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Abstract

A partition u of [k] = {1, 2, . . . , k} is contained in another partition v of [l] if [l]

has a k-subset on which v induces u. We are interested in counting partitions v not

containing a given partition u or a given set of partitions R. This concept is related to

that of forbidden permutations. A strengthening of Stanley–Wilf conjecture is proposed.

We prove that the GF counting v is rational if (i) R is finite and the number of parts

of v is fixed or if (ii) u has only singleton parts and at most one doubleton part. In fact,

(ii) is an application of (i). As another application of (i) we prove that for each k the

GF counting partitions with k pairs of crossing parts belongs to Z(
√

1− 4x).
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1 Introduction

An n-permutation b1b2 . . . bn, a permutation of [n] = {1, 2, . . . , n}, avoids an m-permutation

p = a1a2 . . . am if it has no subsequence bi1bi2 . . . bim
such that bir

< bis
iff ar < as. The

number of n-permutations avoiding p is Sn(p). Similarly, Sn(R) counts n-permutations

avoiding each p from a set of permutations R. For R fixed and n = 1, 2, . . . , determine

Sn(R). This is the problem of forbidden permutations that was introduced by Simion and

Schmidt [22] and further investigated in, for example, [3, 4, 5, 25, 30]. (In the wqo theory,

the avoidance of permutations was considered earlier in [15, 16].)

We propose a new class of similar enumerative problems based on set partitions. A

partition v = ([l],∼v) given by its equivalence relation does not contain u = ([k],∼u), in

symbols v 6� u, if there is no increasing injection f : [k] → [l] such that i ∼u j iff f(i) ∼v f(j).

For u a partition, P (u;n, l) is the number of partitions of [l] not containing u and having

n parts. For R a set of partitions, P (R;n, l) is defined in an obvious way. The problem of

forbidden partitions is, for R fixed and n, l = 1, 2, . . . , to determine P (R;n, l).

Both problems are closely related. We encode the m-permutation p = a1a2 . . . am by

the partition up of [2m] with parts {i,m + ai}. Then Sn(p) is the number of the partitions

uq such that q is an n-permutation and uq 6� up. In particular, Sn(p) ≤ P (up; ·, 2n) where

P (u; ·, l) =
∑

n≥1 P (u;n, l). A conjecture due to R. Stanley and H. Wilf says that Sn(p) =

O(cn) for each p. (Recently, Bóna [5] confirmed it for many permutations.) We offer a

stronger conjecture: P (up; ·, l) = O(cl) for each permutation p. If true, it also holds for each

u obtained from up by adding some singleton parts. Such a u will be called a sufficiently

restrictive partition or, shortly, srp. By Example 1, srps are the only partitions u for which

P (u; ·, l) may have an exponential upper bound.

Trivially, Sn(12) = Sn(21) = 1. By [13, 22], Sn(p) = 1
n+1

(
2n
n

)
for each 3-permutation p. It

is more complicated to determine Sn(p) for a 4-permutation, see [3]. Perhaps the complexity

of P (u; ·, l) for srps with m doubletons is similar to that of Sn(p) for (m + 1)-permutations.

To support the intuition, in Section 4 we prove that for each srp u with one doubleton the

GF (generating function)
∑

l≥1 P (u; ·, l)yl is rational. Also, the GF for each of the two srps

with two doubletons and no singletons satisfies a quadratic equation, see Examples 2 and 3.

We discuss the following topics. Section 2 introduces sequential representation of par-

titions. In Section 3 we prove Theorem 3.1 saying that for each n and finite R the GF
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∑
l≥1 P (R;n, l)yl is a rational function of a particular kind. The induction scheme used

forces us to prove a more general Theorem 3.2. In the beginning of the proof its outline is

given. Theorem 3.1 is used to prove Theorem 4.1 saying that each srp with one doubleton

has a rational GF. It is not a surprising result but it may be of some interest as a first step in

measuring the complexity of P (u; ·, l); the proofs in Section 4 are only sketched. In Section

5 we apply Theorem 3.2 to prove that the GF of partitions having a fixed number of pairs

of crossing parts belongs to Z(x,
√

1− 4x) = Z(
√

1− 4x); this complements [6]. In Section 6

we give additional comments and pose some problems.

Forbidden partitions might shed a new light on forbidden permutations. For partitions

there goes in paralell a strong branch of extremal results (see Example 5). It might be of use

to crossbreed the enumerative and extremal branches.

2 Notation and examples

A partition u = ([k],∼u) can be represented by a finite sequence a1a2 . . . ak ∈ S∗ over an

infinite alphabet S, where S contains N = {1, 2, . . .} and some letters a, b, c, . . . , by choosing

the sequence so that i ∼u j iff ai = aj . A mapping f : S → S acts on S∗ in a natural

way, f(a1a2 . . . ak) = f(a1)f(a2) . . . f(ak). If u, v ∈ S∗ and u = f(v) for an injection f , we

say that u and v are equivalent . Partitions correspond to blocks of equivalent sequences. In

sequel, this representation of partitions will be used.

