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Abstract

In the theory of generalized Davenport–Schinzel sequences one estimates the
maximum lengths of finite sequences containing no subsequence of a given pat-
tern. Here we investigate a further generalization, in which the class of sequences
is extended to the class of colored trees. We determine exactly the extremal
functions associated with the properly 2-colored path of four vertices and with
the monochromatic path of any length. We prove that the extremal function
of any colored path grows almost linearly (this is a characteristic feature of DS
sequences). Three problems are posed.

1 Introduction

We want to extend results on extremal problems concerning certain finite sequences to
colored trees. The sequences are Davenport–Schinzel sequences (in short, DS sequences)
introduced in [3]. We start by recalling them.

Let S∗ denote the set of all finite sequences over a fixed infinite alphabet S. All
our sequences will be from S∗. For u ∈ S∗ we denote by |u| the length of u and by
‖u‖ the number of symbols x ∈ S appearing in u. We say that u ∈ S∗ is alternating if
u = xyxy . . . where x, y ∈ S are distinct. The sequence aa . . . a of i a’s is denoted by ai.

The set DS(s) of DS sequences with parameter s consists of all sequences u =
x1x2 . . . xl such that (i) xi 6= xi+1 for i = 1, 2, . . . , l − 1 and (ii) no subsequence
xi1xi2 . . . xis of length s is alternating. For example, 432134564 belongs to DS(4) but
not to DS(3). As another example, cb1bdd43b23 6∈ DS(s) for any s, but omitting one of
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the d’s we obtain a sequence from the family DS(5) (but not from DS(4), since it has
the form . . . b . . . 3b.3).

The functions Ns(n) measure maximum lengths of sequences in DS(s):

Ns(n) = max{|u| : u ∈ DS(s) & ‖u‖ ≤ n}.

Trivially, N1(n) = 0, N2(n) = 1, and N3(n) = n. It is easy to show that N4(n) = 2n− 1
(see [3] or Theorem 3.1 below). For s > 4 the situation is much more complicated.
Davenport and Schinzel proved [3] N5(n) = O(n log n) and, for any fixed s, Ns(n) ≤
n exp(c(s)

√
log n ). Both results were improved by Szemerédi [12]: Ns(n) = O(n log∗ n)

(log∗(n) is the smallest number of iterations of the power function 2x after which, starting
with x = 1, a number ≥ n is reached). In a further improvement Hart and Sharir [4],
inspired by some techniques used in [13], derived the upper and lower bounds N5(n) =
Θ(nα(n)) with α(n) being the inverse to the Ackermann function, so that α(n) goes to
infinity but extremely slowly. Agarwal, Sharir and Shor [2] found that N6(n) = Θ(n2α(n))

and that, for s > 6, Ns(n) is roughly n2α(n)s/2
: for the precise statement see [2, 11]. For

s > 6 there is still some gap between the lower and upper bounds but the main problem
posed by Davenport and Schinzel, to estimate Ns(n) satisfactorily, was solved in [2].

DS sequences were rediscovered in the 1980s by researchers in computational geome-
try (interestingly, the original motivation of Davenport and Schinzel was also geometric
and much the same as the modern one). Applications of DS sequences to algorithmic
problems in geometry are discussed in the monograph by Sharir and Agarwal [11].

In [1], Adamec, Klazar and Valtr proposed a generalization of DS sequences. We say
that u = x1x2 . . . xl ∈ S∗ and v = y1y2 . . . ym ∈ S∗ are equivalent if l = m and there is a
bijection f : S → S such that xi = f(yi) for i = 1, 2, . . . , l. For a fixed sequence v with
|v| = s and ‖v‖ = k we define the set DS(v) as consisting of all sequences u = x1x2 . . . xl

such that (i) xi, xi+1, . . . , xi+k−1 are mutually distinct for each i = 1, 2, . . . , l−k +1 and
(ii) no subsequence xi1xi2 . . . xis of length s is equivalent to v. The general extremal
function is defined [1] as

Ex(v, n) = max{|u| : u ∈ DS(v) & ‖u‖ ≤ n}.

