A Linear Upper Bound in Extremal Theory of Sequences

Martin Klazar
Department of Applied Mathematics
Charles University
Malostranské nám. 25
11800 Praha 1
Czech republic

Abstract

An extremal problem considering sequences related to Davenport-Schinzel sequences is investigated in this paper. We prove that $f\left(x_{1}^{i} x_{2}^{i} . . x_{k}^{i} x_{1}^{i} x_{2}^{i} . . x_{k}^{i}, n\right)=O(n)$ where the quantity on the left side is defined as the maximum length m of the sequence $u=a_{1} a_{2} . . a_{m}$ of integers such that 1) $\left.1 \leq a_{r} \leq n, 2\right) a_{r}=a_{s}, r \neq s$ implies $|r-s| \geq k$ and 3) u contains no subsequence of the type $x_{1}^{i} \ldots x_{k}^{i} x_{1}^{i} \ldots x_{k}^{i}$ (x^{i} stands for $x x$.. $x i$-times).

Introduction

In this paper we shall deal with finite sequences consisting of some symbols. $S(u)$ denotes the set of all symbols occuring in the sequence $u=a_{1} a_{2} \ldots a_{m},|u|$ stands for its length $(|u|=m)$ and $\|u\|$ stands for the cardinality of $S(u)$. If $a_{i}=a \in S(u)$ then a_{i} is called a-letter. That a_{i} precedes a_{j} (in u) means that $i<j$. We write $u \leq v$ and say that the sequence v contains the sequence u if some subsequence w of v differs from u only in names of symbols (in particular $|w|=|u|$ and $\|w\|=\|u\|$). Example: $u_{1}=1232454$ contains $v_{1}=x x y y$ (here x, y were renamed to 2,4). The k-regularity of $u=a_{1} a_{2} \ldots a_{m}$ means that $a_{i}=a_{j}, i \neq j$ implies $|i-j| \geq k$. Example: v_{1} above is not 2-regular, u_{1} is but is not 3 -regular. The maximum length of sequences not containing a given (forbidden) sequence u is measured by the function

$$
f(u, n)=\max \{|v| \mid u \notin v,\|v\| \leq n, v \text { is }\|u\| \text {-regular }\} .
$$

We shall show below that the maximum is defined correctly.
The first problem considering $f(u, n)$ was posed by Davenport and Schinzel [DS] in 1965 when they asked about the asymptotic growth of $F=f(a b a b a, n)$ and in general of $f(a b a b a b \ldots, n)$. They proved $F=$ $O(n \log n / \log \log n)$. This was later improved by Szemerédi $[\mathrm{Sz}]$ to $O\left(n \log ^{*} n\right)$ (for any of those functions, $\log ^{*} n$ is the minimum number of 2's in $2^{2}{ }^{2}$ making this tower greater or equal to n) but whether $F=O(n)$ remained unclear. Hart and Sharir [HS] answered this question negatively: $F=\Theta(n \alpha(n))$ where $\alpha(n)$ is the functional inverse to the Ackermann function and goes to infinity but very slowly. Recently both sharp upper and lower bounds on the functions $f(a b a b a b \ldots, n)$ were found [ASS], [S].

The aim of this paper is to give (linear) upper bounds for extremal functions of forbidden sequences $a(i, k)=$ $x_{1}^{i} x_{2}^{i} \ldots x_{k}^{i} x_{1}^{i} x_{2}^{i} \ldots x_{k}^{i}$. Here x_{j} are k distinct symbols and x^{i} stands for $x x . . x i$ times. The main result is the estimate $f(a(i, k), n)=O(n)$.The sequences with a linear upper bound form the set

$$
\operatorname{Lin}=\{u \mid f(u, n)=O(n)\}
$$

and our result may be reformulated as $x_{1}^{i} x_{2}^{i} \ldots x_{k}^{i} x_{1}^{i} x_{2}^{i} \ldots x_{k}^{i} \in$ Lin. It generalizes the result $a^{i} b^{i} a^{i} b^{i} \in \operatorname{Lin}$ achieved in [AKV]. Finding all elements of Lin seems to be an interesting and not an easy problem (see concluding remarks).

