Comments on a result of Trotter and Winkler in combinatorial probability

Martin Klazar

Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic klazar@kam.ms.mff.cuni.cz

We present an asymptotic upper bound and then an exact formula, both in elementary combinatorial probability. Trotter and Winkler have shown in [4], among other things, that in each sequence A_1, A_2, \ldots, A_n of events in a probability space $\mathcal{P} = (\Omega, \mathcal{A}, \Pr)$ there are two events A_i and A_j , i < j, such that $\Pr(A_i\overline{A}_j) < \frac{1}{4} + o(1)$; here $\frac{1}{4}$ is clearly best possible and the o(1) error is with respect to $n \to \infty$.

A quick proof (different from the one in [4]) goes like this. Let σ_k be, as usual, the sum of probabilities

$$\sigma_k = \sum \Pr(A_{i_1} A_{i_2} \dots A_{i_k})$$

taken over all k-subsets of $[n] = \{1, 2, ..., n\}$. It is well known that $\sigma_2 \ge {\sigma_1 \choose 2}$, and in general $\sigma_k \ge {\sigma_1 \choose k}$ (this bound is not an optimum one, more about this later). Therefore if the A_i are equiprobable with $\Pr(A_i) = p$, we must have two, $i \ne j$, such that $\Pr(A_iA_j) \ge {np \choose 2}/{n \choose 2}$. Thus $\Pr(A_i\overline{A}_j) = \Pr(A_j\overline{A}_i) = p - \Pr(A_iA_j) \le p - p^2 + \frac{p(1-p)}{n-1}$ and $\Pr(A_i\overline{A}_j) = \Pr(A_j\overline{A}_i) \le \frac{1}{4} + \frac{1}{4(n-1)}$. In the general situation we apply this to some $\lfloor \sqrt{n} \rfloor$ events whose probabilities differ by at most $1/\sqrt{n}$ and obtain the T–W theorem, with $O(n^{-1/2})$ in place of o(1). We sketch the proof of the following strengthening.

Theorem 1 Among each *n* events A_1, A_2, \ldots, A_n there are two, i < j, such that $\Pr(A_i\overline{A}_j) < \frac{1}{4} + O(n^{-2/3})$.

Proof of Theorem 1 (Sketch). Using the argument with σ_2 , we prove first a lemma saying that if A_1, \ldots, A_m are events satisfying $|\Pr(A_i) - p| < \Delta$ for some $\Delta > 0$ and $0 \le p \le 1$, then $\Pr(A_i\overline{A}_j) for some <math>i < j$. Then we define the function f as a constant $cn^{1/3}$ in $[\frac{1}{2} - n^{-1/3}, \frac{1}{2} + n^{-1/3}]$ and as $f(x) = cn^{-1/3}(x-1/2)^{-2}$ in the rest of [0,1], where $c = 1/(4-4n^{-1/3})$. Clearly $\int_0^1 f(x)dx = 1$ and f is continuous. The pigeon hole principle tells us then that for any n events A_1, \ldots, A_n there is an interval $I \subset [0,1], |I| = 2n^{-2/3}$, and an $x \in I$ such that $\Pr(A_i) \in I$ for at least $2f(x)n^{1/3}$ of the events. Finally, using the lemma with $m = 2f(x)n^{1/3}$ and $\Delta = 2n^{-2/3}$, we obtain the error term $O(n^{-2/3})$.

If i < j in the T–W theorem is replaced by $i \neq j$ then the best upper bound on min $\Pr(A_i \overline{A}_j)$ can be determined exactly for each n. This follows easily from the instance k = 2 of our second result. By $\lfloor \alpha \rfloor$ and $\{\alpha\}$ we denote the integral and the fractional part of α and by $(x)_k$ the product $x(x-1)\cdots(x-k+1)$. Let $[n]^k$ be all k-subsets of [n].

Theorem 2 For all triples $n, k, p, 0 \le p \le 1$, we have

$$\min\max_{X\in[n]^k}\Pr(\bigwedge_{i\in X}A_i) = \frac{(\lfloor pn \rfloor)_{k-1}(\lfloor pn \rfloor - k + 1 + k\{pn\})}{(n)_k} =: P(n,k,p),$$

where the minimum is taken over all \mathcal{P} and n equiprobable events A_1, \ldots, A_n , $\Pr(A_i) = p$.