For u ∈ S∗, |u| is the length of u, S(u) ⊂ S is the set of symbols used in u, and ‖u‖ is

the cardinality of S(u) (i.e., the number of parts). Clearly, u ≺ v means that u is equivalent

to a subsequence of v. Such a subsequence will be called a u-copy . Each block of equivalent

sequences contains a unique canonical sequence, a sequence u such that (i) S(u) = [n] and

(ii) for each pair 1 ≤ i < j ≤ n the first occurrence of i in u precedes that of j. To canonize

v means to replace it by the equivalent canonical sequence.

We remind that P (R;n, l) counts canonical v such that |v| = l, ‖v‖ = n, and v 6� u for

each u ∈ R. The corresponding GF is denoted by

G(R;x, y) =
∑

n,l≥1

P (R;n, l)xnyl.

For simplicity, when possible we let the parameter n unrestricted and consider only the

quantities P (R; ·, l) and G(R; 1, y). If u ≺ v then P (u;n, l) ≤ P (v;n, l). If u is the reversal of
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u then P (u;n, l) = P (u;n, l). The proofs of the formulas in the following example are easy

and thus omitted.

Example 1. With (2j − 1)!! = 1 · 3 · 5 · . . . · (2j − 1) and the convention (−1)!! = 1 we

have

P (aaa; ·, l) =
bl/2c∑
j=0

(2j − 1)!!
(

l

2j

)
.

As for u = aabb, we have

P (aabb; ·, l) =
p+2k≤l∑

k≥0, p≥3

(k + 1)2
(

l

p + 2k

)
k! +

bl/2c∑
k=0

(
l

2k

)
k!

Both P (aaa; ·, l) and P (aabb; ·, l) grow faster than any cl. It is obvious already from the fact

that up 6� aaa, aabb for each p. The sequences aaa and aabb are probably the only sequences

u which have a superexponential P (u; ·, l) and are minimal (to ≺) with this property.

We remind that the srps are sequences containing neither aaa nor aabb. By Example 1,

each nonsrp u has a superexponential P (u; ·, l). Examples of srps: 1234256 and abcbcda. If

u ≺ v for a srp v, u is a srp as well. The only srps with two doubletons and no singletons

are abab and abba. Their GF’s are as follows.

Example 2. Let u = abab. A canonical v, v 6� abab splits uniquely in v = 1v1v2

so that 1 6∈ S(v1) and v2 starts with 1 if nonempty. Then vi 6� abab, vi may be empty,

and S(v1) ∩ S(v2) = ∅. On the other hand, any choice of such vi’s is admissible. Thus,

G(abab; 1, y) = y(1 + G(abab; 1, y))2. We obtain the classical results [2, 14]

G(abab; 1, y) =
1− 2y −

√
1− 4y

2y
and P (abab; ·, l) =

1
l + 1

(
2l

l

)
.

Partitions not containing abab are now called noncrossing partitions. At first they were

investigated by Kreweras [14] and Poupard [17]. They appear in geometric extremal problems

[8, 10], poetry [2], probability theory [24], molecular biology [28, 29], enumerative bijections

[7, 18], and combinatorics of the partitions lattice [14, 21, 23]; the list of references is not

exhaustive. P (abab; ·, l) = O(cl) and the right constant is c = 4.

Example 3. For u = abba the GF equals, see [11],

G(abba; 1, y) =
−y + 3y2 − 2y3 − y

√
1− 2y − 3y2

−2 + 8y − 6y2 + 2y3
.

Again P (abba; ·, l) = O(cl). The right constant is c = 1/γ = 3.14790 . . . , γ > 0 being the

root of y3 − 3y2 + 4y − 1 closest to the origin.
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3 Fixed number of parts

Example 4. In our notation Stirling numbers of the second kind are P (∅;n, l). Since the

canonical v’s with ‖v‖ = n arise from 12 . . . n by inserting a v1 ∈ {1}∗ between 1 and 2, a

v2 ∈ {1, 2}∗ between 2 and 3, . . . , and a vn ∈ {1, 2, . . . , n}∗ after n, we have∑
l≥1

P (∅;n, l)yl =
yn

(1− y)(1− 2y) · · · (1− ny)
.

The following theorem generalizes this classical result.

Theorem 3.1 For each n ∈ N and finite R ⊂ S∗,∑
l≥1

P (R;n, l)yl =
a(y)

(1− y)r1(1− 2y)r2 · · · (1− ty)rt
,

where a(y) ∈ Z[y], ri ≥ 0, t = min(n, k), and k = minu∈R ‖u‖−1. For k = 0 the denominator

is 1.

