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Abstract

We prove that every n-vertex cubic bridgeless graph has at least
n/2 perfect matchings and give a list of all 17 such graphs that have
less than n/2 + 2 perfect matchings.

1 Introduction

Graphs considered in this paper can contain multiple edges but do not
contain loops. Finally, a graph is cubic if every vertex has degree 3 and a
subgraph is spanning if it contains all the vertices. A perfect matching is a
spanning subgraph where every vertex has degree 1. A graph is bridgeless
if it is connected and stays connected after removing any edge. A classical
theorem of Petersen [10] asserts that every cubic bridgeless graph has a
perfect matching.

Theorem 1 (Petersen, 1891). Every cubic bridgeless graph G has a per-
fect matching.
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In fact, for every edge e of G, there is a perfect matching containing
e, and for every two edges f and f ′, there is a perfect matching avoiding
both f and f ′. Hence, every cubic bridgeless graph has at least three per-
fect matchings. A natural question is what is the least number of perfect
matchings that an n-vertex cubic bridgeless graph contains. Lovász and
Plummer conjectured in the mid-1970s that this number grows exponen-
tially with the number of vertices (see the book by Lovász and Plummer [7,
Conjecture 8.1.8]).

Conjecture 1 (Lovász and Plummer, 1970s). Every cubic bridgeless
graph with n vertices has at least 2Ω(n) perfect matchings.

Edmonds, Lovász, and Pulleyblank [3] and, independently, Naddef [9],
proved that the dimension of the perfect matching polytope of a cubic
bridgeless n-vertex graph is at least n/4 + 1. Since the vertices of the poly-
tope correspond to distinct perfect matchings, we have the following lower
bound on the number of perfect matchings of an n-vertex cubic bridgeless
graph.

Theorem 2 (Edmonds et al., Naddef, 1982). Every cubic bridgeless
graph with n vertices has at least n/4 + 2 perfect matchings.

If a cubic graph G has no non-trivial edge-cut of size 3, then the result of
Edmonds et al. gives a better bound, since G must be a brick (see Section 2
for the definition). A graph G is cyclically k-edge-connected if it has no
edge-cut of size at most k− 1 whose removal yields at least two non-acyclic
components. The following result is a simple consequence of a theorem of
Edmonds, Lovász, and Pulleyblank [3, Theorem 5.1].

Theorem 3 (Edmonds, Lovász, and Pulleyblank, 1982). Every cubic
cyclically 4-edge-connected graph with n vertices has at least n/2+1 perfect
matchings.

Conjecture 1 has been verified for several special classes of graphs, one of
them being bipartite graphs. The first non-trivial lower bound on the num-
ber of perfect matchings in cubic bridgeless bipartite graphs was obtained in
1969 by Sinkhorn [14] who proved a bound of n

2 , thereby establishing a con-
jecture of Marshall. The same year, Minc [8] increased this lower bound by
2. Then, a bound of 3n

2 −3 was proved by Hartfiel and Crosby [5]. The first

exponential bound, 6 ·
(

4
3

)n/2−3, was obtained in 1979 by Voorhoeve [15].
This was generalized to all regular bipartite graphs in 1998 by Schrijver [11],
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who thereby proved a conjecture of himself and Valiant [13]. His argument
is involved, and we note that, as a particular case of a different and more
general approach (using hyperbolic polynomials), Gurvits [4] managed to
slightly improve the bound, as well as simplify the proof.

Recently, an important step towards a proof of Conjecture 1 has been
made by Chudnovsky and Seymour [2] who proved the conjecture for planar
graphs.

Theorem 4 (Chudnovsky and Seymour, 2008). Every cubic bridgeless
planar graph with n vertices has at least 2n/655978752 perfect matchings.

In this paper, we focus on proving a bound matching that stated in
Theorem 3 for all cubic bridgeless graphs, i.e., we remove the assumption
that G is cyclically 4-edge-connected. In particular, we prove that every
n-vertex cubic bridgeless graph G has at least n/2 perfect matchings and
provide complete lists of such graphs with exactly n/2 and n/2 + 1 perfect
matchings. Our main result is the following theorem.