The proof uses the following bound.

Theorem 3 We have the inequality

$$\sigma_k \ge {\binom{\lfloor \sigma_1 \rfloor}{k-1}} \sigma_1 - (k-1) {\binom{\lfloor \sigma_1 \rfloor + 1}{k}}.$$

Proof of Theorem 3 (Sketch). Set $m = \lfloor \sigma_1 \rfloor$ in $\sigma_k \ge {m \choose k-1} \sigma_1 - (k-1) {m+1 \choose k}$. The latter inequality reduces by the Rényi's 0-1 principle to an easily verifiable inequality for binomial coefficients.

Proof of Theorem 2 (Sketch). That min max $\geq P(n, k, p)$ follows immediately from Theorem 3 as in the above proof of the T–W theorem. To prove min max $\leq P(n, k, p)$ we define a \mathcal{P} and events A_1, \ldots, A_n such that $\Pr(A_i) = p$ for all i and $\Pr(A_{i_1}A_{i_2}\ldots A_{i_k}) = P(n, k, p)$ for all k-subsets of [n]. We set $m = \lfloor pn \rfloor, \Omega = [n]^m \cup [n]^{m+1}, A = \exp(\Omega), \Pr(A) = \sum_{\omega \in A} w(\omega) / \sum_{\omega \in \Omega} w(\omega)$, where the weight is $w(\omega) = 1$ on $[n]^m$ and $w(\omega) = \frac{m+1}{n-m} \cdot \frac{\{pn\}}{1-\{pn\}}$ (which is zero for integral pn) on $[n]^{m+1}$. Finally, $A_i = \{\omega \in \Omega : i \in \omega\}$. Straightforward calculations show that A_i and $A_{i_1}A_{i_2}\ldots A_{i_k}$ have the stated probabilities . \Box

One can derive from the formula in Theorem 2 that P(n, k, p) = P(n+1, k, p)iff (i) p(n+1) is an integer or (ii) $p \ge n/(n+1)$ or (iii) $p \le (k-1)/(n+1)$ or (iv) k = 1. The construction of \mathcal{P} also shows that the inequality in Theorem 3 is best possible. For example, for k = 2 it improves $\sigma_2 \ge {\sigma_1 \choose 2} = (\sigma_1^2 - \{\sigma_1\} - \lfloor \sigma_1 \rfloor)/2$ to $\sigma_2 \ge (\sigma_1^2 - \{\sigma_1\}^2 - \lfloor \sigma_1 \rfloor)/2$.

As an interesting problem we mention the question what is the right order of magnitude of the error in the T–W theorem. The above example gives the $\gg 1/n$ lower bound but it is suited for the symmetric $(i \neq j)$ case and can be probably improved in the asymetric (i < j) situation.

Another problem, in the spirit of [4]. If G is a graph on [n], set $P(G, p) = \min \max \Pr(A_i A_j)$, where the max is taken over all edges $\{i, j\}$ of G and the min as above. It can be seen that the maximum value of p such that P(G, p) = 0 is $1/\chi^*(G)$, where $\chi^*(G)$ is the fractional chromatic number of G. What else can be said about the function P(G, p)?

A problem closely related to the case k = 2 of Theorem 2 was investigated already by Erdős, Neveu and Rényi in [1]. **Final remark.** I was informed by prof. J. Galambos that Theorems 2 and 3 are very close to some results in [2] and [3]. So it might be that these are already known results (in which case their authors have my apologies). When writing this extended abstract I had neither [2] nor [3] to my disposal and was not able to clarify this matter.

References

- P. ERDŐS, J. NEVEU AND A. RÉNYI, An elementary inequality between the probabilities of events, *Math. Scan.*, 13 (1963), 99–104.
- [2] J. GALAMBOS AND I. SIMONELLI, Bonferroni-type inequalities with applications, Springer, New York 1996.
- M. SIBUYA, Sharp Bonferroni-type inequalities in explicit forms, 165–194.
 In: J. Galambos and I. Katai (eds.), *Probability theory and applications*. *Essays to the memory of Jozsef Mogyorodi*. (Mathematics and its Applications 80), Kluwer Academic Publishers, Dordrecht 1992.
- [4] W.T. TROTTER AND P. WINKLER, Ramsey theory and sequences of random variables, *Comb. Probab. Comput.*, 7 (1998), 221–238.