It is easy to see that Ex(v, n) < ∞ for any v and n. For example, Ex(ababa, n) = N5(n),
Ex(a4, n) = Ex(aaaa, n) = 3n, and Ex(abcda, n) = n. Sequences u ∈ S∗ satisfying
condition (i) in the definition of DS(v) are called k-sparse (in fact, k-regular in our other
articles; we choose a different terminology here to avoid redefining a standard term in
graph theory). In the case that u violates (ii) we say that u contains v. Sometimes it
is useful to work with a more general function Ex(v, n, l), where l ≥ ‖v‖ is a new fixed
parameter and the function is defined as the maximum length of an l-sparse sequence u
not containing v with ‖u‖ ≤ n. Thus Ex(v, n) = Ex(v, n, ‖v‖).

Properties of Ex(v, n) were investigated in [1] and then in the author’s thesis [8].
Further results were obtained in [5, 6, 7, 9]. More information and references can be
found in the survey paper [10]. Recently Valtr [14, 15] found the following interesting
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application of Ex(v, n) in combinatorial geometry. Let a geometric graph be a graph
whose vertices and edges are points and straight segments in the plane. The bound

Ex(a1a2 . . . ak−1akak−1 . . . a2a1a2 . . . ak−1ak, n) = O(n)

proved in [7] implies that any geometric graph with n vertices and no k pairwise crossing
edges has O(n log n) edges.

Ex(v, n) proved to be an interesting and useful generalization of Ns(n). In this paper
we investigate a further extension of it, in which the realm of sequences S∗ is extended
to the realm of colored trees. This way we try to connect DS sequences with graph
theory; hopefully some applications in this field will be found.

The paper is organized as follows. In Section 2 we introduce the appropriate ex-
tension of Ex(v, n). In an important auxiliary result we determine exactly how many
‘peripheral’ vertices in certain colored trees there may be. In Section 3 the tree extremal
functions of the path color patterns abab and aa . . . a are determined. In Section 4 it is
shown that any path color pattern has an almost linearly growing extremal function. In
Section 5 we pose some problems, to indicate a possible direction for further research.

2 Extremal functions ExT(P , n) and ExT(P , n, l)

By a tree we mean always a finite undirected tree. By a colored tree we understand a pair
T = (T, f) where T is a tree and f : V (T ) → S is a vertex coloring. A coloring is proper
if no edge is monochromatic. More generally, (T, f) is k-sparse if f(u) = f(v), u 6= v,
implies that the path joining u and v has at least k edges. Symbols |T | and ‖T ‖ denote
the number of vertices in T and the number of colors appearing in T .

If the tree T in T is a path P we speak of a colored path. Obviously, any sequence
u = x1x2 . . . xl ∈ S∗ yields a colored path (P, f) where P = (v1, v2, . . . , vl) and f(vi) =
xi. We denote it by Pu but mostly will write simply u. Usually there is no danger of
confusion, because the symbol for tree extremal function ExT indicates clearly the tree
context.

Two colored trees T1 = (T1, f1) and T2 = (T2, f2) are equivalent if there is a graph
isomorphism G : V (T1) → V (T2) and a bijection F : S → S such that f1(v) =
F (f2(G(v))) for each v ∈ V (T1). We say that T1 is contained in T2 if it is possible
to subdivide some edges of T1 by colored vertices so that the colored tree obtained
is equivalent to a subgraph of T2. The containment of colored trees generalizes the
containment of sequences. More precisely, if v is contained in u then Pv is contained in
Pu, and if Pv is contained in Pu then v is contained in u or in the reversed u.

Forbidding the containment of a fixed colored path is not enough to give an inter-
esting extremal problem, because any colored star avoids any path coloring with more
than three vertices. A condition taking care of colored stars is necessary. We propose
the tripod condition. This requires that T does not contain a specific colored tree (U, f)
with U being the 4-vertex star and f being the proper 2-coloring. This colored tree is
called a tripod . We will say that T meets the tripod condition, or that T is tripod-free.
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We feel the tripod condition ensures that in the more general situation the basic features
of DS sequences remain preserved.

Let P be a colored path with ‖P‖ = k. The set DS(P) consists of all colored trees T
such that (i) T is k-sparse and (ii) T contains neither P nor a tripod. The tree extremal
function of P is

ExT(P , n) = max{|T | : T ∈ DS(P) & ‖T ‖ ≤ n}.

