# Comments on a result of Trotter and Winkler in combinatorial probability 

Martin Klazar<br>Department of Applied Mathematics, Charles University, Malostranské nám. 25, 11800 Praha 1, Czech Republic<br>klazar@kam.ms.mff.cuni.cz

We present an asymptotic upper bound and then an exact formula, both in elementary combinatorial probability. Trotter and Winkler have shown in [4], among other things, that in each sequence $A_{1}, A_{2}, \ldots, A_{n}$ of events in a probability space $\mathcal{P}=(\Omega, \mathcal{A}, \operatorname{Pr})$ there are two events $A_{i}$ and $A_{j}, i<j$, such that $\operatorname{Pr}\left(A_{i} \bar{A}_{j}\right)<\frac{1}{4}+o(1)$; here $\frac{1}{4}$ is clearly best possible and the $o(1)$ error is with respect to $n \rightarrow \infty$.

A quick proof (different from the one in [4]) goes like this. Let $\sigma_{k}$ be, as usual, the sum of probabilities

$$
\sigma_{k}=\sum \operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \ldots A_{i_{k}}\right)
$$

taken over all $k$-subsets of $[n]=\{1,2, \ldots, n\}$. It is well known that $\sigma_{2} \geq\binom{\sigma_{1}}{2}$, and in general $\sigma_{k} \geq\binom{\sigma_{1}}{k}$ (this bound is not an optimum one, more about this later). Therefore if the $A_{i}$ are equiprobable with $\operatorname{Pr}\left(A_{i}\right)=p$, we must have two, $i \neq j$, such that $\operatorname{Pr}\left(A_{i} A_{j}\right) \geq\binom{ n p}{2} /\binom{n}{2}$. Thus $\operatorname{Pr}\left(A_{i} \bar{A}_{j}\right)=\operatorname{Pr}\left(A_{j} \bar{A}_{i}\right)=$ $p-\operatorname{Pr}\left(A_{i} A_{j}\right) \leq p-p^{2}+\frac{p(1-p)}{n-1}$ and $\operatorname{Pr}\left(A_{i} \bar{A}_{j}\right)=\operatorname{Pr}\left(A_{j} \bar{A}_{i}\right) \leq \frac{1}{4}+\frac{1}{4(n-1)}$. In the general situation we apply this to some $\lfloor\sqrt{n}\rfloor$ events whose probabilities differ by at most $1 / \sqrt{n}$ and obtain the $\mathrm{T}-\mathrm{W}$ theorem, with $O\left(n^{-1 / 2}\right)$ in place of $o(1)$. We sketch the proof of the following strengthening.

Theorem 1 Among each $n$ events $A_{1}, A_{2}, \ldots, A_{n}$ there are two, $i<j$, such that $\operatorname{Pr}\left(A_{i} \bar{A}_{j}\right)<\frac{1}{4}+O\left(n^{-2 / 3}\right)$.
Proof of Theorem 1 (Sketch). Using the argument with $\sigma_{2}$, we prove first a lemma saying that if $A_{1}, \ldots, A_{m}$ are events satisfying $\left|\operatorname{Pr}\left(A_{i}\right)-p\right|<\Delta$ for some $\Delta>0$ and $0 \leq p \leq 1$, then $\operatorname{Pr}\left(A_{i} \bar{A}_{j}\right)<p-p^{2}+\frac{1}{4(m-1)}+6 \Delta$ for some $i<j$. Then we define the function $f$ as a constant $c n^{1 / 3}$ in $\left[\frac{1}{2}-n^{-1 / 3}, \frac{1}{2}+n^{-1 / 3}\right]$ and as $f(x)=c n^{-1 / 3}(x-1 / 2)^{-2}$ in the rest of $[0,1]$, where $c=1 /\left(4-4 n^{-1 / 3}\right)$. Clearly $\int_{0}^{1} f(x) d x=1$ and $f$ is continuous. The pigeon hole principle tells us then that for any $n$ events $A_{1}, \ldots, A_{n}$ there is an interval $I \subset[0,1],|I|=2 n^{-2 / 3}$, and an $x \in I$ such that $\operatorname{Pr}\left(A_{i}\right) \in I$ for at least $2 f(x) n^{1 / 3}$ of the events. Finally, using the lemma with $m=2 f(x) n^{1 / 3}$ and $\Delta=2 n^{-2 / 3}$, we obtain the error term $O\left(n^{-2 / 3}\right)$.

If $i<j$ in the $\mathrm{T}-\mathrm{W}$ theorem is replaced by $i \neq j$ then the best upper bound on $\min \operatorname{Pr}\left(A_{i} \bar{A}_{j}\right)$ can be determined exactly for each $n$. This follows easily from the instance $k=2$ of our second result.

By $\lfloor\alpha\rfloor$ and $\{\alpha\}$ we denote the integral and the fractional part of $\alpha$ and by $(x)_{k}$ the product $x(x-1) \cdots(x-k+1)$. Let $[n]^{k}$ be all $k$-subsets of $[n]$.