In particular, for k = 0 the GF is a polynomial from Z[y]; this is obvious. For k = 1

the function P (R;n, l) is a polynomial from Q[l]. We look at the cases R = {abab} and

R = {ababa} when k = 1.

Example 5. It is well known [14] that

P (abab;n, l) =
1

l − n + 1

(
l

n

)(
l − 1
n− 1

)
,

a polynomial in l of degree 2n−2. What changes if R = {ababa}? Sequence w = a1a2 . . . al is

called sparse if ai 6= ai+1 for each i. Sequences v, v 6� ababa arise from a sparse w,w 6� ababa

by arbitrarily replacing terms of w by intervals of occurrences of the same symbol. Let pj

be the number of nonequivalent sparse w’s, ‖w‖ = n and |w| = j, not containing ababa, and

N5(n) = max{j : pj 6= 0}. (By Lemma 3.3, N5(n) = O(n2).) Clearly, P (ababa;n, l) is the

coefficient at yl in
N5(n)∑
j=n

pjy
j

(1− y)j
,

a polynomial in l of degree N5(n)−1. Unlike the analogous extremal function N4(n) = 2n−1

for abab, the function N5(n) is difficult to handle. Here we mention only the estimate

1
2nα(n)− 2n < N5(n) < 2nα(n) + O(nα(n)1/2), where α(n) is the extremely slowly growing

inverse of the Ackermann function. For the lower and upper bound consult [31] and [12], re-

spectively. More information on the Davenport–Schinzel sequences, of which w is a particular

case, can be found in [20].
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Outline of the proof of Theorem 3.1. Suppose first R = {u}. We want to use

induction on |u|. To count the v’s such that ‖v‖ = n and v 6� u, we split v in v = v1v2 . . . vr

so that the vi’s are subject to simpler constraints and can be chosen independently. A u-copy

appears then in v iff u splits in u = u1u2 . . . ur so that there is a ui-copy of certain type in

vi. We are forced to consider a stronger induction statement involving any finite R and, for

each u ∈ R, prescribed types of the u-copies in v. This is formulated in Theorem 3.2 and the

preceding definitions. We work with a special R (ideal), because for induction it is better to

have R closed to subsequences. Theorem 3.1 follows from Theorem 3.2 simply by summing

all cases. The stronger restriction of the denominator is established in Lemmas 3.3 and 3.4.

The inductive proof of Theorem 3.2 is started by Lemma 3.5, a variation on Example 4.

Then we describe how the ui-copies in v1v2 . . . vr merge in a u-copy. Lemma 3.6 states a

property of merging. Then we define the splitting v = v1v2 . . . vr and in Lemma 3.7 state its

key property. In Lemmas 3.8, 3.9, and the concluding argument we perform the induction

step.

A finite I ⊂ S∗ is an ideal if each u, u ≺ v ∈ I, is equivalent to some w ∈ I. Let

w = bi1bi2 . . . bik
be a subsequence of v = b1b2 . . . bl equivalent to u = a1a2 . . . ak. The type

of the u-copy w in v is the injection f : [‖u‖] → [‖v‖] defined by canonizing u and v and

then setting f(aj) = bij
. So type is the injection that maps the position of every symbol in

w to its position in v. Several u-copies may have the same type. All types of all u-copies in

v form the set T (u, v). For example,

T (abab, 4332421141) = {{(1, 1), (2, 3)}, {(1, 3), (2, 1)}, {(1, 1), (2, 4)}}

and there are six abab-copies in 4332421141.

Let, for n ∈ N and R ⊂ S∗, F(R,n) be the set of all mappings F such that F is defined

on R and F (u), u ∈ R, is a set of injections from [‖u‖] to [n].

Theorem 3.2 Let n ∈ N, I be an ideal, F ∈ F(I, n), and P (I, F ;n, l) count all canonical v

satisfying ‖v‖ = n, |v| = l, and T (u, v) = F (u) for each u ∈ I. Then∑
l≥1

P (I, F ;n, l)yl =
a(y)

(1− y)r1(1− 2y)r2 · · · (1− ny)rn
,

where a(y) ∈ Z[y] and ri ≥ 0.

Any finite R ⊂ S∗ is easily completed to an ideal I ⊃ R. Then P (R;n, l) =∑
F P (I, F ;n, l), summed over all F ∈ F(I, n) such that F ≡ ∅ on R, and Theorem 3.1
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follows, with the denominator (1− y)r1 · · · (1− ny)rn . The same argument shows that The-

orem 3.2 holds with R instead of I as well. The remaining part of Theorem 3.1, the re-

striction of the denominator, follows if we show that for every u ∈ S∗ and n ∈ N we have

P (u;n, l) = o(‖u‖l). We prove it in the next two lemmas.

