Some properties of holonomic sequences

Martin Klazar

(Univerzita Karlova, Praha)

Ostravice, June 12, 2008

Overview:

1. definition and examples of holonomic sequences
2. closure properties
3. two nice holonomicity theorems in enumeration
4. non-holonomic sequences

Parts 1-3 is a review; part 4 is a joint work with Jason Bell (SFU, Vancouver), Stefan Gerhold (TU, Vienna) and Florian Luca (UNAM, Morelia).
appeared in: JB, SG, MK and FL, Non-holonomicity of sequences defined via elementary functions, Annals of Combinatorics 12 (2008) 1-16.
(help yourself to copies)

A sequence $\left(a_{n}\right)=\left(a_{1}, a_{2}, \ldots\right) \subset \mathbb{C}$ is holonomic (other terms are P -recursive, D -finite) if there are complex polynomials $c_{0}, c_{1}, \ldots, c_{k}$, $c_{k} \not \equiv 0$, such that

$$
c_{k}(n) a_{n+k}+c_{k-1}(n) a_{n+k-1}+\cdots+c_{0}(n) a_{n}=0
$$

holds for every n.

Examples. 1. Fibonacci numbers: $a_{n+2}-a_{n+1}-a_{n}=0$.
2. Catalan numbers: $(n+2) a_{n+1}-(4 n+2) a_{n}=0, a_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
3. Factorials: $a_{n+1}-(n+1) a_{n}=0, a_{n}=n$!
4. Numbers a_{n} of permutations π of $1,2, \ldots, n$ with no increasing subsequence of length $5:(n+4)(n+3)^{2} a_{n}-\left(20 n^{3}+62 n^{2}+\right.$ $22 n-24) a_{n-1}+64 n(n-1)^{2} a_{n-2}=0$.
-3-

Holonomic sequences appear in enumerative combinatorics and number theory. We are interested in asymptotic and arithmetic properties.

Closure properties. 1. For a sequence (a_{n}) consider the generating power series $A=\sum a_{n} x^{n}$. Then
$\left(a_{n}\right)$ is holonomic $\Longleftrightarrow A$ satisfies a LDE with polyn. coeffs

$$
g_{d} A^{(d)}+g_{d-1} A^{(d-1)}+\cdots+g_{0} A=0, g_{d} \not \equiv 0, g_{i} \in \mathbb{C}[x] .
$$

2. Thus the set of holonomic power series forms an algebra over $\mathbb{C}(x)$. This means that if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are holonomic then so are $\left(\alpha a_{n}+\beta b_{n}\right)$ and $\left(a_{n} b_{0}+a_{n-1} b_{1}+\cdots+a_{0} b_{n}\right)$ (Cauchy product).
3. If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are holonomic then so is $\left(a_{n} b_{n}\right)$ (Hadamard product).
4. If $A=\sum a_{n} x^{n}$ is algebraic (i.e., $P(x, A)=0$ for some nonzero polynomial $P(x, y))$ then $\left(a_{n}\right)$ is holonomic.
5. If $A=\sum a_{n} x^{n}$ is holonomic and $B=\sum b_{n} x^{n}, b_{0}=0$, is algebraic then $A(B)$ is holonomic.
6. In general composition and division of power series do not preserve holonomicity.

Holonomicity in several variables. A power series $A=\sum a_{m, n} x^{m} y^{n}$ is holonomic if the vector space of its partial derivatives

$$
\left\{\partial^{k+l} A / \partial x^{k} \partial y^{l} \mid k, l \geq 0\right\}
$$

has a finite dimension over $\mathbb{C}(x, y)$. Similarly for more variables.
7. (L. Lipshitz, 1988) If $A=\sum a_{m, n} x^{m} y^{n}$ is holonomic then so is the diagonal $\sum a_{n, n} x^{n}$. Same for more variables.

Two holonomicity results in enumeration. Both are due to I. Gessel in 1990.

1. Permutations without long increasing subsequences. Let $a_{n, k}$ be the number of permutations $\pi=p_{1} p_{2} \ldots p_{n}$ of $1,2, \ldots, n$ such that $p_{i_{1}}<p_{i_{2}}<\ldots<p_{i_{k}}$ does not hold for any k-tuple $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$. Then for any fixed k, the sequence ($a_{n, k}$) is holonomic.
2. Graphs with restricted degrees. A degree $\operatorname{deg}_{G}(v)$ of a vertex $v \in V$ in a graph $G=(V, E)$ (here $E \subset\binom{V}{2}=\{e \subset$ $V||e|=2\}$) is the number of edges in E incident with v. For $P \subset \mathbb{N}$, let $a_{n, P}$ be the number of graphs G with the vertex set $\{1,2, \ldots, n\}$ and such that $\operatorname{deg}_{G}(v) \in P$ for every $v \in\{1,2, \ldots, n\}$. Then for any fixed finite P, the sequence ($a_{n, P}$) is holonomic.

