Counting Pattern-free set partitions I: A generalization of Stirling numbers of the second kind

Martin Klazar*
Katedra aplikované matematiky, Univerzita Karlova, Malostranské nám. 25, 11800 Praha, Czech Republic
and
Forschungsinstitut für Diskrete Mathematik, Rheinische Friedrich-Wilhelms-Universität Bonn, Lennéstr. 2, 53113 Bonn, Germany

[^0]
Set partitions I

Mailing address:

Martin Klazar
KAM, Charles University
Malostranské nám. 25
11800 Praha
Czech Republic
klazar@kam.ms.mff.cuni.cz

Abstract

A partition u of $[k]=\{1,2, \ldots, k\}$ is contained in another partition v of $[l]$ if $[l]$ has a k-subset on which v induces u. We are interested in counting partitions v not containing a given partition u or a given set of partitions R. This concept is related to that of forbidden permutations. A strengthening of Stanley-Wilf conjecture is proposed.

We prove that the GF counting v is rational if (i) R is finite and the number of parts of v is fixed or if (ii) u has only singleton parts and at most one doubleton part. In fact, (ii) is an application of (i). As another application of (i) we prove that for each k the GF counting partitions with k pairs of crossing parts belongs to $\mathbf{Z}(\sqrt{1-4 x})$.

1 Introduction

An n-permutation $b_{1} b_{2} \ldots b_{n}$, a permutation of $[n]=\{1,2, \ldots, n\}$, avoids an m-permutation $p=a_{1} a_{2} \ldots a_{m}$ if it has no subsequence $b_{i_{1}} b_{i_{2}} \ldots b_{i_{m}}$ such that $b_{i_{r}}<b_{i_{s}}$ iff $a_{r}<a_{s}$. The number of n-permutations avoiding p is $S_{n}(p)$. Similarly, $S_{n}(R)$ counts n-permutations avoiding each p from a set of permutations R. For R fixed and $n=1,2, \ldots$, determine $S_{n}(R)$. This is the problem of forbidden permutations that was introduced by Simion and Schmidt [22] and further investigated in, for example, [3, 4, 5, 25, 30]. (In the wqo theory, the avoidance of permutations was considered earlier in $[15,16]$.)

We propose a new class of similar enumerative problems based on set partitions. A partition $v=\left([l], \sim_{v}\right)$ given by its equivalence relation does not contain $u=\left([k], \sim_{u}\right)$, in symbols $v \nsucc u$, if there is no increasing injection $f:[k] \rightarrow[l]$ such that $i \sim_{u} j$ iff $f(i) \sim_{v} f(j)$. For u a partition, $P(u ; n, l)$ is the number of partitions of $[l]$ not containing u and having n parts. For R a set of partitions, $P(R ; n, l)$ is defined in an obvious way. The problem of forbidden partitions is, for R fixed and $n, l=1,2, \ldots$, to determine $P(R ; n, l)$.

Both problems are closely related. We encode the m-permutation $p=a_{1} a_{2} \ldots a_{m}$ by the partition u_{p} of $[2 m]$ with parts $\left\{i, m+a_{i}\right\}$. Then $S_{n}(p)$ is the number of the partitions u_{q} such that q is an n-permutation and $u_{q} \nsucc u_{p}$. In particular, $S_{n}(p) \leq P\left(u_{p} ; \cdot, 2 n\right)$ where $P(u ; \cdot, l)=\sum_{n \geq 1} P(u ; n, l)$. A conjecture due to R. Stanley and H. Wilf says that $S_{n}(p)=$ $O\left(c^{n}\right)$ for each p. (Recently, Bóna [5] confirmed it for many permutations.) We offer a stronger conjecture: $P\left(u_{p} ; \cdot, l\right)=O\left(c^{l}\right)$ for each permutation p. If true, it also holds for each u obtained from u_{p} by adding some singleton parts. Such a u will be called a sufficiently restrictive partition or, shortly, srp. By Example 1, srps are the only partitions u for which $P(u ; \cdot, l)$ may have an exponential upper bound.

Trivially, $S_{n}(12)=S_{n}(21)=1$. By [13, 22], $S_{n}(p)=\frac{1}{n+1}\binom{2 n}{n}$ for each 3-permutation p. It is more complicated to determine $S_{n}(p)$ for a 4-permutation, see [3]. Perhaps the complexity of $P(u ; \cdot, l)$ for srps with m doubletons is similar to that of $S_{n}(p)$ for $(m+1)$-permutations. To support the intuition, in Section 4 we prove that for each $\operatorname{srp} u$ with one doubleton the GF (generating function) $\sum_{l \geq 1} P(u ; \cdot, l) y^{l}$ is rational. Also, the GF for each of the two srps with two doubletons and no singletons satisfies a quadratic equation, see Examples 2 and 3.

We discuss the following topics. Section 2 introduces sequential representation of partitions. In Section 3 we prove Theorem 3.1 saying that for each n and finite R the GF
$\sum_{l \geq 1} P(R ; n, l) y^{l}$ is a rational function of a particular kind. The induction scheme used forces us to prove a more general Theorem 3.2. In the beginning of the proof its outline is given. Theorem 3.1 is used to prove Theorem 4.1 saying that each srp with one doubleton has a rational GF. It is not a surprising result but it may be of some interest as a first step in measuring the complexity of $P(u ; \cdot, l)$; the proofs in Section 4 are only sketched. In Section 5 we apply Theorem 3.2 to prove that the GF of partitions having a fixed number of pairs of crossing parts belongs to $\mathbf{Z}(x, \sqrt{1-4 x})=\mathbf{Z}(\sqrt{1-4 x})$; this complements [6]. In Section 6 we give additional comments and pose some problems.

Forbidden partitions might shed a new light on forbidden permutations. For partitions there goes in paralell a strong branch of extremal results (see Example 5). It might be of use to crossbreed the enumerative and extremal branches.

2 Notation and examples

A partition $u=\left([k], \sim_{u}\right)$ can be represented by a finite sequence $a_{1} a_{2} \ldots a_{k} \in S^{*}$ over an infinite alphabet S, where S contains $\mathbf{N}=\{1,2, \ldots\}$ and some letters a, b, c, \ldots, by choosing the sequence so that $i \sim_{u} j$ iff $a_{i}=a_{j}$. A mapping $f: S \rightarrow S$ acts on S^{*} in a natural way, $f\left(a_{1} a_{2} \ldots a_{k}\right)=f\left(a_{1}\right) f\left(a_{2}\right) \ldots f\left(a_{k}\right)$. If $u, v \in S^{*}$ and $u=f(v)$ for an injection f, we say that u and v are equivalent. Partitions correspond to blocks of equivalent sequences. In sequel, this representation of partitions will be used.