For v ∈ S∗ and m ∈ N consider the m-splitting v = v1v2 . . . vr, where v1 is the longest

initial interval with ‖v1‖ ≤ m, v2 is the longest interval following v1 with ‖v2‖ ≤ m and so

on. Thus, ‖v1‖ = · · · = ‖vr−1‖ = m, ‖vr‖ ≤ m, and the splitting is unique.

Lemma 3.3 If v, ‖v‖ = n has the m-splitting with at least

2(s− 1)
(

n

m + 1

)
+ 2

intervals, then v contains each u satisfying ‖u‖ ≤ m + 1 and |u| ≤ s.

Proof. Let v = v1v2 . . . vr be the m-splitting. We have ‖vivi+1‖ ≥ m + 1 for each i and

we select a subset Xi ⊂ S(vivi+1), |Xi| = m + 1. By the pigeonhole principle, X2i1−1 =

X2i2−1 = · · · = X2is−1 for some s indices 1 ≤ i1 < i2 < · · · < is ≤ r/2. Taking from each

v2ij−1v2ij an appropriate term, we create a u-copy in v. 2

Lemma 3.4 For every n ∈ N and u ∈ S∗ we have P (u;n, l) = O(lh−1(‖u‖ − 1)l); the

constant in O and h depend only on n and u.

Proof. Suppose that v 6� u, ‖v‖ = n, ‖u‖ = m + 1, and v = v1v2 . . . vr is the m-splitting.

By the previous lemma, r ≤ h = h(u, n). Once the sets S(vi) are chosen, there are at most

ml possibilities for each vi, |vi| = l. To account for vr (since ‖vr‖ ≤ m) we multiply the

bound by the factor m. Hence, P (u;n, l) ≤ the coefficient at yl in

m
h∑

r=1

(
n
m

)r

(1−my)r
,

which is O(lh−1ml). 2

Therefore if u ∈ R attains the minimum ‖u‖, the denominator cannot have a root smaller

than 1
‖u‖−1 . This finishes the proof of Theorem 3.1.

The proof of Theorem 3.2 goes by induction on |I| and starts with the ideal I(r) =

{a, aa, aaa, . . . , aa . . . a}, the last sequence of a’s having length r.
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Lemma 3.5 For each r, n ∈ N and F ∈ F(I(r), n),∑
l≥1

P (I(r), F ;n, l)yl =
a(y)

(1− y)r1(1− 2y)r2 · · · (1− ny)rn
,

where a(y) ∈ Z[y] and ri ≥ 0.

Proof. Let G(x; y), where x = (x1, . . . , xn) with xi ∈ [r−1]∪{r+, 1+}, be the GF counting

by length the canonical v, ‖v‖ = n, with xi occurrences of i (1+ means any number ≥ 1

and similarly for r+). By the definitions, the above GF equals G(x; y) for some x with no

xi = 1+. (Or it is identically 0, if the conditions imposed by F are contradictory.) Each such

G(x; y) equals, by the principle of inclusion and exclusion,
∑
±G(x; y) for some x’s with no

xi = r+. It suffices to show that each G(x; y) for x with no xi = r+ has the stated form.

By Example 4, the GF of canonical v’s, in which y counts length and yi counts the

occurrences of i, is

G(y, y1, . . . , yn) =
yny1 · · · yn

(1− yy1)(1− yy1 − yy2) · · · (1− yy1 − yy2 − · · · − yyn)
.

Thus, if x1, . . . , xk ∈ [r − 1] and xk+1 = · · · = xn = 1+, G(x; y) equals

∂x1+···+xkG(y, y1, . . . , yn)
x1! · · ·xk!∂yx1

1 · · · ∂yxk

k

evaluated at y1 = · · · = yk = 0, yk+1 = · · · = yn = 1; similarly for other x’s. It follows that

G(x; y) has the required form. 2

A merging scheme on (n1, . . . , nr) is a partition M = (
⋃r

i=1([ni] × {i}),∼) such that

|P ∩ ([ni] × {i})| ≤ 1 for each part P and each i. Each splitting v = v1v2 . . . vr defines

a merging scheme on (‖v1‖, . . . , ‖vr‖) in which (mi, i) ∼ (mj , j) iff the mith symbol of vi

equals the mjth symbol of vj . (The mith symbol of vi is the a ∈ S(vi) that turns in mi

when vi is canonized.) In the other way, if (v1, . . . , vr) is an r-tuple of sequences and M is a

merging scheme on (‖v1‖, . . . , ‖vr‖), there is a unique canonical sequence v = M(v1, . . . , vr)

that can be split in w1w2 . . . wr so that each wi is equivalent to vi and the merging scheme

defined by the splitting equals M . (To obtain v, for each part P of M and each (mi, i) ∈ P

replace the occurrences of the mith symbol in vi by the common symbol xP . Concatenate

the resulting vi and canonize.) For instance, if M partitions
⋃3

i=1([2]×{i}) in {(1, 1), (1, 3)},

{(2, 1), (1, 2), (2, 3)}, and {(2, 2)}, then M(bab, 5aa, 1155) = 1212331122.