The linearity of $a(i, k)$ is derived from two statements-Theorem A and Theorem B-which are perhaps of some independent interest.
1)The symbols a, b are called l-good in the sequence u if at most $l b$-letters lie between the first a-letter and the last a-letter or vice versa. A k-regular sequence u is called l-mixed if there are two l-good symbols a, b among every k elements of $S(u)$.Theorem A states $|u|=O(\|u\|)$ for such u. In fact we prove something stronger.
2) We write $u \leq \leq v$ if v contains u in all possible ways, i.e. if $u \leq w$ for any w obtained from v by restricting v on some $\|u\|$ symbols. Suppose i, k are given. Theorem B says that $a(i, k) \leq u$ whenever $\|u\|$ is large and $a^{l} b^{l} a^{l} b^{l} \leq \leq u$ for large l.

The plan of the paper is as follows. In the first section we recall definitions and introduce several new ones. Then we derive $a(i, k) \in \operatorname{Lin}$ from 1) and 2) and prove several auxiliary but useful lemmas. In the second section results related to 1) are proved. The proof of 2), which is technical, may be found in the third section.

Definition 1.1 Suppose that there are two l-good symbols a, b among every m symbols of a sequence u. This means that at most l b-letters occur between the first a-letter and the last a-letter or vice versa. In such a situation u is called (m, l)-mixed $(m \geq 2, l \geq 0)$.

Definition 1.2 A sequence u is called weakly (m, l)-mixed ($m \geq 2, l \geq 0$) if the sequence u^{*} is (m, l)-mixed. The sequence u^{*} is obtained from u by deleting all l-outer letters. A letter in u is l-outer if belongs to the first l or to the last l x-letters for some $x \in S(u)$.

In case u is k-regular and $m=k$ we shall say simply that u is (weakly) l-mixed.
Definition 1.3 We say that a letter a_{i} may be c-deleted from a k-regular sequence $u=a_{1} a_{2} \ldots a_{m}$ if it is possible to delete a_{i} with at most $c-1$ other letters in such a way that the remaining sequence is still k-regular.

It may be easily seen that any letter may be 2-deleted from any 2-regular sequence. It is not the case for three- and more regular sequences: in the sequence
...xyzxyzxyzayxzyxzyxz...
which is 3 -regular it is impossible to delete the single a-letter and to preserve 3-regularity without deleting many x, y, z-letters. We shall see below that under the condition of not containing a forbidden sequence c-deleting is possible for general k-regularity.

Definition 1.4 We define a greedy algorithm $A(k)$ that choses from a given sequence $u=a_{1} a_{2} \ldots a_{m} a k$ regular subsequence v in the following way. At first $v=a_{1}$ and $i=1$. Let j be a minimum integer with respect to $j>i, v a_{j}$ is k-regular. If such j exists then we put $v=v a_{j}, i=j$ and repeat. Otherwise the algorithm terminates. Observe that $\|I\| \leq k-1$ for any interval I in u such that $I \cap v=\emptyset$.

Theorem A Let $m \geq k \geq 2, l \geq 0$ be integers and let $u, k \geq\|u\|$ be a sequence. Suppose the sequence v is k-regular, weakly (m, l)-mixed and $u \not \leq v$. Then $|v| \leq c\|v\|$ where the constant $c=c(k, l, m, u)$ depends on the indicated parameters.

Recall that $u \leq \leq v$ means that for any $S \subset S(v),|S|=\|u\|$ there is a u-copy \bar{u} in v such that $S(\bar{u})=S$.
Theorem B For all positive integers i and k there exist integers n and l such that $a(i, k) \leq u$ whenever $\|u\| \geq n$ and $x^{l} y^{l} x^{l} y^{l} \leq \leq u$.

To derive the main result from Theorem A and Theorem B one more lemma is needed.

Lemma 1.5

a) If $x^{2 l+1} y^{2 l+1} x^{2 l+1} y^{2 l+1} \leq \leq u$ then u is not weakly $(\|u\|, l)$-mixed.
b) If u is not weakly $(\|u\|, l)$-mixed then $x^{m} y^{m} x^{m} y^{m} \leq \leq u$ where $m=[(l+1) / 2]$.
c) If $a(2 l+1, k) \leq u$ then u is not weakly (k, l)-mixed.