For $u \in S^{*},|u|$ is the length of $u, S(u) \subset S$ is the set of symbols used in u, and $\|u\|$ is the cardinality of $S(u)$ (i.e., the number of parts). Clearly, $u \prec v$ means that u is equivalent to a subsequence of v. Such a subsequence will be called a u-copy. Each block of equivalent sequences contains a unique canonical sequence, a sequence u such that (i) $S(u)=[n]$ and (ii) for each pair $1 \leq i<j \leq n$ the first occurrence of i in u precedes that of j. To canonize v means to replace it by the equivalent canonical sequence.

We remind that $P(R ; n, l)$ counts canonical v such that $|v|=l,\|v\|=n$, and $v \nsucc u$ for each $u \in R$. The corresponding GF is denoted by

$$
G(R ; x, y)=\sum_{n, l \geq 1} P(R ; n, l) x^{n} y^{l}
$$

For simplicity, when possible we let the parameter n unrestricted and consider only the quantities $P(R ; \cdot, l)$ and $G(R ; 1, y)$. If $u \prec v$ then $P(u ; n, l) \leq P(v ; n, l)$. If \bar{u} is the reversal of
u then $P(\bar{u} ; n, l)=P(u ; n, l)$. The proofs of the formulas in the following example are easy and thus omitted.

Example 1. With $(2 j-1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 j-1)$ and the convention $(-1)!!=1$ we have

$$
P(a a a ; \cdot, l)=\sum_{j=0}^{\lfloor l / 2\rfloor}(2 j-1)!!\binom{l}{2 j} .
$$

As for $u=a a b b$, we have

$$
P(a a b b ; \cdot, l)=\sum_{k \geq 0, p \geq 3}^{p+2 k \leq l}(k+1)^{2}\binom{l}{p+2 k} k!+\sum_{k=0}^{\lfloor l / 2\rfloor}\binom{l}{2 k} k!
$$

Both $P(a a a ; \cdot, l)$ and $P(a a b b ; \cdot, l)$ grow faster than any c^{l}. It is obvious already from the fact that $u_{p} \nsucc a a a, a a b b$ for each p. The sequences $a a a$ and $a a b b$ are probably the only sequences u which have a superexponential $P(u ; \cdot, l)$ and are minimal (to \prec) with this property.

We remind that the srps are sequences containing neither $a a a$ nor $a a b b$. By Example 1, each nonsrp u has a superexponential $P(u ; \cdot, l)$. Examples of srps: 1234256 and $a b c b c d a$. If $u \prec v$ for a $\operatorname{srp} v, u$ is a srp as well. The only srps with two doubletons and no singletons are $a b a b$ and $a b b a$. Their GF's are as follows.

Example 2. Let $u=a b a b$. A canonical $v, v \nsucc a b a b$ splits uniquely in $v=1 v_{1} v_{2}$ so that $1 \notin S\left(v_{1}\right)$ and v_{2} starts with 1 if nonempty. Then $v_{i} \nsucc a b a b, v_{i}$ may be empty, and $S\left(v_{1}\right) \cap S\left(v_{2}\right)=\emptyset$. On the other hand, any choice of such v_{i} 's is admissible. Thus, $G(a b a b ; 1, y)=y(1+G(a b a b ; 1, y))^{2}$. We obtain the classical results $[2,14]$

$$
G(a b a b ; 1, y)=\frac{1-2 y-\sqrt{1-4 y}}{2 y} \text { and } P(a b a b ; \cdot, l)=\frac{1}{l+1}\binom{2 l}{l}
$$

Partitions not containing $a b a b$ are now called noncrossing partitions. At first they were investigated by Kreweras [14] and Poupard [17]. They appear in geometric extremal problems [8, 10], poetry [2], probability theory [24], molecular biology [28, 29], enumerative bijections [7, 18], and combinatorics of the partitions lattice [14, 21, 23]; the list of references is not exhaustive. $P(a b a b ; \cdot, l)=O\left(c^{l}\right)$ and the right constant is $c=4$.

Example 3. For $u=a b b a$ the GF equals, see [11],

$$
G(a b b a ; 1, y)=\frac{-y+3 y^{2}-2 y^{3}-y \sqrt{1-2 y-3 y^{2}}}{-2+8 y-6 y^{2}+2 y^{3}}
$$

Again $P(a b b a ; \cdot, l)=O\left(c^{l}\right)$. The right constant is $c=1 / \gamma=3.14790 \ldots, \gamma>0$ being the root of $y^{3}-3 y^{2}+4 y-1$ closest to the origin.

3 Fixed number of parts

Example 4. In our notation Stirling numbers of the second kind are $P(\emptyset ; n, l)$. Since the canonical v 's with $\|v\|=n$ arise from $12 \ldots n$ by inserting a $v_{1} \in\{1\}^{*}$ between 1 and 2 , a $v_{2} \in\{1,2\}^{*}$ between 2 and $3, \ldots$, and a $v_{n} \in\{1,2, \ldots, n\}^{*}$ after n, we have

$$
\sum_{l \geq 1} P(\emptyset ; n, l) y^{l}=\frac{y^{n}}{(1-y)(1-2 y) \cdots(1-n y)}
$$

The following theorem generalizes this classical result.
Theorem 3.1 For each $n \in \mathbf{N}$ and finite $R \subset S^{*}$,

$$
\sum_{l \geq 1} P(R ; n, l) y^{l}=\frac{a(y)}{(1-y)^{r_{1}}(1-2 y)^{r_{2}} \cdots(1-t y)^{r_{t}}}
$$

where $a(y) \in \mathbf{Z}[y], r_{i} \geq 0, t=\min (n, k)$, and $k=\min _{u \in R}\|u\|-1$. For $k=0$ the denominator is 1 .

In particular, for $k=0$ the GF is a polynomial from $\mathbf{Z}[y]$; this is obvious. For $k=1$ the function $P(R ; n, l)$ is a polynomial from $\mathbf{Q}[l]$. We look at the cases $R=\{a b a b\}$ and $R=\{a b a b a\}$ when $k=1$.

