ax and bx is the same for all

(
k
2

)
pairs 1 ≤ a < b ≤ k. Then it is not difficult to see

that either 1xi 2xi...kxi or kxi k−1xi...1xi is a subsequence of w (apply on that configuration Lemma 3.2 ).

Theorem B For any positive integers i and k there exist integers n and l such that a(i, k) ≤ w whenever
‖w‖ ≥ n and xlylxlyl ≤≤ w.

Proof: It suffices to put n = R(2p2
m, h), l = m+1 = 1+2(i−1)(hi−1), h = 6R(2pr, k)−3, r = 2(i−1)(ki−1).

We split w = w1w2 so that any x ∈ S(w) has l letters in both w1, w2 (we split w in the last l-th letter).
The

(
n
2

)
pairs {x, y} ⊂ S(w) are coloured by 2p2

m colours according to their configurations in w1 and w2 and
according to the position of their first letters in w1 and w2. The h-term monochromatic subset S ⊂ S(w),
S = {1x, 2x, ..., hx}, 1x0 precedes 2x0...precedes hx0 (in w1, in w2 they may be in the opposite order) ensured
by Ramsey theorem implies (according to the consideration above) that 1xi 2xi...hxi or hxi h−1xi...1xi is a
subsequence in both w1, w2. One can suppose 1xi 2xi...hxi hxi...2xi 1xi is a subsequence in w (one of the
remaining three cases is treated similarily and in remaining two we are done). We denote that subsequence
as K and define g = h−1

2 . We split w on three parts w = v1v2v3 so that the beginning of v2 is one of the
g+1x-letters in the first half of K and the end of v2 is one of the g+1x-letters in the second half of K. Now
Lemma 3.1 on every pair of symbols (1x, hx), (2x, h−1x), ..., (gx, g+2x) is applied (ix with small left upper
indices play the role of x in Lemma 3.1 and those with large ones play the role of y). One of the cases of
Lemma 3.1 occurs for at least d g

3e = R(2pr, k) pairs (ix, h−i+1x), i ∈ I ⊂ {1, ..., g}. One can suppose it is
the second one (remaining two are treated analogously). It means that ixr+1 (even ixl) is a subsequence of
v2 for any i ∈ I, |I| ≥ R(2pr, k). We colour pairs of { ix | i ∈ I} by 2pr colours (configuration and position
of their first letters) and apply Ramsey theorem again. According to the above consideration applied on the
k-term monochromatic set of symbols i1xi i2xi...ikxi or ikxi ik−1xi...i1xi is a subsequence of v2 for some (k
symbols) {i1 < i2 < . . . < ik} ⊂ I. These letters together with the first and with the last fourth of K (which
lie in v1 and in v3) give a(i, k) ≤ w.

♥

Concluding remarks

Our proof of a(i, k) ∈ Lin is just a step in finding all elements of Lin. For two–symbol sequences the
results aibiaibi ∈ Lin ([AKV]) and ababa 6∈ Lin ([HS]) yields the equivalence u ∈ Lin iff ababa 6≤ u.
This is not the case for a general sequence u because the construction in [WS] realizing the lower bound
f(ababa, n) = Ω(n.α(n)) by segments in the plane proves also implicitly u1 = abcbadadbcd 6∈ Lin (and
ababa 6≤ u1). Define the function

f(n) = max{|v| | v ∈ Lin, ‖v‖ ≤ n, v is 2-regular}.
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Clearly f(n) ≤ f(ababa, n) = O(nα(n)).

Problem 1 Does f(n) = O(n) hold?

A simple consequence of Lemma 1.8 is that ua ∈ Lin inplies uak ∈ Lin for any sequence u, symbol a
and natural number k (similarily for au). In the same manner we can easily derive from Lemma 1.10 that
ua2v ∈ Lin implies uakv ∈ Lin for any sequences u, v, natural number k and symbol a. Analogously if
we consider general sequences, not only linear—the change of exponents in the described manner does not
change the growth rate of f(u, n).

Problem 2 Does uav ∈ Lin imply ua2v ∈ Lin in any case? Does in general f(ua2v, n) = O(f(uav, n))
hold? Except, of course, for uav without repetitions when f(uav, n) is constant.

Problem 3 Does babcbcac ∈ Lin hold?

Problem 4 How many minimum (to ≤) nonlinear sequences there are? From the above comment it follows
that beside ababa there is at least one such an element.
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