Proof: Both a) and c) follow immediately from definitions. We prove b). Suppose u is not weakly ($\|u\|, l)-$ mixed and $a, b \in S(u)$ are two distinct symbols. The violation of the weak mixness on a, b means that there are two intervals v and w in u such that v starts and finishes with an a-letter, w starts and finishes with an b-letter, the first letter of v precedes the first letter of w, v contains at least $l+1 b$-letters, w contains at least $l+1 a$-letters, neither the first nor the last letter of v belongs to the l-outer a-letters and similarily for w. We split $v=v_{1} v_{2}$ in such a way that either v_{i} contains $m b$-letters. If there are at least $m a$-letters in the intersection $v_{1} \cap w$ then $l b$-letters lie before $w, m a$-letters lie in $v_{1} \cap w, m b$-letters lie in v_{2} and finally
$l a$-letters lie after $v-b^{m} a^{m} b^{m} a^{m} \leq u$. Otherwise there are $l a$-letters before $v, m b$-letters lie in v_{1}, the remaining at least $m a$-letters lie in w and finally $l b$-letters lie after $w-a^{m} b^{m} a^{m} b^{m} \leq u$.

Theorem 1.6 (main result) $a(i, k) \in \operatorname{Lin}$.
Proof: Let v be a k-regular sequence not containing $a(i, k)$. We show that v satisfies the hypothesis of Theorem A for parameters $m=n(i, k), k=k, l=2 l(i, k), u=a(i, k)$ where $l(i, k)$ and $n(i, k)$ are the integers of Theorem B. Suppose on the contrary that v is not weakly (m, l)-mixed. Then according to Lemma 1.5 b) there exists a subsequence w of v such that $\|w\|=n(i, k)$ and $x^{l(i, k)} y^{l(i, k)} x^{l(i, k)} y^{l(i, k)} \leq \leq w$. Theorem B yields $a(i, k) \leq w$ which is a contradiction. Thus, according to Theorem A, $|v| \leq c\|v\|, c=c(i, k)$.

In the rest of Section 1 we prove four auxiliary lemmas which will be needed in the following sections.
Lemma 1.7 Consider a generalization of the function $f(u, n)$

$$
f(u, n, l)=\max \{|v| \mid u \not \leq v,\|v\| \leq n, v \text { is l-regular }\} .
$$

a) $f(u, n, l)$ is finite for any sequence u and all integers $n \geq 1, l \geq\|u\|$.
b) $f(u, n, l) \leq f(u, n, k) \leq(1+f(u, l-1, k)) f(u, n, l)$ for any sequence u and all integers $n \geq 1, l>k \geq\|u\|$.

Proof of a): If $1 \leq n<l$ then trivially $f(u, n, l) \leq n$. Let $n \geq l$. We prove $u \leq v$ whenever v is l-regular, $\|v\| \leq n$ and $|v| \geq\|u\|\left(1+\binom{n}{\|u\|}(|u|-1)\right)$. Let $v=v_{1} v_{2} . . v_{c} w$ where $\left|v_{i}\right|=\left\|v_{i}\right\|=\|u\|, c=\binom{n}{\|u\|}(|u|-1)+1$. The Dirichlet principle implies $S\left(v_{i_{1}}\right)=S\left(v_{i_{2}}\right)=\ldots=S\left(v_{i_{|u|}}\right)$ for some $|u|$ indices $1 \leq i_{1}<i_{2}<\ldots<i_{|u|} \leq c$. Thus $u \leq v_{i_{1}} v_{i_{2}} \ldots v_{i_{|u|}}$.
Proof of b): The first inequality is obvious. We prove the second one. Suppose $v=a_{1} a_{2} \ldots a_{m}$ is k-regular, $u \not \leq v$ and $\|v\| \leq n$. It suffices to apply the greedy algorithm $A(l)$ on v. We obtain an l-regular subsequence v^{*} of v such that $|v| \leq\left|v^{*}\right|(1+f(u, l-1, k))$ because $\|I\| \leq l-1$ for any interval I in v omitted by $A(l)$. Hence $|v| \leq(1+f(u, l-1, k)) f(u, n, l)$.