Example 5. It is well known [14] that

$$
P(a b a b ; n, l)=\frac{1}{l-n+1}\binom{l}{n}\binom{l-1}{n-1}
$$

a polynomial in l of degree $2 n-2$. What changes if $R=\{a b a b a\}$? Sequence $w=a_{1} a_{2} \ldots a_{l}$ is called sparse if $a_{i} \neq a_{i+1}$ for each i. Sequences $v, v \nsucc a b a b a$ arise from a sparse $w, w \nsucc a b a b a$ by arbitrarily replacing terms of w by intervals of occurrences of the same symbol. Let p_{j} be the number of nonequivalent sparse w 's, $\|w\|=n$ and $|w|=j$, not containing $a b a b a$, and $N_{5}(n)=\max \left\{j: p_{j} \neq 0\right\}$. (By Lemma 3.3, $N_{5}(n)=O\left(n^{2}\right)$.) Clearly, $P(a b a b a ; n, l)$ is the coefficient at y^{l} in

$$
\sum_{j=n}^{N_{5}(n)} \frac{p_{j} y^{j}}{(1-y)^{j}}
$$

a polynomial in l of degree $N_{5}(n)-1$. Unlike the analogous extremal function $N_{4}(n)=2 n-1$ for $a b a b$, the function $N_{5}(n)$ is difficult to handle. Here we mention only the estimate $\frac{1}{2} n \alpha(n)-2 n<N_{5}(n)<2 n \alpha(n)+O\left(n \alpha(n)^{1 / 2}\right)$, where $\alpha(n)$ is the extremely slowly growing inverse of the Ackermann function. For the lower and upper bound consult [31] and [12], respectively. More information on the Davenport-Schinzel sequences, of which w is a particular case, can be found in [20].

Outline of the proof of Theorem 3.1. Suppose first $R=\{u\}$. We want to use induction on $|u|$. To count the v 's such that $\|v\|=n$ and $v \nsucc u$, we split v in $v=v_{1} v_{2} \ldots v_{r}$ so that the v_{i} 's are subject to simpler constraints and can be chosen independently. A u-copy appears then in v iff u splits in $u=u_{1} u_{2} \ldots u_{r}$ so that there is a u_{i}-copy of certain type in v_{i}. We are forced to consider a stronger induction statement involving any finite R and, for each $u \in R$, prescribed types of the u-copies in v. This is formulated in Theorem 3.2 and the preceding definitions. We work with a special R (ideal), because for induction it is better to have R closed to subsequences. Theorem 3.1 follows from Theorem 3.2 simply by summing all cases. The stronger restriction of the denominator is established in Lemmas 3.3 and 3.4. The inductive proof of Theorem 3.2 is started by Lemma 3.5, a variation on Example 4. Then we describe how the u_{i}-copies in $v_{1} v_{2} \ldots v_{r}$ merge in a u-copy. Lemma 3.6 states a property of merging. Then we define the splitting $v=v_{1} v_{2} \ldots v_{r}$ and in Lemma 3.7 state its key property. In Lemmas 3.8, 3.9, and the concluding argument we perform the induction step.

A finite $I \subset S^{*}$ is an ideal if each $u, u \prec v \in I$, is equivalent to some $w \in I$. Let $w=b_{i_{1}} b_{i_{2}} \ldots b_{i_{k}}$ be a subsequence of $v=b_{1} b_{2} \ldots b_{l}$ equivalent to $u=a_{1} a_{2} \ldots a_{k}$. The type of the u-copy w in v is the injection $f:[\|u\|] \rightarrow[\|v\|]$ defined by canonizing u and v and then setting $f\left(a_{j}\right)=b_{i_{j}}$. So type is the injection that maps the position of every symbol in w to its position in v. Several u-copies may have the same type. All types of all u-copies in v form the set $T(u, v)$. For example,

$$
T(a b a b, 4332421141)=\{\{(1,1),(2,3)\},\{(1,3),(2,1)\},\{(1,1),(2,4)\}\}
$$

and there are six abab-copies in 4332421141.
Let, for $n \in \mathbf{N}$ and $R \subset S^{*}, \mathcal{F}(R, n)$ be the set of all mappings F such that F is defined on R and $F(u), u \in R$, is a set of injections from $[\|u\|]$ to $[n]$.

Theorem 3.2 Let $n \in \mathbf{N}$, I be an ideal, $F \in \mathcal{F}(I, n)$, and $P(I, F ; n, l)$ count all canonical v satisfying $\|v\|=n,|v|=l$, and $T(u, v)=F(u)$ for each $u \in I$. Then

$$
\sum_{l \geq 1} P(I, F ; n, l) y^{l}=\frac{a(y)}{(1-y)^{r_{1}}(1-2 y)^{r_{2}} \cdots(1-n y)^{r_{n}}},
$$

where $a(y) \in \mathbf{Z}[y]$ and $r_{i} \geq 0$.
Any finite $R \subset S^{*}$ is easily completed to an ideal $I \supset R$. Then $P(R ; n, l)=$ $\sum_{F} P(I, F ; n, l)$, summed over all $F \in \mathcal{F}(I, n)$ such that $F \equiv \emptyset$ on R, and Theorem 3.1
follows, with the denominator $(1-y)^{r_{1}} \cdots(1-n y)^{r_{n}}$. The same argument shows that Theorem 3.2 holds with R instead of I as well. The remaining part of Theorem 3.1, the restriction of the denominator, follows if we show that for every $u \in S^{*}$ and $n \in \mathbf{N}$ we have $P(u ; n, l)=o\left(\|u\|^{l}\right)$. We prove it in the next two lemmas.

For $v \in S^{*}$ and $m \in \mathbf{N}$ consider the m-splitting $v=v_{1} v_{2} \ldots v_{r}$, where v_{1} is the longest initial interval with $\left\|v_{1}\right\| \leq m, v_{2}$ is the longest interval following v_{1} with $\left\|v_{2}\right\| \leq m$ and so on. Thus, $\left\|v_{1}\right\|=\cdots=\left\|v_{r-1}\right\|=m,\left\|v_{r}\right\| \leq m$, and the splitting is unique.

Lemma 3.3 If $v,\|v\|=n$ has the m-splitting with at least

$$
2(s-1)\binom{n}{m+1}+2
$$

intervals, then v contains each u satisfying $\|u\| \leq m+1$ and $|u| \leq s$.
Proof. Let $v=v_{1} v_{2} \ldots v_{r}$ be the m-splitting. We have $\left\|v_{i} v_{i+1}\right\| \geq m+1$ for each i and we select a subset $X_{i} \subset S\left(v_{i} v_{i+1}\right),\left|X_{i}\right|=m+1$. By the pigeonhole principle, $X_{2 i_{1}-1}=$ $X_{2 i_{2}-1}=\cdots=X_{2 i_{s}-1}$ for some s indices $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq r / 2$. Taking from each $v_{2 i_{j}-1} v_{2 i_{j}}$ an appropriate term, we create a u-copy in v.

Lemma 3.4 For every $n \in \mathbf{N}$ and $u \in S^{*}$ we have $P(u ; n, l)=O\left(l^{h-1}(\|u\|-1)^{l}\right)$; the constant in O and h depend only on n and u.