Clearly, ‖M(v1, . . . , vr)‖ = |M |. Notice also that if M is defined by the splitting v =

v1v2 . . . vr then M(v1, . . . , vr) is just the canonization of v.
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Lemma 3.6 Let v = M(v1, . . . , vr) and w = M(w1, . . . , wr), for the same merging scheme

M .

1. Let uv
i and uw

i be subsequences of vi and wi such that, for each i, uv
i and uw

i are

equivalent and of the same type. The subsequence uv of v, which takes the same positions

in v as are those taken by the uv
i ’s in v1v2 . . . vr, is equivalent to and of the same type

as the analogous subsequence uw of w.

2. Let I be an ideal. If T (u, vi) = T (u, wi) for each u ∈ I and each i, then T (u, v) =

T (u, w) for each u ∈ I.

Proof. 1 is immediate. To prove 2, consider an f ∈ T (u, v) for a u ∈ I. Injection f is

the type of a u-copy tv in v and tv is composed from some subsequences tvi of vi. By the

assumption (each tvi is equivalent to some si ∈ I), there exist subsequences twi of wi which

are equivalent to tvi and are of the same type. The subsequence tw of w proves, by 1, that

f ∈ T (u, w) as well. The converse is proved similarly, so T (u, v) = T (u, w). 2

Notice that the lemma and the whole proof works even for I ⊂ S∗ closed only to contiguous

subsequences (intervals).

Suppose v ∈ S∗, X ⊂ S(v), |X| ≥ 2, and s ∈ N. In the (s,X)-splitting v = v1v2 . . . vr, v1

is the unique initial interval such that |X∩S(v1)| = |X|−1 and the only symbol of X missing

in v1 appears immediately after v1, v2 is the unique interval following after v1 with the same

property and so on. The splitting is terminated if X 6⊂ S(w) for the residual interval w or

if s intervals v = v1v2 . . . vs−1w have been already defined. Thus, r ≤ s and the splitting is

unique.

Notice that if v and w are canonical and v = v1v2 . . . vr and w = w1w2 . . . wt define the

same merging scheme (in particular, r = t), then the former splitting is the (s,X)-splitting

of v if and only if the latter spliting is the (s,X)-splitting of w.

Lemma 3.7 Suppose v ∈ S∗ is canonical, u ∈ S∗, and f : [‖u‖] → S(v) is an injection. Let

X = Im(f), v = v1v2 . . . vr be the (s,X)-splitting, and 2|u| ≤ s. If there is a u-copy in v

of type f that is contained in a single vj then there is another u-copy of type f that is not

contained in a single vi.

Proof. We can suppose that u = a1a2 . . . at is canonical. If the assumption is fulfilled then,

by the definition of (s,X)-splitting, inevitably j = r = s. But then, since X ⊂ S(vivi+1) for
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each i, we choose an occurrence of f(a1) in v1v2, an occurrence of f(a2) in v3v4 etc. and

obtain a u-copy of type f that is split into several vi’s. 2

Suppose that J is an ideal and n ≥ m ≥ 2, s > 0 are integers. For every v ∈ S∗, ‖v‖ = n

we define a color C of v, which will be a triple determined uniquely by v, J , n, m, and

s. For each X an m-subset of S(v) we consider the (2s,X)-splitting v = vX
1 vX

2 . . . vX
r(X).

Superposing all these
(

n
m

)
splittings, we obtain a unique superposed splitting v = v1v2 . . . vr.

Let M be the merging scheme defined by it. We define ni = ‖vi‖ and Fi ∈ F(J, ni) as having

on u ∈ J the value T (u, vi); notice that n1 = m− 1 and |M | = n. The color of v is the triple

C = ((n1, . . . , nr),M, (F1, . . . , Fr)).

It is clear that ni ≤ n (in fact, for i < r even ni ≤ m− 1), r ≤ 2s
(

n
m

)
, and Fi ∈ F(J, ni).

Thus — for given J , n, m, and s — the number of all possible colors is finite. Equivalent

sequences have the same color. Let S∗C be the set of all v with color C. The sets S∗C are

disjoint and their number is finite.

