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We present an asymptotic upper bound and then an exact formula, both
in elementary combinatorial probability. Trotter and Winkler have shown in
[4], among other things, that in each sequence A1, A2, . . . , An of events in a
probability space P = (Ω,A,Pr) there are two events Ai and Aj , i < j, such
that Pr(AiAj) < 1

4 + o(1); here 1
4 is clearly best possible and the o(1) error is

with respect to n →∞.
A quick proof (different from the one in [4]) goes like this. Let σk be, as

usual, the sum of probabilities

σk =
∑

Pr(Ai1Ai2 . . . Aik
)

taken over all k-subsets of [n] = {1, 2, . . . , n}. It is well known that σ2 ≥
(
σ1
2

)
,

and in general σk ≥
(
σ1
k

)
(this bound is not an optimum one, more about this

later). Therefore if the Ai are equiprobable with Pr(Ai) = p, we must have
two, i 6= j, such that Pr(AiAj) ≥

(
np
2

)
/
(
n
2

)
. Thus Pr(AiAj) = Pr(AjAi) =

p−Pr(AiAj) ≤ p− p2 + p(1−p)
n−1 and Pr(AiAj) = Pr(AjAi) ≤ 1

4 + 1
4(n−1) . In the

general situation we apply this to some b
√

nc events whose probabilities differ
by at most 1/

√
n and obtain the T–W theorem, with O(n−1/2) in place of o(1).

We sketch the proof of the following strengthening.

Theorem 1 Among each n events A1, A2, . . . , An there are two, i < j, such
that Pr(AiAj) < 1

4 + O(n−2/3).

Proof of Theorem 1 (Sketch). Using the argument with σ2, we prove first a
lemma saying that if A1, . . . , Am are events satisfying |Pr(Ai)−p| < ∆ for some
∆ > 0 and 0 ≤ p ≤ 1, then Pr(AiAj) < p − p2 + 1

4(m−1) + 6∆ for some i < j.
Then we define the function f as a constant cn1/3 in [12−n−1/3, 1

2 +n−1/3] and as
f(x) = cn−1/3(x−1/2)−2 in the rest of [0, 1], where c = 1/(4−4n−1/3). Clearly∫ 1

0
f(x)dx = 1 and f is continuous. The pigeon hole principle tells us then that

for any n events A1, . . . , An there is an interval I ⊂ [0, 1], |I| = 2n−2/3, and an
x ∈ I such that Pr(Ai) ∈ I for at least 2f(x)n1/3 of the events. Finally, using
the lemma with m = 2f(x)n1/3 and ∆ = 2n−2/3, we obtain the error term
O(n−2/3). 2

If i < j in the T–W theorem is replaced by i 6= j then the best upper bound
on minPr(AiAj) can be determined exactly for each n. This follows easily from
the instance k = 2 of our second result.
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By bαc and {α} we denote the integral and the fractional part of α and by
(x)k the product x(x− 1) · · · (x− k + 1). Let [n]k be all k-subsets of [n].

Theorem 2 For all triples n, k, p, 0 ≤ p ≤ 1, we have

min max
X∈[n]k

Pr(
∧
i∈X

Ai) =
(bpnc)k−1(bpnc − k + 1 + k{pn})

(n)k
=: P (n, k, p),

where the minimum is taken over all P and n equiprobable events A1, . . . , An,
Pr(Ai) = p.

The proof uses the following bound.

Theorem 3 We have the inequality

σk ≥
(
bσ1c
k − 1

)
σ1 − (k − 1)

(
bσ1c+ 1

k

)
.

Proof of Theorem 3 (Sketch). Set m = bσ1c in σk ≥
(

m
k−1

)
σ1−(k−1)

(
m+1

k

)
.

The latter inequality reduces by the Rényi’s 0-1 principle to an easily verifiable
inequality for binomial coefficients. 2

Proof of Theorem 2 (Sketch). That minmax ≥ P (n, k, p) follows imme-
diately from Theorem 3 as in the above proof of the T–W theorem. To prove
minmax ≤ P (n, k, p) we define a P and events A1, . . . , An such that Pr(Ai) = p
for all i and Pr(Ai1Ai2 . . . Aik

) = P (n, k, p) for all k-subsets of [n]. We set
m = bpnc, Ω = [n]m ∪ [n]m+1, A = exp(Ω), Pr(A) =

∑
ω∈A w(ω)/

∑
ω∈Ω w(ω),

where the weight is w(ω) = 1 on [n]m and w(ω) = m+1
n−m · {pn}

1−{pn} (which is zero
for integral pn) on [n]m+1. Finally, Ai = {ω ∈ Ω : i ∈ ω}. Straightforward
calculations show that Ai and Ai1Ai2 . . . Aik

have the stated probabilities . 2

One can derive from the formula in Theorem 2 that P (n, k, p) = P (n+1, k, p)
iff (i) p(n+1) is an integer or (ii) p ≥ n/(n+1) or (iii) p ≤ (k−1)/(n+1) or (iv)
k = 1. The construction of P also shows that the inequality in Theorem 3 is best
possible. For example, for k = 2 it improves σ2 ≥

(
σ1
2

)
= (σ2

1 − {σ1} − bσ1c)/2
to σ2 ≥ (σ2

1 − {σ1}2 − bσ1c)/2.
As an interesting problem we mention the question what is the right order

of magnitude of the error in the T–W theorem. The above example gives the
� 1/n lower bound but it is suited for the symmetric (i 6= j) case and can be
probably improved in the asymetric (i < j) situation.

Another problem, in the spirit of [4]. If G is a graph on [n], set P (G, p) =
minmaxPr(AiAj), where the max is taken over all edges {i, j} of G and the min
as above. It can be seen that the maximum value of p such that P (G, p) = 0 is
1/χ∗(G), where χ∗(G) is the fractional chromatic number of G. What else can
be said about the function P (G, p)?

A problem closely related to the case k = 2 of Theorem 2 was investigated
already by Erdős, Neveu and Rényi in [1].
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Final remark. I was informed by prof. J. Galambos that Theorems 2 and
3 are very close to some results in [2] and [3]. So it might be that these are
already known results (in which case their authors have my apologies). When
writing this extended abstract I had neither [2] nor [3] to my disposal and was
not able to clarify this matter.
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