Proof. Suppose that $v \nsucc u,\|v\|=n,\|u\|=m+1$, and $v=v_{1} v_{2} \ldots v_{r}$ is the m-splitting. By the previous lemma, $r \leq h=h(u, n)$. Once the sets $S\left(v_{i}\right)$ are chosen, there are at most m^{l} possibilities for each $v_{i},\left|v_{i}\right|=l$. To account for v_{r} (since $\left\|v_{r}\right\| \leq m$) we multiply the bound by the factor m. Hence, $P(u ; n, l) \leq$ the coefficient at y^{l} in

$$
m \sum_{r=1}^{h} \frac{\binom{n}{m}^{r}}{(1-m y)^{r}},
$$

which is $O\left(l^{h-1} m^{l}\right)$.

Therefore if $u \in R$ attains the minimum $\|u\|$, the denominator cannot have a root smaller than $\frac{1}{\|u\|-1}$. This finishes the proof of Theorem 3.1.

The proof of Theorem 3.2 goes by induction on $|I|$ and starts with the ideal $I(r)=$ $\{a, a a, a a a, \ldots, a a \ldots a\}$, the last sequence of a 's having length r.

Lemma 3.5 For each $r, n \in \mathbf{N}$ and $F \in \mathcal{F}(I(r), n)$,

$$
\sum_{l \geq 1} P(I(r), F ; n, l) y^{l}=\frac{a(y)}{(1-y)^{r_{1}}(1-2 y)^{r_{2} \cdots(1-n y)^{r_{n}}}}
$$

where $a(y) \in \mathbf{Z}[y]$ and $r_{i} \geq 0$.
Proof. Let $G(\bar{x} ; y)$, where $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in[r-1] \cup\left\{r^{+}, 1^{+}\right\}$, be the GF counting by length the canonical $v,\|v\|=n$, with x_{i} occurrences of $i\left(1^{+}\right.$means any number ≥ 1 and similarly for $\left.r^{+}\right)$. By the definitions, the above GF equals $G(\bar{x} ; y)$ for some \bar{x} with no $x_{i}=1^{+}$. (Or it is identically 0 , if the conditions imposed by F are contradictory.) Each such $G(\bar{x} ; y)$ equals, by the principle of inclusion and exclusion, $\sum \pm G(\bar{x} ; y)$ for some \bar{x} 's with no $x_{i}=r^{+}$. It suffices to show that each $G(\bar{x} ; y)$ for \bar{x} with no $x_{i}=r^{+}$has the stated form.

By Example 4, the GF of canonical v 's, in which y counts length and y_{i} counts the occurrences of i, is

$$
G\left(y, y_{1}, \ldots, y_{n}\right)=\frac{y^{n} y_{1} \cdots y_{n}}{\left(1-y y_{1}\right)\left(1-y y_{1}-y y_{2}\right) \cdots\left(1-y y_{1}-y y_{2}-\cdots-y y_{n}\right)}
$$

Thus, if $x_{1}, \ldots, x_{k} \in[r-1]$ and $x_{k+1}=\cdots=x_{n}=1^{+}, G(\bar{x} ; y)$ equals

$$
\frac{\partial^{x_{1}+\cdots+x_{k}} G\left(y, y_{1}, \ldots, y_{n}\right)}{x_{1}!\cdots x_{k}!\partial y_{1}^{x_{1}} \cdots \partial y_{k}^{x_{k}}}
$$

evaluated at $y_{1}=\cdots=y_{k}=0, y_{k+1}=\cdots=y_{n}=1$; similarly for other \bar{x} 's. It follows that $G(\bar{x} ; y)$ has the required form.

A merging scheme on $\left(n_{1}, \ldots, n_{r}\right)$ is a partition $M=\left(\bigcup_{i=1}^{r}\left(\left[n_{i}\right] \times\{i\}\right), \sim\right)$ such that $\left|P \cap\left(\left[n_{i}\right] \times\{i\}\right)\right| \leq 1$ for each part P and each i. Each splitting $v=v_{1} v_{2} \ldots v_{r}$ defines a merging scheme on $\left(\left\|v_{1}\right\|, \ldots,\left\|v_{r}\right\|\right)$ in which $\left(m_{i}, i\right) \sim\left(m_{j}, j\right)$ iff the m_{i} th symbol of v_{i} equals the m_{j} th symbol of v_{j}. (The m_{i} th symbol of v_{i} is the $a \in S\left(v_{i}\right)$ that turns in m_{i} when v_{i} is canonized.) In the other way, if $\left(v_{1}, \ldots, v_{r}\right)$ is an r-tuple of sequences and M is a merging scheme on $\left(\left\|v_{1}\right\|, \ldots,\left\|v_{r}\right\|\right)$, there is a unique canonical sequence $v=M\left(v_{1}, \ldots, v_{r}\right)$ that can be split in $w_{1} w_{2} \ldots w_{r}$ so that each w_{i} is equivalent to v_{i} and the merging scheme defined by the splitting equals M. (To obtain v, for each part P of M and each $\left(m_{i}, i\right) \in P$ replace the occurrences of the m_{i} th symbol in v_{i} by the common symbol x_{P}. Concatenate the resulting v_{i} and canonize.) For instance, if M partitions $\bigcup_{i=1}^{3}([2] \times\{i\})$ in $\{(1,1),(1,3)\}$, $\{(2,1),(1,2),(2,3)\}$, and $\{(2,2)\}$, then $M(b a b, 5 a a, 1155)=1212331122$.

Clearly, $\left\|M\left(v_{1}, \ldots, v_{r}\right)\right\|=|M|$. Notice also that if M is defined by the splitting $v=$ $v_{1} v_{2} \ldots v_{r}$ then $M\left(v_{1}, \ldots, v_{r}\right)$ is just the canonization of v.

Lemma 3.6 Let $v=M\left(v_{1}, \ldots, v_{r}\right)$ and $w=M\left(w_{1}, \ldots, w_{r}\right)$, for the same merging scheme M.

1. Let u_{i}^{v} and u_{i}^{w} be subsequences of v_{i} and w_{i} such that, for each i, u_{i}^{v} and u_{i}^{w} are equivalent and of the same type. The subsequence u^{v} of v, which takes the same positions in v as are those taken by the u_{i}^{v} 's in $v_{1} v_{2} \ldots v_{r}$, is equivalent to and of the same type as the analogous subsequence u^{w} of w.
2. Let I be an ideal. If $T\left(u, v_{i}\right)=T\left(u, w_{i}\right)$ for each $u \in I$ and each i, then $T(u, v)=$ $T(u, w)$ for each $u \in I$.