Theorem 2 For all triples $n, k, p, 0 \leq p \leq 1$, we have

$$
\min \max _{X \in[n]^{k}} \operatorname{Pr}\left(\bigwedge_{i \in X} A_{i}\right)=\frac{(\lfloor p n\rfloor)_{k-1}(\lfloor p n\rfloor-k+1+k\{p n\})}{(n)_{k}}=: P(n, k, p),
$$

where the minimum is taken over all $\mathcal{P}$ and $n$ equiprobable events $A_{1}, \ldots, A_{n}$, $\operatorname{Pr}\left(A_{i}\right)=p$.

The proof uses the following bound.
Theorem 3 We have the inequality

$$
\sigma_{k} \geq\binom{\left\lfloor\sigma_{1}\right\rfloor}{ k-1} \sigma_{1}-(k-1)\binom{\left\lfloor\sigma_{1}\right\rfloor+1}{k}
$$

Proof of Theorem 3 (Sketch). Set $m=\left\lfloor\sigma_{1}\right\rfloor$ in $\sigma_{k} \geq\binom{ m}{k-1} \sigma_{1}-(k-1)\binom{m+1}{k}$. The latter inequality reduces by the Rényi's 0-1 principle to an easily verifiable inequality for binomial coefficients.

Proof of Theorem 2 (Sketch). That $\min \max \geq P(n, k, p)$ follows immediately from Theorem 3 as in the above proof of the $\mathrm{T}-\mathrm{W}$ theorem. To prove $\min \max \leq P(n, k, p)$ we define a $\mathcal{P}$ and events $A_{1}, \ldots, A_{n}$ such that $\operatorname{Pr}\left(A_{i}\right)=p$ for all $i$ and $\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \ldots A_{i_{k}}\right)=P(n, k, p)$ for all $k$-subsets of $[n]$. We set $m=\lfloor p n\rfloor, \Omega=[n]^{m} \cup[n]^{m+1}, \mathcal{A}=\exp (\Omega), \operatorname{Pr}(A)=\sum_{\omega \in A} w(\omega) / \sum_{\omega \in \Omega} w(\omega)$, where the weight is $w(\omega)=1$ on $[n]^{m}$ and $w(\omega)=\frac{m+1}{n-m} \cdot \frac{\{p n\}}{1-\{p n\}}$ (which is zero for integral $p n$ ) on $[n]^{m+1}$. Finally, $A_{i}=\{\omega \in \Omega: i \in \omega\}$. Straightforward calculations show that $A_{i}$ and $A_{i_{1}} A_{i_{2}} \ldots A_{i_{k}}$ have the stated probabilities.

One can derive from the formula in Theorem 2 that $P(n, k, p)=P(n+1, k, p)$ iff (i) $p(n+1)$ is an integer or (ii) $p \geq n /(n+1)$ or (iii) $p \leq(k-1) /(n+1)$ or (iv) $k=1$. The construction of $\mathcal{P}$ also shows that the inequality in Theorem 3 is best possible. For example, for $k=2$ it improves $\sigma_{2} \geq\binom{\sigma_{1}}{2}=\left(\sigma_{1}^{2}-\left\{\sigma_{1}\right\}-\left\lfloor\sigma_{1}\right\rfloor\right) / 2$ to $\sigma_{2} \geq\left(\sigma_{1}^{2}-\left\{\sigma_{1}\right\}^{2}-\left\lfloor\sigma_{1}\right\rfloor\right) / 2$.

As an interesting problem we mention the question what is the right order of magnitude of the error in the $\mathrm{T}-\mathrm{W}$ theorem. The above example gives the $\gg 1 / n$ lower bound but it is suited for the symmetric $(i \neq j)$ case and can be probably improved in the asymetric $(i<j)$ situation.

Another problem, in the spirit of [4]. If $G$ is a graph on $[n]$, set $P(G, p)=$ $\min \max \operatorname{Pr}\left(A_{i} A_{j}\right)$, where the max is taken over all edges $\{i, j\}$ of $G$ and the min as above. It can be seen that the maximum value of $p$ such that $P(G, p)=0$ is $1 / \chi^{*}(G)$, where $\chi^{*}(G)$ is the fractional chromatic number of $G$. What else can be said about the function $P(G, p)$ ?

A problem closely related to the case $k=2$ of Theorem 2 was investigated already by Erdős, Neveu and Rényi in [1].

Final remark. I was informed by prof. J. Galambos that Theorems 2 and 3 are very close to some results in [2] and [3]. So it might be that these are already known results (in which case their authors have my apologies). When writing this extended abstract I had neither [2] nor [3] to my disposal and was not able to clarify this matter.

## References

[1] P. Erdős, J. Neveu and A. Rényi, An elementary inequality between the probabilities of events, Math. Scan., 13 (1963), 99-104.
[2] J. Galambos and I. Simonelli, Bonferroni-type inequalities with applications, Springer, New York 1996.
[3] M. Sibuya, Sharp Bonferroni-type inequalities in explicit forms, 165-194. In: J. Galambos and I. Katai (eds.), Probability theory and applications. Essays to the memory of Jozsef Mogyorodi. (Mathematics and its Applications 80), Kluwer Academic Publishers, Dordrecht 1992.
[4] W.T. Trotter and P. Winkler, Ramsey theory and sequences of random variables, Comb. Probab. Comput., 7 (1998), 221-238.