Non-holonomic sequences. How to show that $\left(a_{n}\right)$ is not holonomic? Let $A=\sum a_{n} x^{n}$.

Too fast growth. $\left(a_{n}\right)$ holonomic $\Rightarrow\left|a_{n}\right|<c(n!)^{d}$. Thus, for example, the numbers of all graphs on $\{1,2, \ldots, n\}, 2^{n(n-1) / 2}$, are non-holonomic.

Too many singularities. $A=\sum a_{n} x^{n}$ holonomic $\Rightarrow A(x)$ has only finitely many singularities. Thus, for example,

$$
\frac{x}{e^{x}-1}=\sum \frac{B_{n}}{n!} x^{n} \quad \text { and } \quad \prod \frac{1}{1-x^{k}}=\sum p_{n} x^{n}
$$

the Bernoulli numbers $\left(B_{n}\right)$ and the partition numbers $\left(p_{n}\right)$, are non-holonomic.

Too lacunary. $\left(a_{n}\right)$ holonomic and $a_{n}=a_{n+1}=\cdots=a_{n+m}=0$ for arbitrarily large $m \Rightarrow\left(a_{n}\right) \equiv 0$. Thus, for example, $\sum x^{n^{2}}$ is non-holonomic.

Sequences given by values of elementary functions. What about sequences like $\left(a_{n}\right)=(\sqrt{n})$ or $\left(a_{n}\right)=(\log n)$?

The sequence has strange asymptotics. This method is due to P. Flajolet, S. Gerhold and B. Salvy (Electr. J. Combin., 2005) and has two ingredients.

1. Abelian theorems: $a_{n} \sim c(n)$ as $n \rightarrow \infty \leadsto \sum a_{n} x^{n} \sim C(x)$ as $x \rightarrow \alpha$ where α is a singularity.
2. Structure theorem for solutions of DE: Every solution of a LDE with polyn. coeffs has a restricted asymptotic expansion near singularity.
Thus if the asymptotics of $a_{n}, n \rightarrow \infty$, is known and by 1 gives an asymptotic expansion of $\sum a_{n} x^{n}$ near singularity not of the form described in 2 , then $\left(a_{n}\right)$ is non-holonomic.

Examples. The sequences $\left(p_{n}\right), p_{n}$ being the n-th prime, $(\log n)$ and $\left(n^{\alpha}\right), \alpha \in \mathbb{C} \backslash \mathbb{Z}$, are non-holonomic.

A simpler proof that $(\log n)$ is non-holonomic. (MK, 2005). Suppose that $(\log n)$ is holonomic. Thus, for some polynomials $a_{0}, a_{1}, \ldots, a_{k}$ where $a_{0} a_{k} \not \equiv 0$, the function

$$
F(x):=a_{0}(x) \log (x)+a_{1}(x) \log (x+1)+\cdots+a_{k}(x) \log (x+k)
$$

has infinitely many zeros at $x=1,2, \ldots$. Note that $F \not \equiv 0$ because $F \equiv 0$ would imply that $\log x$ is meromorphic at $x=0$ which is not. By Rolle's theorem, all derivatives $F^{\prime}, F^{\prime \prime}, \ldots$ have infinitely many real zeros as well. But, denoting $d=\max \operatorname{deg} a_{i}$, it follows that $F^{(d+1)}$ is a rational function (we killed all logs). Since it has infinitely many zeros, $F^{(d+1)} \equiv 0$ and F is a polynomial with degree $\leq d$. But this is absurd (again, $\log x$ is not meromorphic at $x=0$).

Elementary functions have finitely many zeros. This is the method of our paper. Suppose that $f(x)$ is a nice function. To prove that $(f(n))$ is non-holonomic, we proceed in two steps.

Step 1. We show that if f is not $\equiv 0$ and not all polynomials $a_{0}, a_{1}, \ldots, a_{k}$ are $\equiv 0$, then

$$
F(x):=a_{0}(x) f(x)+a_{1}(x) f(x+1)+\cdots+a_{k}(x) f(x+k)
$$

is $\not \equiv 0$.
Step 2. We show that if $F(x)$ vanishes at all $x \in \mathbb{N}$ then $F \equiv 0$.
In step 1 we use meromorphicity, singularities, growth conditions. In step 2 we use a result of A. Khovanskii (book Fewnomials, 1991): Every elementary real function not involving in its definition $\sin x$ and $\cos x$ (or involving them so that their domains of definition are bounded) has only finitely many simple zeros in its domain of definition.

For example, we get the following result.
Theorem (JB, SG, MK and FL, 2008). Let the function $f \in \mathbb{R}(x, \log x, \arctan x)$ be analytic on $(0,+\infty)$. Then $(f(n))$ is holonomic $\Longleftrightarrow f \in \mathbb{R}(x)$.

Thank you for your attention!