Proof. 1 is immediate. To prove 2, consider an $f \in T(u, v)$ for a $u \in I$. Injection f is the type of a u-copy t^{v} in v and t^{v} is composed from some subsequences t_{i}^{v} of v_{i}. By the assumption (each t_{i}^{v} is equivalent to some $s_{i} \in I$), there exist subsequences t_{i}^{w} of w_{i} which are equivalent to t_{i}^{v} and are of the same type. The subsequence t^{w} of w proves, by 1 , that $f \in T(u, w)$ as well. The converse is proved similarly, so $T(u, v)=T(u, w)$.

Notice that the lemma and the whole proof works even for $I \subset S^{*}$ closed only to contiguous subsequences (intervals).

Suppose $v \in S^{*}, X \subset S(v),|X| \geq 2$, and $s \in \mathbf{N}$. In the (s, X)-splitting $v=v_{1} v_{2} \ldots v_{r}, v_{1}$ is the unique initial interval such that $\left|X \cap S\left(v_{1}\right)\right|=|X|-1$ and the only symbol of X missing in v_{1} appears immediately after v_{1}, v_{2} is the unique interval following after v_{1} with the same property and so on. The splitting is terminated if $X \not \subset S(w)$ for the residual interval w or if s intervals $v=v_{1} v_{2} \ldots v_{s-1} w$ have been already defined. Thus, $r \leq s$ and the splitting is unique.

Notice that if v and w are canonical and $v=v_{1} v_{2} \ldots v_{r}$ and $w=w_{1} w_{2} \ldots w_{t}$ define the same merging scheme (in particular, $r=t$), then the former splitting is the (s, X)-splitting of v if and only if the latter spliting is the (s, X)-splitting of w.

Lemma 3.7 Suppose $v \in S^{*}$ is canonical, $u \in S^{*}$, and $f:[\|u\|] \rightarrow S(v)$ is an injection. Let $X=\operatorname{Im}(f), v=v_{1} v_{2} \ldots v_{r}$ be the (s, X)-splitting, and $2|u| \leq s$. If there is a u-copy in v of type f that is contained in a single v_{j} then there is another u-copy of type f that is not contained in a single v_{i}.

Proof. We can suppose that $u=a_{1} a_{2} \ldots a_{t}$ is canonical. If the assumption is fulfilled then, by the definition of (s, X)-splitting, inevitably $j=r=s$. But then, since $X \subset S\left(v_{i} v_{i+1}\right)$ for
each i, we choose an occurrence of $f\left(a_{1}\right)$ in $v_{1} v_{2}$, an occurrence of $f\left(a_{2}\right)$ in $v_{3} v_{4}$ etc. and obtain a u-copy of type f that is split into several v_{i} 's.

Suppose that J is an ideal and $n \geq m \geq 2, s>0$ are integers. For every $v \in S^{*},\|v\|=n$ we define a color C of v, which will be a triple determined uniquely by v, J, n, m, and s. For each X an m-subset of $S(v)$ we consider the $(2 s, X)$-splitting $v=v_{1}^{X} v_{2}^{X} \ldots v_{r(X)}^{X}$. Superposing all these $\binom{n}{m}$ splittings, we obtain a unique superposed splitting $v=v_{1} v_{2} \ldots v_{r}$. Let M be the merging scheme defined by it. We define $n_{i}=\left\|v_{i}\right\|$ and $F_{i} \in \mathcal{F}\left(J, n_{i}\right)$ as having on $u \in J$ the value $T\left(u, v_{i}\right)$; notice that $n_{1}=m-1$ and $|M|=n$. The color of v is the triple $C=\left(\left(n_{1}, \ldots, n_{r}\right), M,\left(F_{1}, \ldots, F_{r}\right)\right)$.

It is clear that $n_{i} \leq n$ (in fact, for $i<r$ even $n_{i} \leq m-1$), $r \leq 2 s\binom{n}{m}$, and $F_{i} \in \mathcal{F}\left(J, n_{i}\right)$. Thus - for given J, n, m, and s - the number of all possible colors is finite. Equivalent sequences have the same color. Let S_{C}^{*} be the set of all v with color C. The sets S_{C}^{*} are disjoint and their number is finite.

Now we perform the induction step. We are given an $n \in \mathbf{N}$, an ideal I that is different from $I(r)$ (case $I=I(r)$ was settled in Lemma 3.5), and a mapping $F \in \mathcal{F}(I, n)$. There is a $z \in I$ that is maximal (to \prec) and satisfies $\|z\| \geq 2$. Hence, $I \backslash\{z\}$ is an ideal for which Theorem 3.2 holds for any $n^{\prime} \leq n$ and any $F^{\prime} \in \mathcal{F}\left(I \backslash\{z\}, n^{\prime}\right)$. We set $J=I \backslash\{z\}, m=\|z\|$, $s=|z|$, and consider colors and sets S_{C}^{*} corresponding to these J, n, m, and s. (We can assume that $n \geq m$, otherwise we are done.)

Lemma 3.8 If $w_{1}, w_{2} \in S_{C}^{*}$ then $T\left(u, w_{1}\right)=T\left(u, w_{2}\right)$ for each $u \in I$.

Proof. The claim follows at once from 2 of Lemma 3.6 if $u \in J$. It remains to verify it for $u=z$. W.l.o.g., w_{1} and w_{2} are canonical. Consider any $f \in T\left(z, w_{1}\right)$. We claim that there is always a z-copy in w_{1} of type f that is split into several intervals in the the superposed splitting; the pieces must be then equivalent to sequences in J. By Lemma 3.7, there is even such a copy that is split already in the $(2 s, X)$-splitting of w_{1} with $X=\operatorname{Im}(f)$. By the definition of color and by 1 of Lemma 3.6, $f \in T\left(z, w_{2}\right)$. The converse is proved similarly, so $T\left(z, w_{1}\right)=T\left(z, w_{2}\right)$.

Lemma 3.9 The canonical sequences $v \in S_{C}^{*}$, where $C=\left(\left(n_{1}, \ldots, n_{r}\right), M,\left(F_{1}, \ldots, F_{r}\right)\right)$, are in bijection with the r-tuples $\left(w_{1}, \ldots, w_{r}\right)$ of canonical sequences satisfying $\left\|w_{i}\right\|=n_{i}$, $T\left(u, w_{i}\right)=F_{i}(u)$ for each $u \in J$, and $|v|=\left|w_{1}\right|+\cdots+\left|w_{r}\right|$.

Proof. Each canonical $v \in S_{C}^{*}$ is sent to $\left(v_{1}^{c}, \ldots, v_{r}^{c}\right)$, where v_{i}^{c} is the canonized i th interval of the superposed splitting of v. In the other way, $\left(w_{1}, \ldots, w_{r}\right)$ is sent to $v=M\left(w_{1}, \ldots, w_{r}\right)$. By the paragraphs before Lemmas 3.6 and 3.7, both correspondences are inverses of one another. (More precisely, we use that the remark before Lemma 3.7 applies also to the superposed splittings.)