We will investigate also the more general extremal function

ExT(P , n, l) = max{|T | : T ∈ DS(P) & ‖T ‖ ≤ n & T is l-sparse},

where l ≥ ‖P‖. Thus ExT(P , n) = ExT(P , n, ‖P‖).
In the case of sequences the first and the last appearances of a symbol x ∈ S in u ∈ S∗

are often important. Obviously, altogether there are at most 2‖u‖ such appearances.
We need to cope with the tree analogy of this phenomenon. A vertex v in a colored
tree T = (T, f) is peripheral if there is no path P in T with the endvertices w and z
such that v is an inner vertex of P and f(w) = f(v) = f(z). Let p(T ) be the number of
peripheral vertices in T . The following lemma is perhaps of some interest as an extremal
result in its own right. We use it later in Sections 3 and 4.

Lemma 2.1 The maximum number of peripheral vertices p(n, k) = max p(T ) taken
over k-sparse tripod-free colored trees T with ‖T ‖ = n, is p(n, k) = n for n < k and,
for n ≥ k,

p(n, k) =

⌊
2(n− 1)k

k − 1

⌋
. (1)

Proof. The first bound is obvious, since then no color can be repeated. We prove the
second formula by showing separately that the RHS of (1) is an upper and lower bound
for the LHS.

(i) The upper bound. Suppose T = (T, f) is k-sparse, meets the tripod condition,
and ‖T ‖ = n. A tail in T is a path (v0, v1, . . . , vl) such that v0 is a leaf, v1, . . . , vl−1

have degree 2 and vl has degree > 2. The length of the tail is l. Note that if T is a path
then it has no tails.

In the first step we transform T into a colored tree T1 meeting the same hypothesis
as T and with p(T1) = p(T ), but with all tails having length ≥ k. Let s(T ) be the
number of tails with length < k. If s(T ) = 0 there is nothing to be done. Otherwise
let P = (v0, v1, . . . , vl), l < k, be one of the shortest tails. T\{vl} has at least three
components and the color f(v0) does not appear in at least one of them (since f(v0) 6=
f(vl) and the tripod condition holds). Let v be a leaf in one of those components. We
cut off v0 from P and attach it to v (see Figure 1(a)). The new colored tree is k-sparse
(since v0 is at least as far from vl as it was before) and tripod-free, has the same number
of peripheral vertices, and no tail length decreased except for P . P either disappeared
or (v1, . . . , vl) is now the shortest tail. Repeating this until we eliminate P completely,
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the T ′ obtained has s(T ′) < s(T ). Repeating the whole procedure we arrive at a T1

with s(T1) = 0. It may be the case that T1 has no tail at all because it is a colored path.
Then p(T ) = p(T1) ≤ 2n which for n ≥ k is stronger than the bound claimed and we
are done at once. Thus, we can assume the number of tails is the same as the number
of leaves.

In the second step we process T1 to get rid of all vertices of degree > 3. A vertex
v with degree d > 3 is replaced by a path of d new vertices (see Figure 1(b)), all with
color f(v) and each adjacent to one neighbour of v. Thus, each of the new vertices has
degree at most 3. Repeating this procedure we obtain a T2 with all degrees at most 3.
It is easy to check that T2 is tripod-free and p(T2) ≥ p(T1) (in each replacement p(·)
could only increase). Also s(T2) = 0. The k-sparseness is lost but not completely, since
each tail is colored k-sparsely. Obviously, ‖T ‖ = ‖T1‖ = ‖T2‖ = n.

Let p = p(T2), let l be the number of leaves of T2, and let X be the set of vertices of
T2 with degree 3. For a color a ∈ S let k(a) be the number of peripheral vertices in T2

colored a. We consider the sets of colors

A = {a ∈ S : 1 ≤ k(a) ≤ 2}, B = {b ∈ S : k(b) ≥ 3}.