Now we perform the induction step. We are given an n ∈ N, an ideal I that is different

from I(r) (case I = I(r) was settled in Lemma 3.5), and a mapping F ∈ F(I, n). There is

a z ∈ I that is maximal (to ≺) and satisfies ‖z‖ ≥ 2. Hence, I\{z} is an ideal for which

Theorem 3.2 holds for any n′ ≤ n and any F ′ ∈ F(I\{z}, n′). We set J = I\{z}, m = ‖z‖,

s = |z|, and consider colors and sets S∗C corresponding to these J , n, m, and s. (We can

assume that n ≥ m, otherwise we are done.)

Lemma 3.8 If w1, w2 ∈ S∗C then T (u, w1) = T (u, w2) for each u ∈ I.

Proof. The claim follows at once from 2 of Lemma 3.6 if u ∈ J . It remains to verify it for

u = z. W.l.o.g., w1 and w2 are canonical. Consider any f ∈ T (z, w1). We claim that there

is always a z-copy in w1 of type f that is split into several intervals in the the superposed

splitting; the pieces must be then equivalent to sequences in J . By Lemma 3.7, there is even

such a copy that is split already in the (2s,X)-splitting of w1 with X = Im(f). By the

definition of color and by 1 of Lemma 3.6, f ∈ T (z, w2). The converse is proved similarly, so

T (z, w1) = T (z, w2). 2

Lemma 3.9 The canonical sequences v ∈ S∗C , where C = ((n1, . . . , nr),M, (F1, . . . , Fr)),

are in bijection with the r-tuples (w1, . . . , wr) of canonical sequences satisfying ‖wi‖ = ni,

T (u, wi) = Fi(u) for each u ∈ J , and |v| = |w1|+ · · ·+ |wr|.
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Proof. Each canonical v ∈ S∗C is sent to (vc
1, . . . , v

c
r), where vc

i is the canonized ith interval

of the superposed splitting of v. In the other way, (w1, . . . , wr) is sent to v = M(w1, . . . , wr).

By the paragraphs before Lemmas 3.6 and 3.7, both correspondences are inverses of one

another. (More precisely, we use that the remark before Lemma 3.7 applies also to the

superposed splittings.) 2

Finally, let G be the set of all colors C for which the mapping sending u ∈ I to T (u, v),

where v ∈ S∗C is arbitrary (by Lemma 3.8 this makes sense), equals the prescribed mapping

F . Let G(n, I, F ; y) be the GF introduced in Theorem 3.2. By Lemma 3.9,

G(n, I, F ; y) =
∑
C∈G

G(n1, J, F1; y)G(n2, J, F2; y) · · ·G(nr, J, Fr; y).

By the induction hypothesis on G(ni, J, Fi; y), G(n, I, F ; y) is as stated. This finishes the

proof of Theorem 3.2.

4 One doubleton

In Sections 4 and 5 n is not restricted. By Examples 2 and 3, in general we cannot expect

G(u; 1, y) be rational if the srp u has more than one doubleton. To complement this, we

sketch the proof of the following result.

Theorem 4.1 If u is a srp with at most one doubleton then G(u; 1, y) ∈ Z(y).

If u has only singletons, the GF is rational by Example 4. Srp with one doubleton has

the form u(r, s, t) = a1 . . . arbar+1 . . . ar+sbar+s+1 . . . ar+s+t, for some distinct ai, b ∈ S and

0 ≤ r, s, t. First we indicate the proof for the case r = t = 0. Then we describe how the

full result can be proved using that case and a refinement of Theorem 3.1. In Example 6 we

calculate the GF for u(0, 2, 0).

Let u(s) = u(0, s, 0) = ab1 . . . bsa. For v ∈ S∗, E(v) denotes the subsequence of v that

consists of the first and last appearances of all a ∈ S(v).

Lemma 4.2 If u(s) ≺ v then u(s) ≺ E(v).

Proof. Let a1 = a2 = a be the first and last term of a u(s)-copy in v and X ⊂ S(v), a 6∈

X, |X| = s be the set of some s symbols appearing between a1 and a2. We can assume

that both ai lie in E(v). Let Y ⊂ X be the symbols that have neither the first nor the last
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appearance between a1 and a2. If Y = ∅ we easily form a u(s)-copy lying in E(v). Otherwise

let b ∈ Y have the earliest first appearance of all x ∈ Y . The first and last appearance of b,

the first appearances of x ∈ Y \{b}, a1, and first or last appearance of each x ∈ X\Y (the

one lying between a1 and a2) form a u(s)-copy in E(v). 2

Suppose v 6� u(s) and consider the (s+1)-splitting v = v1v2 . . . vt. Clearly, S(vi)∩S(vj) =

∅ whenever j − i > 1. Let w = w1w2 . . . wt where wi = vi ∩E(v). Note that (i) there is only

a finite number of possibilities for wi’s, (ii) v can be obtained back from w by filling the gaps

in w arbitrarily (Lemma 4.2), and (iii) the admissible w’s are determined only by some local

restrictions on the consecutive pairs wiwi+1. By the transfer matrix method (see Chapter 4

of [26]), G(u(s); 1, y) is a rational function.