Finally, let \mathcal{G} be the set of all colors C for which the mapping sending $u \in I$ to $T(u, v)$, where $v \in S_{C}^{*}$ is arbitrary (by Lemma 3.8 this makes sense), equals the prescribed mapping F. Let $G(n, I, F ; y)$ be the GF introduced in Theorem 3.2. By Lemma 3.9,

$$
G(n, I, F ; y)=\sum_{C \in \mathcal{G}} G\left(n_{1}, J, F_{1} ; y\right) G\left(n_{2}, J, F_{2} ; y\right) \cdots G\left(n_{r}, J, F_{r} ; y\right)
$$

By the induction hypothesis on $G\left(n_{i}, J, F_{i} ; y\right), G(n, I, F ; y)$ is as stated. This finishes the proof of Theorem 3.2.

4 One doubleton

In Sections 4 and $5 n$ is not restricted. By Examples 2 and 3, in general we cannot expect $G(u ; 1, y)$ be rational if the $\operatorname{srp} u$ has more than one doubleton. To complement this, we sketch the proof of the following result.

Theorem 4.1 If u is a srp with at most one doubleton then $G(u ; 1, y) \in \mathbf{Z}(y)$.

If u has only singletons, the GF is rational by Example 4. Srp with one doubleton has the form $u(r, s, t)=a_{1} \ldots a_{r} b a_{r+1} \ldots a_{r+s} b a_{r+s+1} \ldots a_{r+s+t}$, for some distinct $a_{i}, b \in S$ and $0 \leq r, s, t$. First we indicate the proof for the case $r=t=0$. Then we describe how the full result can be proved using that case and a refinement of Theorem 3.1. In Example 6 we calculate the GF for $u(0,2,0)$.

Let $u(s)=u(0, s, 0)=a b_{1} \ldots b_{s} a$. For $v \in S^{*}, E(v)$ denotes the subsequence of v that consists of the first and last appearances of all $a \in S(v)$.

Lemma 4.2 If $u(s) \prec v$ then $u(s) \prec E(v)$.
Proof. Let $a_{1}=a_{2}=a$ be the first and last term of a $u(s)$-copy in v and $X \subset S(v), a \notin$ $X,|X|=s$ be the set of some s symbols appearing between a_{1} and a_{2}. We can assume that both a_{i} lie in $E(v)$. Let $Y \subset X$ be the symbols that have neither the first nor the last
appearance between a_{1} and a_{2}. If $Y=\emptyset$ we easily form a $u(s)$-copy lying in $E(v)$. Otherwise let $b \in Y$ have the earliest first appearance of all $x \in Y$. The first and last appearance of b, the first appearances of $x \in Y \backslash\{b\}, a_{1}$, and first or last appearance of each $x \in X \backslash Y$ (the one lying between a_{1} and a_{2}) form a $u(s)$-copy in $E(v)$.

Suppose $v \nsucc u(s)$ and consider the $(s+1)$-splitting $v=v_{1} v_{2} \ldots v_{t}$. Clearly, $S\left(v_{i}\right) \cap S\left(v_{j}\right)=$ \emptyset whenever $j-i>1$. Let $w=w_{1} w_{2} \ldots w_{t}$ where $w_{i}=v_{i} \cap E(v)$. Note that (i) there is only a finite number of possibilities for w_{i} 's, (ii) v can be obtained back from w by filling the gaps in w arbitrarily (Lemma 4.2), and (iii) the admissible w 's are determined only by some local restrictions on the consecutive pairs $w_{i} w_{i+1}$. By the transfer matrix method (see Chapter 4 of $[26]), G(u(s) ; 1, y)$ is a rational function.

For the full Theorem 4.1 we need a variant of Theorem 3.1. Let $n \in \mathbf{N}$ and $z \in S^{*}$ be such that $z \nsucc a a a$ and $\|z\|=n$. Let $P(R, z ; n, l)$ count the canonical v such that $\|v\|=n$, $|v|=l, v \nsucc u$ for each $u \in R$, and $E(v)$ is equivalent to z. Modifying the proof in Section 3, we can prove a refinement of Theorem 3.1 with $P(R ; n, l)$ replaced by $P(R, z ; n, l)$.

Suppose $v \nsucc u(r, s, t)$. The end symbols $x \in S(v)$ are the 1 st, 2 nd, \ldots, and $(r+t)$ th symbol of v and of the reversed v; we have $\leq 2(r+t)$ end symbols. The other symbols are called middle symbols. Let w be the subsequence of v formed only by the middle symbols. Clearly, $w \nsucc u(s)$. Let $w=w_{1} w_{2} \ldots w_{j}$ be the $(s+1)$-splitting and v_{i} be the interval of v spanned by w_{i}. If no end symbol appears in v_{i}, we call it pure; then $v_{i}=w_{i}$. The number of nonpure v_{i} 's is $\leq n_{0}=n_{0}(r+s+t)$. For an $n_{1}>0$ we add to each nonpure v_{i} n_{1} neighbouring (possibly pure) v_{k} 's and obtain this way a subsequence v^{\prime} of v with these properties: (i) $\left\|v^{\prime}\right\| \leq n_{2}$ and (ii) the ways in which v^{\prime} can be extended to v by adding pure v_{i} 's depend only on $E\left(v^{\prime}\right)$. Given $E\left(v^{\prime}\right)$, the extensions can be counted as in the $r=t=0$ case and the corresponding GF is rational. The GF counting v^{\prime} 's with a fixed $E\left(v^{\prime}\right)$ is also rational, by the refinement of Theorem 3.1 used with $R=\{u(r, s, t)\}$. Summing the products over all possible $E\left(v^{\prime}\right)$'s we infer that $G(u(r, s, t) ; 1, y) \in \mathbf{Z}(y)$.

Example 6. We calculate $G(u(2) ; 1, y)=G(a b c a ; 1, y)$. Let $v, v \nsucc a b c a$ be canonical and irreducible, that is $v=v_{1} v_{2}$ with $S\left(v_{1}\right) \cap S\left(v_{2}\right)=\emptyset$ implies $v_{1}=\emptyset$ or $v_{2}=\emptyset$. If $G_{I}(y)$ is the GF counting such v 's, then $G(a b c a ; 1, y)=G_{I}(y) /\left(1-G_{I}(y)\right)$. It is easy to verify that such v 's are the sequences in $\{1,2\}^{*}$ starting with 1 and distinct from $11 \ldots 122 \ldots 2$. We have
$2^{l-1}-l+1$ of them of length l and $G_{I}(y)=y\left(1-3 y+3 y^{2}\right)(1-2 y)^{-1}(1-y)^{-2}$. Thus,

$$
G(a b c a ; 1, y)=\frac{y\left(1-3 y+3 y^{2}\right)}{1-5 y+8 y^{2}-5 y^{3}}
$$

We have also determined $G(u(3) ; 1, y)$:

$$
G(a b c d a ; 1, y)=\frac{y\left(1-11 y+49 y^{2}-112 y^{3}+138 y^{4}-87 y^{5}+20 y^{6}\right)}{1-13 y+70 y^{2}-202 y^{3}+336 y^{4}-321 y^{5}+163 y^{6}-32 y^{7}}
$$

We leave the verification of the formula to the interested reader as an exercise.