Lemma 1.8 Suppose v is k-regular, $v \nsupseteq u$ and $k \geq\|u\|$. Then any letter may be $c=c(k, u)$-deleted from v.
Proof: One can assume $|v| \geq 2 k-1+f(u, 3 k-3, k)$. Consider the partition $v=v_{1} v_{2} v_{3} v_{4} v_{5}$ where $\left|v_{2}\right|=\left\|v_{2}\right\|=\left|v_{4}\right|=\left\|v_{4}\right\|=k-1$, the letter a_{i} choosen to be deleted occurs in v_{3} and $\left|v_{3}\right|=f(u, 3 k-3, k)+1$. Hence $\left\|v_{3}\right\| \geq 3 k-2$ and there are $k-1$ symbols $S \subset S\left(v_{3}\right)$ such that $S \cap\left(\left\{a_{i}\right\} \cup S\left(v_{2}\right) \cup S\left(v_{4}\right)\right)=\emptyset$. We choose such $k-1$ letters $b_{1}, b_{2}, \ldots, b_{k-1}$ in v_{3} that $\left\{b_{1}, b_{2}, \ldots, b_{k-1}\right\}=S$ and delete from v_{3} all other letters (i.e. we delete exactly $f(u, 3 k-3, k)+2-k$ letters). What remains is still a k-regular sequence.

Lemma 1.9 Suppose v is k-regular and weakly l-mixed. Then any letter may be $c=c(k, l)$-deleted from v.
Proof: According to Lemma 1.5 c) $a(2 l+1, k) \not \leq v$ and the previous lemma applies.

Lemma 1.10 Let $k, l \geq 2$ be integers and let u be a k-regular sequence. Then there exists a subsequence v of u such that

1) v is k-regular,
2) between any two x-letters in v there are at least $l-1 x$-letters in u and
3) $|v| \geq|u|_{\frac{1}{k^{2} l(l-1)+k l}}$.

Proof: Let $a_{1}^{x}, a_{2}^{x}, \ldots$ be all x-letters in u numerated from left to right for all $x \in S(u)$. The sequence u^{*} is defined as consisting of those a_{i}^{x} that $i \equiv 1(\bmod l)$. The desired sequence v is obtained from u^{*} by the
greedy algorithm $A(k)$. The sequence v posesses obviously properties 1$)$ and 2$)$. It remains to prove that v is sufficiently long. We define S as the set of all intervals in u^{*} into which v divides u^{*}. Let $I \in S$. We decompose $I=J_{I} K_{I}=I_{1} I_{2} \ldots I_{p} K_{I},\left|I_{i}\right|=k,\left|K_{I}\right| \leq k-1$. The definition of $A(k)$ yields $\|I\| \leq k-1$. Thus in any I_{i} some symbol repeats. The construction of u^{*} implies that there are another $l-1$ letters of that symbol between those two letters in u. But u is k-regular so together there are at least $p(k l-1-(k-2))=p(k(l-1)+1)$ letters in $u \backslash u^{*}$ between the first and the last letter of J_{I}. If we denote the set of those letters as $R_{I} \subset\left(u \backslash u^{*}\right)$ then

$$
\left|J_{I}\right|=p k \leq\left|R_{I}\right| \frac{k}{k(l-1)+1} .
$$

The union L of all J_{I} and the union M of all $K_{I}, I \in S$ form a partition $u^{*}=v \cup L \cup M$. Obviously $\left|u^{*}\right| \geq \frac{1}{l}|u|$ and $\left|u \backslash u^{*}\right| \leq \frac{l-1}{l}|u|$. Thus

$$
|L| \leq \frac{k}{k(l-1)+1} \Sigma_{I \in S}\left|R_{I}\right| \leq \frac{k}{k(l-1)+1}\left|u \backslash u^{*}\right| \leq \frac{k}{k(l-1)+1} \frac{l-1}{l}|u| .
$$