Clearly,
|A|+ |B| = n and |X| = l − 2. (2)

Similarly, each b ∈ B forces exactly k(b) − 2 vertices of X to be colored b (since the
tripod condition holds and all degrees are at most 3), so that∑

b∈B

k(b) ≤ 2|B|+ |X|. (3)

Finally, since there are l tails and the first k vertices on each tail are peripheral,

l ≤ p/k. (4)

Combining the definitions of A and B with (2)–(4), we have

p ≤ 2|A|+
∑
b∈B

k(b) ≤ 2|A|+ 2|B|+ |X| = 2n + l − 2 ≤ 2n +
p

k
− 2.

Solving this inequality for p we obtain

p(T ) = p(T1) ≤ p(T2) = p ≤ 2(n− 1)k

k − 1
.
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Figure 1: The proof of Lemma 2.1.

(ii) The lower bound. By S(p, q) we denote the tree (sometimes called a long star)
with pq + 1 vertices which arises by taking p paths having q vertices each and joining
their endpoints to one common central vertex. Write n − 1 = m(k − 1) + r where
0 ≤ r < k − 1 and m > 0. Then⌊

2(n− 1)k

k − 1

⌋
= 2mk + 2r +

⌊
2r

k − 1

⌋
. (5)

Case 1: r < (k − 1)/2. Then the RHS of (5) becomes 2mk + 2r. We color S(2m, k)
as follows. Let m of its rays be called type 1 and the other m rays type 2 . One color, say
c0, is used for the central vertex and for all the leaves. The remaining 2m(k−1) vertices
are colored with m(k−1) colors, each used for one vertex in a type-1 ray and one vertex
in a type-2 ray, these vertices being distance exactly k apart; clearly such a coloring
exists. Then we attach 2r new vertices as leaves and color two of them with each of
r new colors, the only restriction to their attachment being that the resulting colored
tree T3 is k-sparse. Clearly this is possible, and T3 is tripod-free. Moreover, T3 has
1 + 2mk + 2r vertices, and each vertex except v0 is peripheral. Thus p(T3) = 2mk + 2r.

Case 2: r ≥ (k−1)/2. The same construction works, but it is not optimal since now
we should have 2mk + 2r + 1 peripheral vertices. This time we start with S(2m + 1, k).
Let m− 1 of its rays be called type 1 , other m− 1 rays type 2 , and the remaining three
rays type 3 . Let ∆ = k− 1− r ≤ r, so that k− 1 = ∆ + r. As before, one color, say c0,
is used for the central vertex v0 and for all the leaves. The remaining vertices of type-1
rays and type-2 rays are colored in pairs as in Case 1. Type-3 rays are colored with new
colors a1, . . . , ar, b1, . . . , br, c1, . . . , c∆ in the following pattern, where v0 is to the left of
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each ray and the leaves are to the right:

a1, a2, . . . , ar, b∆, b∆−1, . . . , b1

b1, b2, . . . , br, c∆, c∆−1, . . . , c1

c1, c2, . . . , c∆, ar, ar−1, . . . , a1

It is not difficult to check that this coloring is k-sparse. Finally we attach r − ∆
new vertices as leaves and give them colors b∆+1, . . . , br, the only restriction to their
attachment being that the resulting colored tree T4 is k-sparse. Clearly this is possible,
and T4 is tripod-free. Moreover, T4 has 1 + (2m + 1)k + r − ∆ = 1 + 2mk + 2r + 1
vertices, and each vertex except v0 is peripheral. Thus p(T4) = 2mk + 2r + 1. 2

The immediate corollary of (1) is that for k = 2 (proper colorings) and k = 3 we
have p(n, 2) = 4n− 4 (n > 1) and p(n, 3) = 3n − 3 (n > 2). In any colored tree T the
number p(T ) majorizes the number of leaves and that in turn majorizes the number of
vertices of degree > 2. So, by the above lemma, any tripod-free properly colored tree T
has O(‖T ‖) leaves and O(‖T ‖) path segments connecting vertices with degree 6= 2.

3 Colored paths abab and ai

We analyze extremal functions of the simplest colored paths, namely abab, the 4-vertex
path colored properly with two colors, and ai, the monochromatic path of i vertices. We
start with ExT(abab, n, k). Recall that this function is defined as the maximum number
of vertices of a k-sparse tripod-free colored tree T that does not contain abab and satisfies
‖T ‖ ≤ n. It is not difficult to prove [9] that for sequences we have Ex(abab, n, k) =
2n− k + 1 (for n ≥ k − 1). In contrast, the tree extremal function is independent of k
and equals 2n− 1.