5 Fixed number of crossings

Bóna [6] proved that the GF counting partitions with a fixed number of $a b a b$-copies belongs to $\mathbf{Z}(\sqrt{1-4 y})$. We show that the same is true for partitions with a fixed number of pairs of crossing parts. The crossing graph $\mathcal{G}(u)$ of $u=([l], \sim)$ has parts of u as vertices and $\{P, Q\}$ is an edge iff there is an abab-copy lying in $P \cup Q$.

Theorem 5.1 For each k the GF

$$
G(k ; y)=\sum_{l \geq 1} \#\{u=([l], \sim): \mathcal{G}(u) \text { has } k \text { edges }\} \cdot y^{l}
$$

belongs to $\mathbf{Z}(\sqrt{1-4 y})$.

In particular, the numbers of partitions in question form a P-recursive sequence; see [27] for more information on P-recursiveness.

The proof is based on two lemmas. The first lemma is a part of folklore and its easy proof is omitted.

Lemma 5.2 Let $A, B \subset V(\mathcal{G}(u))$ be two distinct components of $\mathcal{G}(u)$. Then one of the sets $\bigcup A$ and $\bigcup B$ (subsets of $[l]$) precedes the other or one of them is contained in a gap of the other.

If $\bigcup A$ is contained in a gap of $\bigcup B$ we say that B covers A.

Lemma 5.3 For each k the GF

$$
G(c, k ; y)=\sum_{l \geq 1} \#\{u=([l], \sim): \mathcal{G}(u) \text { is connected and has } k \text { edges }\} \cdot y^{l}
$$

belongs to $\mathbf{Z}(y)$.

Proof. The partitions involved have at most $k+1$ parts. The proof follows from Theorem 3.2 by setting $R=\{a b a b\}$ and summing all cases.

Let $C_{j}(y)$ be the GF counting by $|u|$ the pairs $\left(u,\left(i_{1}, \ldots, i_{j}\right)\right)$ where u is a noncrossing partition, $0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{j} \leq|u|$, and $u=\emptyset$ is allowed. Thus, $C_{0}(y)=1+G(a b a b ; 1, y)$ is given in Example 2 and $C_{1}(y)=y C_{0}^{\prime}(y)+C_{0}(y)$. Since $C_{j}(y)$ expresses in terms of derivatives of $C_{0}(y), C_{j}(y) \in \mathbf{Z}(\sqrt{1-4 y})$ for each j. Similarly, let $G_{j}(c, k ; y)$ count the pairs $\left(u,\left(i_{1}, \ldots, i_{j}\right)\right)$ where $\mathcal{G}(u)$ is connected and has k edges and $1 \leq i_{1}<\cdots<i_{j}<|u|$. Using derivatives and Lemma 5.3, we see that $G_{j}(c, k ; y) \in \mathbf{Z}(y)$ for each j.

Consider a u and the graph $\mathcal{G}(u)$. Components distinct from isolated vertices are the nontrivial components. The top components are the nontrivial components that are not covered by any nontrivial component. Let X be the set of the isolated vertices that are not covered by any nontrivial component. By Lemma 5.2, u has the following structure.

Some of the sets $\bigcup A_{i}$, where A_{1}, \ldots, A_{m} are the top components listed so that $\bigcup A_{i}$ precedes $\bigcup A_{i+1}$, are inserted in (not necessarily distinct) gaps of the noncrossing partition $\bigcup X$ and the remaining ones precede $\bigcup X$ or follow after it. Suppose A_{i} spans $k_{i}^{0}>0$ edges. $\bigcup A_{i}$ has $r(i) \geq 0$ special gaps each of which contains a subgraph spanning $k_{i}^{j}>0$ edges, $j=1, \ldots, r(i)$ (we list the gaps from left to right). The remaining gaps contain only isolated vertices, i.e. a noncrossing partition. Each component of $\mathcal{G}(u)$ not in $\left\{A_{1}, \ldots, A_{m}\right\} \cup X$ is covered by an A_{i} and lies in a special gap if it is nontrivial.

We prove Theorem 5.1 by induction on k. For $k=0$ it holds because $G(0 ; y)=(1-$ $\left.2 y-(1-4 y)^{1 / 2}\right) /(2 y)$, see Example 2. Suppose that $k>0$ and the theorem holds for each smaller k^{\prime}. The problem breaks in finitely many disjoint cases according to the tuples $\left(k_{1}^{0}, \ldots, k_{1}^{r(1)} ; \ldots ; k_{m}^{0}, \ldots, k_{m}^{r(m)}\right), m \geq 1, r(i) \geq 0, k_{i}^{j}>0, \sum_{i, j} k_{i}^{j}=k$. Let us consider the GF for one case.

The positions of $\bigcup A_{i}$'s with respect to $\bigcup X$ are counted by $C_{m}(y)$ and the positions of the special gaps of $\bigcup A_{i}$ are counted by $G_{r(i)}\left(c, k_{i}^{0} ; y\right)$. The content of a gap of $\bigcup A_{i}$ is counted by $G\left(k_{i}^{j} ; y\right)$ if it is special and by $C_{0}(y)$ otherwise.

So the total GF equals

$$
\sum C_{m}(y) \prod_{i=1}^{m} \frac{G_{r(i)}\left(c, k_{i}^{0} ; y C_{0}(y)\right) \cdot G\left(k_{i}^{1} ; y\right) \cdot \ldots \cdot G\left(k_{i}^{r(i)} ; y\right)}{C_{0}(y)^{r(i)+1}}
$$

where we sum over all cases. By the above remarks, $G_{r(i)}\left(c, k_{i}^{0} ; y\right) \in \mathbf{Z}(y)$ and $C_{0}(y), C_{m}(y) \in$ $\mathbf{Z}(\sqrt{1-4 y}) . \quad G\left(k_{i}^{j} ; y\right) \in \mathbf{Z}(\sqrt{1-4 y})$ by the induction hypothesis. Hence, the total GF
belongs to $\mathbf{Z}(\sqrt{1-4 y})$.