For the full Theorem 4.1 we need a variant of Theorem 3.1. Let n ∈ N and z ∈ S∗ be

such that z 6� aaa and ‖z‖ = n. Let P (R, z;n, l) count the canonical v such that ‖v‖ = n,

|v| = l, v 6� u for each u ∈ R, and E(v) is equivalent to z. Modifying the proof in Section 3,

we can prove a refinement of Theorem 3.1 with P (R;n, l) replaced by P (R, z;n, l).

Suppose v 6� u(r, s, t). The end symbols x ∈ S(v) are the 1st, 2nd, . . . , and (r + t)th

symbol of v and of the reversed v; we have ≤ 2(r + t) end symbols. The other symbols are

called middle symbols. Let w be the subsequence of v formed only by the middle symbols.

Clearly, w 6� u(s). Let w = w1w2 . . . wj be the (s + 1)-splitting and vi be the interval of

v spanned by wi. If no end symbol appears in vi, we call it pure; then vi = wi. The

number of nonpure vi’s is ≤ n0 = n0(r + s + t). For an n1 > 0 we add to each nonpure vi

n1 neighbouring (possibly pure) vk’s and obtain this way a subsequence v′ of v with these

properties: (i) ‖v′‖ ≤ n2 and (ii) the ways in which v′ can be extended to v by adding pure

vi’s depend only on E(v′). Given E(v′), the extensions can be counted as in the r = t = 0

case and the corresponding GF is rational. The GF counting v′’s with a fixed E(v′) is also

rational, by the refinement of Theorem 3.1 used with R = {u(r, s, t)}. Summing the products

over all possible E(v′)’s we infer that G(u(r, s, t); 1, y) ∈ Z(y).

Example 6. We calculate G(u(2); 1, y) = G(abca; 1, y). Let v, v 6� abca be canonical and

irreducible, that is v = v1v2 with S(v1) ∩ S(v2) = ∅ implies v1 = ∅ or v2 = ∅. If GI(y) is the

GF counting such v’s, then G(abca; 1, y) = GI(y)/(1−GI(y)). It is easy to verify that such

v’s are the sequences in {1, 2}∗ starting with 1 and distinct from 11 . . . 122 . . . 2. We have
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2l−1 − l + 1 of them of length l and GI(y) = y(1− 3y + 3y2)(1− 2y)−1(1− y)−2. Thus,

G(abca; 1, y) =
y(1− 3y + 3y2)

1− 5y + 8y2 − 5y3
.

We have also determined G(u(3); 1, y):

G(abcda; 1, y) =
y(1− 11y + 49y2 − 112y3 + 138y4 − 87y5 + 20y6)

1− 13y + 70y2 − 202y3 + 336y4 − 321y5 + 163y6 − 32y7
.

We leave the verification of the formula to the interested reader as an exercise.

5 Fixed number of crossings

Bóna [6] proved that the GF counting partitions with a fixed number of abab-copies belongs

to Z(
√

1− 4y). We show that the same is true for partitions with a fixed number of pairs of

crossing parts. The crossing graph G(u) of u = ([l],∼) has parts of u as vertices and {P,Q}

is an edge iff there is an abab-copy lying in P ∪Q.

Theorem 5.1 For each k the GF

G(k; y) =
∑
l≥1

#{u = ([l],∼) : G(u) has k edges} · yl

belongs to Z(
√

1− 4y).

In particular, the numbers of partitions in question form a P-recursive sequence; see [27] for

more information on P-recursiveness.

The proof is based on two lemmas. The first lemma is a part of folklore and its easy proof

is omitted.

Lemma 5.2 Let A,B ⊂ V (G(u)) be two distinct components of G(u). Then one of the sets⋃
A and

⋃
B (subsets of [l]) precedes the other or one of them is contained in a gap of the

other.

If
⋃

A is contained in a gap of
⋃

B we say that B covers A.

Lemma 5.3 For each k the GF

G(c, k; y) =
∑
l≥1

#{u = ([l],∼) : G(u) is connected and has k edges} · yl

belongs to Z(y).
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Proof. The partitions involved have at most k + 1 parts. The proof follows from Theorem

3.2 by setting R = {abab} and summing all cases. 2

Let Cj(y) be the GF counting by |u| the pairs (u, (i1, . . . , ij)) where u is a noncrossing

partition, 0 ≤ i1 ≤ i2 ≤ · · · ≤ ij ≤ |u|, and u = ∅ is allowed. Thus, C0(y) = 1 + G(abab; 1, y)

is given in Example 2 and C1(y) = yC ′
0(y) + C0(y). Since Cj(y) expresses in terms of

derivatives of C0(y), Cj(y) ∈ Z(
√

1− 4y) for each j. Similarly, let Gj(c, k; y) count the pairs

(u, (i1, . . . , ij)) where G(u) is connected and has k edges and 1 ≤ i1 < · · · < ij < |u|. Using

derivatives and Lemma 5.3, we see that Gj(c, k; y) ∈ Z(y) for each j.