Further

$$
|M \cup v|=\left|u^{*}\right|-|L| \geq \frac{1}{l}|u|-\frac{k}{k(l-1)+1} \frac{l-1}{l}|u|=\frac{1}{k l(l-1)+l}|u| .
$$

The mapping that maps K_{I} on the precedessor (in u^{*}) of the first letter of I is an injection from $\left\{K_{I} \mid I \in S\right\}$ to v and $\left|K_{I}\right| \leq k-1$ for all I. Therefore $k|v| \geq|M \cup v|$ and

$$
|v| \geq|u| \frac{1}{k^{2} l(l-1)+k l}
$$

Lemma 1.8 and Lemma 1.10 have interesting consequences for the structure of Lin-see the concluding remarks.

Section 2

In this section Theorem A will be proved.
Theorem 2.1 Any k-regular and 1-mixed sequence w satisfies $|w| \leq\left(k^{2}+k\right)\|w\|+k$.
Proof: Let us take such a w. Suppose the pair of symbols $a, b \in S(w)$ is 1-good. There are exactly five possible configurations in which all a-letters and b-letters in w may lie (we restrict w to $\{a, b\}$):
a) $a \ldots a b \ldots b$ b) $a \ldots a b \ldots b a \ldots a$ c) $a \ldots a b \ldots b a b \ldots b a \ldots a$
d) $a \ldots a b \ldots b a b \ldots b$ and e) $a \ldots a b a \ldots a b \ldots b$.

Here $a \ldots a$ stands for $a^{i}, i \geq 1$ and the first a-letter is supposed to precede the first b-letter. The situation c) is denoted as $a>b$ and the central a-letter as $a(b)$. In order to estrimate $|w|$ we estimate the number p in the splitting $w=w_{1} w_{2} \ldots w_{p} v$ where $\left|w_{i}\right|=k$ and $|v| \leq k-1$. Some two symbols $x, y \in S\left(w_{i}\right)$ must be 1 -good for any w_{i}. Thus (see the configurations a)-e)) any w_{i} contains the first letter of some symbol or contains the last letter of some symbol or contains an element of the set $M=\{a(b) \mid a, b \in S(w), a>b\}$ (in the worst c) case). Obviously

$$
|w| \leq p k+k-1<k(p+1) \leq k(2\|w\|+|M|+1)
$$

and it suffices to estimate the size of M.

For this purpose we define a mapping F that maps M into the set of all last letters in w. We put $F\left(a_{0}\right)=$ the last element of $\left\{b_{0} \mid b_{0}\right.$ is the last b-letter, $\left.a>b, a_{0}=a(b)\right\}$. We prove $\left|F^{-1}\left(b_{0}\right)\right| \leq k-1$ for any last b-letter $b_{0}, b \in S(w)$. If it is done we conclude -

$$
|w| \leq k(2\|w\|+|M|+1) \leq k(2\|w\|+(k-1)\|w\|+1)=k(k+1)\|w\|+k .
$$

Suppose on the contrary that $F\left(\bar{x}_{1}\right)=F\left(\bar{x}_{2}\right)=\ldots=F\left(\bar{x}_{k}\right)=\bar{y}$ where \bar{x}_{i} is an x_{i}-letter, \bar{y} is the last y-letter, x_{i} and y are $k+1$ different symbols, $x_{i}>y$ and $\bar{x}_{i}=x_{i}(y)$. Some two symbols of $x_{1}, x_{2}, \ldots, x_{k}$ must be 1-good. Thus $x_{r}>x_{s}$ for some r, s because only c) can occur. It may be easily checked that $\bar{x}_{r}=x_{r}(y)=x_{r}\left(x_{s}\right)$ which is a contradiction with the definition of F because \bar{y} precedes the last x_{s}-letter.

The estimate in Lemma 2.1 may be slightly improved:
a) Even $|M| \leq(k-1)(\|w\|-1)$ because $F^{-1}($ the end of $w)=\emptyset$. Using this idea we obtain $|M| \leq(k-$ 1) $\|w\|-((k-1)+(k-2)+\ldots+1)=(k-1)\left(\|w\|-\frac{k}{2}\right)$.
b) $2\|w\|$ in $|w| \leq k(2\|w\|+|M|)+|v|$ may be replaced by $2\|w\|-|v|$ (any letter of v is the last letter of some symbol).
Thus one can do better a bit: $|w| \leq k(k+1)\|w\|-\frac{1}{2} k^{2}(k-1),(\|w\| \geq k)$.