The following result was published already in [10], for completeness we sketch the
proof.

Theorem 3.1 For any integer n ≥ 1 we have ExT(abab, n) = ExT(abab, n, 2) = 2n− 1.

Proof. (Sketch). First we recall the proof that Ex(abab, n) = 2n−1. The length 2n−1
is attained, for instance, by the sequences 1 2 . . . n− 1 n n− 1 . . . 2 1. That 2n− 1 is
also the upper bound follows by induction on n: just delete the symbol appearing only
once.

The order 2n−1 is attained already by paths. Hence, to prove ExT(abab, n) = 2n−1
it suffices to show that any proper tripod-free T = (T, f) that does not contain abab
has at most 2‖T ‖ − 1 vertices. We proceed by induction on the sum ‖T ‖ + #{v ∈
V (T ) : deg(v) > 2}. If T is not a colored path (otherwise we are done by the previous
paragraph) there is a vertex v such that T\{v} has ≥ 3 components of which at most
one is not a path. It is easy to see that we can assume that no color appears more
than once on the union of the path components and v (otherwise ‖T ‖ can be decreased
by deleting some vertices from the paths). It can be shown that the path components
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can be assembled into one path so that the pattern abab is not created: see [10]. The
number of vertices of degree > 2 decreased and we are done by induction. 2

We remark that there are plenty of extremal configurations: any tree with 2n−1 vertices
can be colored properly with n colors so that the coloring meets the tripod condition
and does not contain abab.

Theorem 3.2 For any n ≥ (k − 1)2 + 1 we have ExT(abab, n, k) = 2n− 1.

Proof. The inequality ExT(abab, n, k) ≤ 2n−1 follows from the previous theorem. We
show that for n large enough the number of vertices 2n−1 is attained. Let n ≥ (k−1)2+1
and write n − 1 = (k − 1)l + m, 0 ≤ m < k − 1. Thus l ≥ k − 1. The basic structure
is the tree S(2l, k − 1) (defined as in the second part of the proof of Lemma 2.1). Let
its rays be R1, R2, . . . , R2l. By v(i, j) we denote the vertex on Ri at distance j from the
centre.

Give distinct colors to the central vertex and all vertices on the rays R1, . . . , Rl. For
i = 1, . . . , l and j = 1, . . . , k−1, the color used on v(i, j) is used again on v(l+i+j, k−j)
if i + j ≤ l and on v(i + j, k − j) otherwise. This ensures that two different rays can
have at most one color in common, so there is no abab. Also, the coloring is k-sparse
and tripod-free. We finish the construction by appending in an appropriate way 2m
leaves and coloring two of them with each of m new colors. Altogether we have used
2(n− 1) + 1 = 2n− 1 vertices. 2

We proceed to the colored path ai. For sequences the problem is trivial, Ex(ai, n, k) =
(i − 1)n (for n ≥ k ≥ 1). For trees the situation is more interesting. Note that
ExT(ai, n) = ExT(ai, n, 1) = ∞ if i > 3, so that we investigate ExT(ai, n, k) only for
k > 1.

Recall that p(n, k) denotes the maximum number of peripheral vertices, which was
determined in Lemma 2.1. For a colored tree T = (T, f) the depth of a vertex v is the
largest i such that there is a path P in T which has v as an inner vertex and which
contains at least i − 1 vertices with color f(v) on each side of v (hence at least 2i − 1
such vertices in total). Clearly the vertices with depth 1 are peripheral vertices, and so
if di = di(T ) denotes the number of vertices with depth i, then p(T ) = d1 ≥ d2 ≥ · · ·

Theorem 3.3 For any n ≥ k ≥ 2

ExT(ai, n, k) =

{
i−2
2
· p(n, k) + n if i ≥ 2 is even

i−3
2
· p(n, k) + 2n if i ≥ 3 is odd.