Consider a u and the graph G(u). Components distinct from isolated vertices are the

nontrivial components. The top components are the nontrivial components that are not

covered by any nontrivial component. Let X be the set of the isolated vertices that are not

covered by any nontrivial component. By Lemma 5.2, u has the following structure.

Some of the sets
⋃

Ai, where A1, . . . , Am are the top components listed so that
⋃

Ai

precedes
⋃

Ai+1, are inserted in (not necessarily distinct) gaps of the noncrossing partition⋃
X and the remaining ones precede

⋃
X or follow after it. Suppose Ai spans k0

i > 0 edges.⋃
Ai has r(i) ≥ 0 special gaps each of which contains a subgraph spanning kj

i > 0 edges,

j = 1, . . . , r(i) (we list the gaps from left to right). The remaining gaps contain only isolated

vertices, i.e. a noncrossing partition. Each component of G(u) not in {A1, . . . , Am} ∪ X is

covered by an Ai and lies in a special gap if it is nontrivial.

We prove Theorem 5.1 by induction on k. For k = 0 it holds because G(0; y) = (1 −

2y − (1 − 4y)1/2)/(2y), see Example 2. Suppose that k > 0 and the theorem holds for

each smaller k′. The problem breaks in finitely many disjoint cases according to the tuples

(k0
1, . . . , k

r(1)
1 ; . . . ; k0

m, . . . , k
r(m)
m ), m ≥ 1, r(i) ≥ 0, kj

i > 0,
∑

i,j kj
i = k. Let us consider the

GF for one case.

The positions of
⋃

Ai’s with respect to
⋃

X are counted by Cm(y) and the positions

of the special gaps of
⋃

Ai are counted by Gr(i)(c, k0
i ; y). The content of a gap of

⋃
Ai is

counted by G(kj
i ; y) if it is special and by C0(y) otherwise.

So the total GF equals∑
Cm(y)

m∏
i=1

Gr(i)(c, k0
i ; yC0(y)) ·G(k1

i ; y) · . . . ·G(kr(i)
i ; y)

C0(y)r(i)+1
,

where we sum over all cases. By the above remarks, Gr(i)(c, k0
i ; y) ∈ Z(y) and C0(y), Cm(y) ∈

Z(
√

1− 4y). G(kj
i ; y) ∈ Z(

√
1− 4y) by the induction hypothesis. Hence, the total GF
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belongs to Z(
√

1− 4y).

6 Concluding remarks

Recently, Alon and Friedgut [1] applied extremal methods to forbidden permutations. Using

results on generalized Davenport–Schinzel sequences, they gave an almost exponential upper

bound to Sn(p) for each p and they extended the class of p with known exponential upper

bound.

We conclude by proposing few problems. Problem 1. Prove (or disprove) the conjecture

given in Section 1: P (up; ·, l) = O(cl) for each permutation p. Problem 2. The asymptotics

of Sn(12 . . .m) was found by Regev [19]. What is the asymptotics of P (12 . . .m12 . . .m; ·, l)

and P (12 . . .mm . . . 21; ·, l)? Case m = 2 is settled in Examples 2 and 3. Problem 3. Find

G(u; 1, y) for a srp u with more than two doubletons, e.g. for u = abcabc or u = abcbca.

Problem 4. Characterize G(u; 1, y) for srps with two doubletons. Does the GF always

satisfy a quadratic equation? Problem 5. Recall that u(s) = ab1b2 . . . bsa. What can be

said about the rational function G(u(s); 1, y)? Let cs = liml→∞ P (u(s); ·, l)1/l; thus c1 = 2,

c2 = 2.75488 . . . , c3 = 3.46357 . . . , see Example 6. What is the behaviour of cs for s → ∞?

Problem 6. What changes in Section 5 when abab is replaced by abba? Problem 7. Gessel

mentions [9] the conjecture that {Sn(p)}n≥1 is always P-recursive. Prove (or disprove) that

for each u the numbers {P (u; ·, l)}l≥1 form a P-recursive sequence. Here u is any partition,

cf. Example 1. Note that unlike {n!}n≥1 the sequence of Bell numbers {P (∅; ·, l)}l≥1 is not

P-recursive.
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