Theorem 2.2

a) Any k-regular and l-mixed sequence w satisfies $|w| \leq k^{2}(k+1) l(k(l-1)+1)\|w\|$.
b) Any k-regular and weakly l-mixed sequence w satisfies $|w| \leq c\|w\|$ where $c=c(k, l)$.

Proof of a): We apply on w Lemma 1.10. The obtained subsequence v is k-regular and according to 2) of Lemma 1.10 also 1-mixed. The upper bound on $|w|$ is consequence of the previous theorem and of 3) of Lemma 1.10.
Proof of b): According to Lemma 1.9 any l-outer letter of w can be $d=d(k, l)$-deleted. The remaining sequence v is k-regular and l-mixed. According to a) $|w| \leq 2 d l\|w\|+|v| \leq 2 d l\|w\|+k^{2}(k+1) l(k(l-1)+1)\|v\|$ and b) follows.

It is possible (but it costs some effort) to prove Theorem 2.2 a) like Theorem 2.1 and to avoid using Lemma 1.10. A substantially better constant in the linear upper bound on $|w|$ is obtained in this way - $O\left(k^{2} l\right)$ instead of $O\left(k^{4} l^{2}\right)$.

Theorem A Let $m \geq k \geq 2, l \geq 0$ be integers and let u be a sequence such that $k \geq\|u\|$. Suppose v is weakly (m, l)-mixed, k-regular and $u \not \leq v$. Then $|v| \leq c\|v\|$ where $c=c(k, l, m, u)$.

Proof: According to Lemma 1.7 b) (now $u \not \leq v$ is used) it does not matter (up to the constant in O) what regularity number k is choosen on beginning. For an m-regular sequence v the statement reduces to the previous theorem b).

Section 3

Here Theorem B will be proved.
Denote by $R(r, n)$ the minimal N such that any colouring of two-term subsets of an N -term set S by r colours yields a monochromatic n-term subset of S (see [GRS]).

Lemma 3.1 Suppose that $x^{l} y^{l} x^{l} y^{l}$ is a subsequence of $w=w_{1} w_{2} w_{3}$. Then y^{l} is a subsequence of w_{1} or x^{l} is a subsequence of w_{2} or y^{l} is a subsequence of w_{3}.

Lemma 3.2 Suppose w contains $m+1 x$-letters and $m+1 y$-letters $x_{0}, x_{1}, \ldots, x_{m}, y_{0}, y_{1}, \ldots, y_{m}$ enumerated from left to right and x_{0} precedes y_{0}. Let $m=2 i(k-1)$. Then one of $\left.a\right)-d$) holds.
a) $x_{(a+1) i}$ precedes $y_{a i}$ for some $a \in\{0,1, . ., 2 k-2\}$
b) $y_{(a+1) i}$ precedes $x_{a i}$ for some $a \in\{0,1, . ., 2 k-2\}$
c) $x_{a_{1}}$ precedes $y_{a_{1}}$ precedes $x_{a_{2}} \ldots x_{a_{k}}$ precedes $y_{a_{k}}$ for some indices $0 \leq a_{1}<a_{2}<\ldots<a_{k} \leq 2 k-2$
d) $y_{a_{1}}$ precedes $x_{a_{1}}$ precedes $y_{a_{2}} \ldots y_{a_{k}}$ precedes $x_{a_{k}}$ for some indices $0 \leq a_{1}<a_{2}<\ldots<a_{k} \leq 2 k-2$

Proof: If neither a) nor b) holds for any $a \in\{0,1, \ldots, 2 k-2\}$ then x_{0}, y_{0} precede x_{i}, y_{i} precede...precede $x_{(2 k-2) i}, y_{(2 k-2) i}$ and c) or d) occurs for some k indices.