Proof. (i) The upper bound. Suppose first that i is even. In any k-sparse T ∈ DS(Pai)
there can be at most ‖T ‖ vertices with depth ≥ i/2. Otherwise a color, say a, would be
repeated on two such vertices v1 and v2. By the above definition, each of v1 and v2 is
covered by a path with i/2−1 vertices of color a on both sides of the vertex. These paths
together with the path joining v1 and v2 produce ai. Thus, |T | ≤ (i/2− 1)p(T ) + ‖T ‖.
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For i odd the number of vertices with depth ≥ (i− 1)/2 is at most 2‖T ‖. Otherwise
three such vertices would have the same color. We can assume they lie on a path
because of the tripod condition. The rest of the argument is the same as for i even.
Thus |T | ≤ i−3

2
p(T ) + 2‖T ‖.

(ii) The lower bound. The extremal configurations are modifications of those from
the second part of the proof of Lemma 2.1. We use the notation we have introduced
there.

Let first r < (k − 1)/2. For simplicity we explain the construction when r = 0. So
T3 is a coloring of S(2m, k). Suppose i is even. Each of the m type-1 rays is replicated
i/2 times so as to form a ‘long ray’ of length ki/2, and each of the m rays of type 2 is
replicated similarly i/2−1 times. The leaves of type-1 long rays are deleted. The colored
tree obtained is k-sparse, belongs to DS(Pai), and has (i/2− 1)p(n, k) + n vertices. For
i odd all rays of T3 are replicated (i−1)/2 times and then all leaves but one are deleted.
The colored tree obtained is k-sparse, belongs to DS(Pai), and has ((i−3)/2)p(n, k)+2n
vertices.

The other case r ≥ (k − 1)/2 is similar. To make it simpler, we again assume
r −∆ = 0, so that T4 is a coloring of S(2m + 1, k). Let i be even. Type-1 and type-3
rays are replicated i/2 times and type-2 rays i/2− 1 times. Leaves of type-1 and type-3
long rays are deleted. Finally the last r = ∆ vertices of each of the three type-3 long
rays are deleted. The colored tree obtained is tripod-free, k-sparse, does not contain ai,
and has (i/2− 1)p(n, k) + n vertices. For i odd the construction is exactly the same as
for r < (k− 1)/2. We leave to the interested reader the easy task of attaching the extra
leaves needed when r > 0 or r −∆ > 0. 2

4 A general colored path

In this section we prove Theorem 4.1, which states that the extremal function of any
colored path grows almost linearly. We should remark that the proof is a reduction to
sequences, namely to the general upper bound for Ex(v, n).

Theorem 4.1 Let P be a colored path with |P| = s and ‖P‖ = k ≥ 2. There is a
constant c > 0 depending only on s such that

ExT(P , n) ≤ n2α(n)c

.

In the proof we will make use of the following result, which avoids the need to work
with the definition of α(n).

Theorem 4.2 ([5]) Let v ∈ S∗ have length 5 or more (if not, Ex(v, n) = O(n)). Then

Ex(v, n) ≤ n2cα(n)|v|−4

,

where c > 0 depends only on |v|.
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Let T = (T, f) be an element of DS(P) with |T | = m and ‖T ‖ = n. Recall that T is
k-sparse. Distinguishing a vertex r ∈ V (T ) we change T into a rooted tree Tr with the
root r. We have a poset (V (Tr),≺), where v1 ≺ v2 iff the path joining r and v2 contains
v1. The merging point of the r-v1 and r-v2 paths is denoted by v1 ∧ v2. We say that v
is a child of w if v � w and there is no z such that v � z � w. We fix a linear order on
each set of children of a vertex. Those linear orders determine a unique linear extension
(V (Tr), <) of (V (Tr),≺) in which v1 < v2 iff v1 ≺ v2 or (if they are incomparable by ≺)
the child of v = v1 ∧ v2 lying on the v-v1 path is smaller in the linear order than the
child of v lying on the v-v2 path. This linear extension will be called the postorder .

We turn T = (Tr, f) into a sequence u1 ∈ S∗ of length m = |T | by listing the vertices
in the postorder. This means, u1 = (f(v1), f(v2), . . . , f(vm)), where v1 < v2 < · · · < vm.
A problem is that u1 may not be k-sparse. This is fixed by Lemma 4.3.

For k, l positive integers we define the sequence of length kl

z(k, l) = a1a2 . . . aka1a2 . . . ak . . . a1a2 . . . ak,

where a1, a2, . . . , ak are k distinct symbols in S. Notice that if T contains Pz(k,s), it
contains P .