6 Concluding remarks

Recently, Alon and Friedgut [1] applied extremal methods to forbidden permutations. Using results on generalized Davenport-Schinzel sequences, they gave an almost exponential upper bound to $S_{n}(p)$ for each p and they extended the class of p with known exponential upper bound.

We conclude by proposing few problems. Problem 1. Prove (or disprove) the conjecture given in Section 1: $P\left(u_{p} ; \cdot, l\right)=O\left(c^{l}\right)$ for each permutation p. Problem 2. The asymptotics of $S_{n}(12 \ldots m)$ was found by Regev [19]. What is the asymptotics of $P(12 \ldots m 12 \ldots m ; \cdot l)$ and $P(12 \ldots m m \ldots 21 ; \cdot, l)$? Case $m=2$ is settled in Examples 2 and 3. Problem 3. Find $G(u ; 1, y)$ for a $\operatorname{srp} u$ with more than two doubletons, e.g. for $u=a b c a b c$ or $u=a b c b c a$. Problem 4. Characterize $G(u ; 1, y)$ for srps with two doubletons. Does the GF always satisfy a quadratic equation? Problem 5. Recall that $u(s)=a b_{1} b_{2} \ldots b_{s} a$. What can be said about the rational function $G(u(s) ; 1, y)$? Let $c_{s}=\lim _{l \rightarrow \infty} P(u(s) ; \cdot, l)^{1 / l}$; thus $c_{1}=2$, $c_{2}=2.75488 \ldots, c_{3}=3.46357 \ldots$, see Example 6 . What is the behaviour of c_{s} for $s \rightarrow \infty$? Problem 6. What changes in Section 5 when $a b a b$ is replaced by $a b b a$? Problem 7. Gessel mentions [9] the conjecture that $\left\{S_{n}(p)\right\}_{n \geq 1}$ is always P-recursive. Prove (or disprove) that for each u the numbers $\{P(u ; \cdot, l)\}_{l \geq 1}$ form a P-recursive sequence. Here u is any partition, cf. Example 1. Note that unlike $\{n!\}_{n \geq 1}$ the sequence of Bell numbers $\{P(\emptyset ; \cdot, l)\}_{l \geq 1}$ is not P-recursive.

Acknowledgment. I would like to thank M. Bóna for sending me via e-mail his papers [5, 6] and Z. Szigeti for some comments. I am grateful to a careful and patient anonymous referee for detecting some of the errors and for many suggestions that improved the readability of the paper.

References

[1] N. Alon and E. Friedgut, On the number of permutations avoiding a given pattern, to appear in J. Combinatorial Th. Series A.
[2] H.W. Becker, Planar rhyme schemes, Bull. Amer. Math. Soc. 58 (1952), 39.
[3] M. Bóna, Exact enumeration of 1342-avoiding permutations: A close link with labeled trees and planar maps, J. Combinatorial Th. Series A 80 (1997), 257-272.
[4] M. Bóna, Permutations avoiding certain patterns: The case of length 4 and some generalizations, Discrete Math. 175 (1997), 55-67.
[5] M. Bóna, The solution of a conjecture of Stanley and Wilf for all layered patterns, J. Combinatorial Th. Series A 85 (1999), 96-104.
[6] M. Bóna, Partitions with k crossings, to appear in The Ramanujan Journal.
[7] N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions, Discrete Math. 62 (1986), 215-218.
[8] H. Edelsbrunner and M. Sharir, The maximum number of ways to stab n convex nonintersecting sets in the plane is $2 n-2$, Discrete Comput. Geom. 5 (1990), 35-42.
[9] I.M. Gessel, Symmetric functions and P-recursiveness, J. Combinatorial Th. Series A 53 (1990), 257-285.
[10] M. Katchalski and H. Last, On geometric graphs with no two edges in convex position, Discrete Comput. Geom. 19 (1998), 399-404.
[11] M. Klazar, On abab-free and abba-free set partitions, Europ. J. Combinatorics 17 (1996), 53-68.
[12] M. Klazar, On the maximum lengths of Davenport-Schinzel sequences, 169-178. In: R.L. Graham, J. Kratochvíl, J. Nešetřil, F.S. Roberts (eds.), Contemporary Trends in Discrete Mathematics, American Mathematical Society, Providence, RI, 1999.
[13] D.E. Knuth, The Art of Computer Programming, Vol. 3, Addison Wesley, 1973.
[14] G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 (1972), 333-350.
[15] J.B. Kruskal, The theory of well-quasi-ordering: A frequently discovered concept, J. Combinatorial Th. Series A 13 (1972), 297-305.
[16] R. Laver, Well-quasi-orderings and sets of finite sequences, Math. Proc. Cambridge Philos. Soc. 79 (1976), 1-10.
[17] Y. Poupard, Étude et denombrement paralleles des partitions non croisées d'un cycle et des decoupage d'un polygone convexe, Discrete Math. 2 (1972), 279-288.
[18] H. Prodinger, A correspondence between ordered trees and noncrossing partitions, Discrete Math. 46 (1983), 205-206.
[19] A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. Math. 41 (1981), 115-136.
[20] M. Sharir and P.K. Agarwal, Davenport-Schinzel sequences and their geometric applications, Cambridge University Press, Cambridge, 1995.
[21] R. Simion, Combinatorial statistics on non-crossing partitions, J. Combinatorial Th. Series A 66 (1994), 270-301.
[22] R. Simion and F.W. Schmidt, Restricted permutations, Europ. J. Combinatorics 6 (1985), 383-406.
[23] R. Simion and D. Ullman, On the structure of the lattice of noncrossing partitions, Discrete Math. 98 (1991), 193-206.
[24] R. Speicher, Free probability theory and non-crossing partitions, Semin. Lothar. Comb. 39 (1997), B39c, 38 p.
[25] Z. Stankova, Classification of forbidden subsequences of length 4, Europ. J. Combinatorics 17 (1996), 501-517.
[26] R.P. Stanley, Enumerative combinatorics, Vol. 1, 2nd ed., Cambridge University Press, Cambridge, 1997.
[27] R.P. Stanley, Differentably finite power series, Europ. J. Combinatorics 1 (1980), 175188.
[28] P.R. Stein and M.S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math. 26 (1979), 261-272.
[29] M.S. Waterman, Applications of combinatorics to molecular biology, 1983-2001. In: R.L. Graham, M. Grötschel, L. Lovász (eds.), Handbook of Combinatorics, North-Holland, Amsterdam, 1995.
[30] J. West, Generating trees and forbidden subsequences, Discrete Math. 157 (1996), 363374.
[31] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel sequences by segments, Discrete Comput. Geom. 3 (1988), 15-47.

[^0]: *Supported by AvH Stiftung fellowship and by grants GAČR 0194/1996 and GAUK 194/1996. Email: klazar@kam.ms.mff.cuni.cz