The number of all mutual configurations (with respect to preceding) of the x-letters and y-letters in the situation in Lemma 3.2 is equal to $p_{m}=\binom{2 m+1}{m+1}$. Suppose that there are k symbols ${ }^{1} x,{ }^{2} x, \ldots,{ }^{k} x$ in Lemma 3.2 instead of two and that $m=2(i-1)(i k-1)$. Suppose further that ${ }^{1} x_{0}$ precedes ${ }^{2} x_{0} \ldots$ precedes ${ }^{k} x_{0}$ and that the configuration of ${ }^{a} x$ and ${ }^{b} x$ is the same for all $\binom{k}{2}$ pairs $1 \leq a<b \leq k$. Then it is not difficult to see that either ${ }^{1} x^{i}{ }^{2} x^{i} \ldots{ }^{k} x^{i}$ or ${ }^{k} x^{i}{ }^{k-1} x^{i} \ldots{ }^{1} x^{i}$ is a subsequence of w (apply on that configuration Lemma 3.2).

Theorem B For any positive integers i and k there exist integers n and l such that $a(i, k) \leq w$ whenever $\|w\| \geq n$ and $x^{l} y^{l} x^{l} y^{l} \leq \leq w$.

Proof: It suffices to put $n=R\left(2 p_{m}^{2}, h\right), l=m+1=1+2(i-1)(h i-1), h=6 R\left(2 p_{r}, k\right)-3, r=2(i-1)(k i-1)$. We split $w=w_{1} w_{2}$ so that any $x \in S(w)$ has l letters in both w_{1}, w_{2} (we split w in the last l-th letter). The ($\left.\begin{array}{c}n \\ 2\end{array}\right)$ pairs $\{x, y\} \subset S(w)$ are coloured by $2 p_{m}^{2}$ colours according to their configurations in w_{1} and w_{2} and according to the position of their first letters in w_{1} and w_{2}. The h-term monochromatic subset $S \subset S(w)$, $S=\left\{{ }^{1} x,{ }^{2} x, \ldots,{ }^{h} x\right\},{ }^{1} x_{0}$ precedes ${ }^{2} x_{0} \ldots$ precedes ${ }^{h} x_{0}$ (in w_{1}, in w_{2} they may be in the opposite order) ensured by Ramsey theorem implies (according to the consideration above) that ${ }^{1} x^{i}{ }^{2} x^{i} \ldots{ }^{h} x^{i}$ or ${ }^{h} x^{i} h-1 x^{i} \ldots{ }^{1} x^{i}$ is a subsequence in both w_{1}, w_{2}. One can suppose ${ }^{1} x^{i}{ }^{2} x^{i} \ldots{ }^{h} x^{i}{ }^{h} x^{i} \ldots{ }^{2} x^{i}{ }^{1} x^{i}$ is a subsequence in w (one of the remaining three cases is treated similarily and in remaining two we are done). We denote that subsequence as K and define $g=\frac{h-1}{2}$. We split w on three parts $w=v_{1} v_{2} v_{3}$ so that the beginning of v_{2} is one of the ${ }^{g+1} x$-letters in the first half of K and the end of v_{2} is one of the ${ }^{g+1} x$-letters in the second half of K. Now Lemma 3.1 on every pair of symbols $\left({ }^{1} x,{ }^{h} x\right),\left({ }^{2} x,{ }^{h-1} x\right), \ldots,\left({ }^{g} x,{ }^{g+2} x\right)$ is applied (${ }^{i} x$ with small left upper indices play the role of x in Lemma 3.1 and those with large ones play the role of y). One of the cases of Lemma 3.1 occurs for at least $\left\lceil\frac{g}{3}\right\rceil=R\left(2 p_{r}, k\right)$ pairs $\left({ }^{i} x,{ }^{h-i+1} x\right), i \in I \subset\{1, \ldots, g\}$. One can suppose it is the second one (remaining two are treated analogously). It means that ${ }^{i} x^{r+1}$ (even ${ }^{i} x^{l}$) is a subsequence of v_{2} for any $i \in I,|I| \geq R\left(2 p_{r}, k\right)$. We colour pairs of $\left\{{ }^{i} x \mid i \in I\right\}$ by $2 p_{r}$ colours (configuration and position of their first letters) and apply Ramsey theorem again. According to the above consideration applied on the k-term monochromatic set of symbols ${ }^{i_{1}} x^{i i_{2}} x^{i} \ldots .{ }^{i_{k}} x^{i}$ or ${ }^{i_{k}} x^{i i_{k-1}} x^{i} \ldots{ }^{i_{1}} x^{i}$ is a subsequence of v_{2} for some $(k$ symbols) $\left\{i_{1}<i_{2}<\ldots<i_{k}\right\} \subset I$. These letters together with the first and with the last fourth of K (which lie in v_{1} and in v_{3}) give $a(i, k) \leq w$.