Lemma 4.3 There is a k-sparse subsequence u2 of u1 such that

|u2| ≥ |u1| − cn,

where c > 0 is an absolute constant.

Proof. Suppose the leaves of Tr are l1 < l2 < · · · < lp. They determine a partition of
V (Tr) into the paths P1, P2, . . . , Pp:

P0 = ∅ , Pi = {v ∈ V (Tr) : v � li}\
i−1⋃
j=0

V (Pj).

Clearly u1 is the juxtaposition of the sequences f(P1), f(P2), . . . , f(Pp), where f(Pi)
is the sequence of colors on Pi taken in the postorder (i.e., in ≺). By Lemma 2.1,
p ≤ p(T ) ≤ 4n − 4. The k-sparseness of u1 may be violated only on the transitions
f(Pi)f(Pi+1). Let K = Ex(z(k, s), 3k − 4) + 1. We can assume |f(Pi)| ≥ K + k − 1
for all Pi, short f(Pi) are deleted. We set f(Qi), i = 2, . . . , p, to be the initial segment
of f(Pi) of length K. If f(Qi) contains z(k, s) then, by our remark, T contains P and
we have a contradiction. Thus, f(Qi) ∈ DS(z(k, s)) and therefore ‖f(Qi)‖ ≥ 3k − 3.
For each i = 2, 3, . . . , p there are k − 1 symbols, denote them Si, appearing in f(Qi),
which are distinct from the k − 1 symbols preceding f(Qi) and from the k − 1 symbols
following after f(Qi). We delete all terms of f(Qi) except for some k − 1 terms which
are appearances of the symbols in Si. The resulting sequence u2 is k-sparse. Only at
most p(K + k − 2) + (p− 1)(K − k + 1) = O(n) elements have been deleted. 2
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Let
ŝ = (5s+4 − 1)(s + 2) + 1. (6)

We prove the implication

P is not contained in T ⇒ z(k, ŝ) is not contained in u2. (7)

This proves Theorem 4.1, because Theorem 4.2 provides a strong upper bound on
Ex(z(k, ŝ), n) ≥ |u2| and, by Lemma 4.3, m = |T | differs only little from |u2|.

We suppose that u2 contains z(k, ŝ) and deduce that T contains P . Let wi, i =
1, 2, . . . , ŝk, be ŝk vertices in Tr such that w1 < w2 < · · · < wŝk and the subsequence
(f(wi) : i = 1, 2, . . . , ŝk) of u2 is equivalent to z(k, ŝ). We recall the following result
from folklore (the easy companion of Dilworth’s theorem).

Lemma 4.4 In any poset (X, <) the minimum number of parts in a partition of X
into antichains is the same as the maximum size of a chain. In particular, if |X| ≥
(a− 1)(b− 1) + 1 then there is in X either an antichain of size a or a chain of size b.

Let
W = {w1, wk+1, w2k+1, . . . , w(ŝ−1)k+1}.

These ŝ vertices have the same color, say a1. We distinguish two cases: (a) there are
s + 3 vertices in W which are mutually comparable by ≺ or (b) there are 5s+4 vertices
in W which are mutually incomparable by ≺. By the previous lemma and by (6), one of
(a) or (b) must occur. We show that in both cases P is contained in T ; this will finish
the proof of (7) and thus the whole proof of Theorem 4.1.

First a simple lemma that will be applied in both cases.

Lemma 4.5 Suppose x, y, and w are three distinct vertices of Tr such that x < y < w.
Then x ∧ w � y ∧ w.

Proof. This is immediate from the definition of the postorder. 2

Case (a). We have s + 3 vertices z1 ≺ z2 ≺ · · · ≺ zs+3 in W with color a1. For each
of the remaining k − 1 colors aj, j = 2, . . . , k, we have the vertices zj

i

z1 < z2
1 < · · · < zk

1 < z2 < z2
2 < · · · < zk

2 < z3 < · · · < zk
s+2 < zs+3

with color f(zj
i ) = aj. Let R be the r-zs+3 path and let rj

i = zj
i ∧zs+3, i = 1, . . . , s+2, j =

2, . . . , k. By Lemma 4.5, the vertices zi, r
2
i , . . . , r

k
i , zi+1 lie on R in this order (≺). For

i = 2, . . . , s + 1 we have f(rj
i ) = aj, because either zj

i = rj
i or they are distinct but

then the tripod condition forces rj
i to have the color aj. In particular, all rj

i , j > 1, and
zi, i = 2, . . . , s + 1, are distinct. Thus, T contains Pz(k,s) and hence P .