Concluding remarks

Our proof of $a(i, k) \in \operatorname{Lin}$ is just a step in finding all elements of Lin. For two-symbol sequences the results $a^{i} b^{i} a^{i} b^{i} \in \operatorname{Lin}([\mathrm{AKV}])$ and $a b a b a \notin \operatorname{Lin}([\mathrm{HS}])$ yields the equivalence $u \in \operatorname{Lin}$ iff $a b a b a \not \leq u$. This is not the case for a general sequence u because the construction in [WS] realizing the lower bound $f(a b a b a, n)=\Omega(n . \alpha(n))$ by segments in the plane proves also implicitly $u_{1}=a b c b a d a d b c d \notin \operatorname{Lin}$ (and $\left.a b a b a \not \leq u_{1}\right)$. Define the function

$$
f(n)=\max \{|v| \mid v \in \operatorname{Lin},\|v\| \leq n, v \text { is 2-regular }\} .
$$

Clearly $f(n) \leq f(a b a b a, n)=O(n \alpha(n))$.
Problem 1 Does $f(n)=O(n)$ hold?
A simple consequence of Lemma 1.8 is that $u a \in \operatorname{Lin}$ inplies $u a^{k} \in L i n$ for any sequence u, symbol a and natural number k (similarily for $a u$). In the same manner we can easily derive from Lemma 1.10 that $u a^{2} v \in \operatorname{Lin}$ implies $u a^{k} v \in \operatorname{Lin}$ for any sequences u, v, natural number k and symbol a. Analogously if we consider general sequences, not only linear - the change of exponents in the described manner does not change the growth rate of $f(u, n)$.

Problem 2 Does uav $\in \operatorname{Lin}$ imply $u a^{2} v \in \operatorname{Lin}$ in any case? Does in general $f\left(u a^{2} v, n\right)=O(f(u a v, n))$ hold? Except, of course, for uav without repetitions when $f(u a v, n)$ is constant.

Problem 3 Does babcbcac \in Lin hold?
Problem 4 How many minimum (to \leq) nonlinear sequences there are? From the above comment it follows that beside $a b a b a$ there is at least one such an element.

Acknowledgments

The autor is grateful to P.Valtr, M.Loebl and J. Nešetřil for their useful consultations.

References

[AKV] R.ADAMEC, M.KLAZAR and P.VALTR, Generalized Davenport-Schinzel sequences with linear upper bound, Discrete Math. 108 (1992), 219-229
[ASS] P.AGARWAL, M.SHARIR and P.SHOR Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences, J. of Comb. Th. A 52 (1989), 228-274
[DS] H.DAVENPORT and A.SCHINZEL A combinatorial problem connected with differential equations I and II, Amer. J. Math. 87 (1965), 683-694 and Acta Arithmetica, 17 (1971), 363-372
[GRS] R.L.GRAHAM, B.L.ROTHSCHILD and J.H.SPENCER Ramsey Theory, New York 1980, John Wiley [HS] S.HART and M.SHARIR Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes Combinatorica 6 (1986), 151-177
[S] M.SHARIR Almost linear upper bounds on the length on general Davenport-Schinzel sequences, Combinatorica 7 (1987), 131-143
[Sz] E.SZEMEREDI On a problem by Davenport and Schinzel, Acta Arithmetica 15 (1974), 213-224
[WS] A.WIERNIK and M.SHARIR Planar realization of nonlinear Davenport-Schinzel sequences by segments, Discrete Comp. Geom. 3 (1988), 15-47