Case (b). We have 5s+4 incomparable vertices in W , we denote their set by Z. Let T1

be the rooted subtree of Tr that is spanned by the smallest connected subset of vertices
containing Z.
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First we show there is no vertex in T1 with more than five children. Otherwise there
would be six vertices z1 < z2 < · · · < z6 in Z with color a1 and a vertex v ∈ V (T1)
such that v ≺ zi and all six v-zi paths merge at v. But there are another 5 vertices yi,
z1 < y1 < z2 < y2 < z3 < · · · < z6, all with a different color a2. Consider y1, y3, and y5.
Clearly, v ≺ y1, y3, y5 and all three v-yi paths merge at v. There is a tripod with the
central vertex v, which is a contradiction.

The leaves of T1 are the vertices of Z. We call the vertices of T1 with more than one
child branching vertices. The tripod condition forces that each branching vertex that
majorizes in < a branching vertex must have color a1. Since we have |Z| = 5s+4 leaves
in T1 and each branching vertex has at most five children, there must be s+3 branching
vertices vi such that

• all have color a1,

• v1 ≺ v2 ≺ · · · ≺ vs+3,

• for each there is a vertex zi in Z such that zi ∧ vs+3 = vi, and

• z1 < z2 < · · · < zs+2 < vs+3.

Again, for each j = 2, . . . , k there are vertices zj
i

z1 < z2
1 < · · · < zk

1 < z2 < z2
2 < · · · < zk

2 < z3 < · · · < zk
s+2 < zs+3

with color f(zj
i ) = aj. Let rj

i = zj
i ∧ vs+3, i = 1, . . . , s + 2, j = 2, . . . , k. By Lemma 4.5,

the vertices vi, r
2
i , . . . , r

k
i , vi+1 lie on the r-vs+3 path in this order. For i = 2, . . . , s + 1,

rj
i must have color aj. As in the case (a), the containment of P is forced and the proof

of Theorem 4.1 is complete.

5 Some problems

The following result was proved in [1]. For any positive integer i,

Ex(aibiaibi, n) = O(n).

Together with the lower bound Ex(ababa, n) = Ω(nα(n)) due to Hart and Sharir [4],
this completely characterizes the sequences u with ‖u‖ ≤ 2 and Ex(u, n) = O(n): if
‖u‖ ≤ 2 then Ex(u, n) = O(n) iff u does not contain ababa. We want to extend this to
trees.

Problem 5.1 Let i be a fixed positive integer. Prove

ExT(aibiaibi, n) = O(n).
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In [8, 10] (also in the first version of this paper) the problem was posed to prove
ExT(abba, n) = O(n). Recently P. Valtr [16] proved an even stronger result:

ExT(aibiai, n) ≤ 24in.

Thus,
5n− 8 ≤ ExT(abba, n) ≤ 48n,

where the lower bound follows from a simple construction due to Ch. Vogt.

Problem 5.2 Determine ExT(abba, n) and ExT(abba, n, k) exactly.

It is not difficult to show that Ex(abba, n) = 3n − 2. In general, Ex(abba, n, k) =
2n− 1 + b(n− 1)/(k − 1)c (n ≥ k, see [9]).

The last problem considers the first superlinear extremal function.

Problem 5.3 Is it true that

ExT(ababa, n) = Θ(nα(n))?

Of course,
ExT(ababa, n) ≥ Ex(ababa, n) = N5(n) = Ω(nα(n)).

As to the upper bound, from the proof of Theorem 4.1 we know that ExT(ababa, n) =
O(Nt(n)) for a big t, say t = (59 − 1)7 + 1. In fact, already t = (57 − 1)5 + 1 = 390621
works. With more work one could probably get a much better result; we did not try to
optimize the value of ŝ in (6).
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