Theorem 5. Let G be a cubic bridgeless graph with n vertices. The graph
G contains at least n/2 + 2 perfect matchings unless it is is one of the 17
exceptional graphs I1, . . . , I10 or H0, . . . ,H6 which are depicted in Figures 2,
3, 4 and 6. The graph H0 contains n/2 perfect matchings and the other
exceptional graphs contain n/2 + 1 perfect matchings.

2 Brick and brace decomposition

The brick and brace decomposition is one of the essential notions in the
theory of perfect matchings. We explain the notion in general though we
apply it only to cubic bridgeless graphs. We refer to the monograph of
Schrijver [12, Chapter 37] for further exposition. Given a graph G and a
subset X of vertices, G−X is the subgraph obtained from G by removing
the vertices of X. A graph G is matching covered if every edge of G is
contained in a perfect matching. If V1 and V2 is a partition of a vertex set
of G, then the edges with one end-vertex in V1 and the other in V2 form an
edge-cut. An edge-cut is non-trivial if both V1 and V2 contain at least two
vertices. An edge-cut E is tight if every perfect matching contains exactly
one edge of E.

Let G be a matching covered graph with a non-trivial tight edge-cut E,
which partitions the vertices of G into two sets V1 and V2. We decompose

3



A1 A2 A3 A4

Figure 1: Cubic braces of order at most 4.

G into two simpler graphs G1 and G2 by splitting along E as follows: the
graph Gi is obtained by contracting all the vertices of Vi to a single vertex,
for i ∈ {1, 2}. Note that the structure of perfect matchings of G1 and G2

reflects the structure of perfect matchings of G: no matchings are lost by
the splitting since every perfect matching uses exactly one edge of E. In
particular, the graphs G1 and G2 are matching covered. If one or both of
the new graphs contain a non-trivial tight edge-cut, we can again split along
it. We continue until we obtain a multiset of graphs with no tight edge-
cuts. The following theorem of Lovász [6] states that splitting along tight
edge-cuts is independent of the order in that the edge-cuts were chosen.

Theorem 6 (Lovász, 1987). Let G be a matching covered graph. The
multiset of graphs with no tight edge-cuts obtained by splitting along tight
edge-cuts of G depends neither on the chosen edge-cuts nor on the order in
which the splittings are performed.

The graphs in the multiset obtained by splitting along tight edge-cuts
are of two kinds. Bipartite graphs with no tight edge-cut are referred to as
braces. They are characterized by the following property [3].

Theorem 7 (Edmonds, Lovász, and Pulleybank, 1982). A bipartite
matching covered graph G has no tight edge-cut if and only if for every
subsets V and W of its color classes such that |V | = |W | ≤ 2, the graph
G− (V ∪W ) has a perfect matching.

If G is a cubic bridgeless graph that is a brace, shortly a cubic brace, we
call the number of vertices in each color class of G the order of the brace.
There is a unique cubic brace An of order n for each n ∈ {1, 2, 3, 4}. The
braces A1, . . . , A4 can be found in Figure 1.

Non-bipartite graphs that appear in the decomposition of a matching-
covered graph along its tight edge-cuts are known as bricks. They are char-
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acterized as follows [3].

Theorem 8 (Edmonds, Lovász, and Pulleybank, 1982). A non-
bipartite matching covered graph G has no tight edge-cut if and only if it
is 3-connected and for every two-element subset V of its vertices, the graph
G− V has a perfect matching.

As in the case of braces, we refer to bricks that are cubic bridgeless graphs
as to cubic bricks. Examples of cubic bricks can be found in Figure 2. Note
that the graph A1 is often considered to be a brick, but we prefer viewing it
as a brace throughout our exposition. Since the decomposition of a graph G
along its tight edge-cuts is formed by bricks and braces, it is called the brick
and brace decomposition of G. Recall that this decomposition is unique by
Theorem 6. The brick and brace decomposition is non-trivial if it contains
at least two graphs, i.e., the brick and brace decomposition of G is non-
trivial if and only if G is neither a brick nor a brace.

In the rest of this section, we deal with cubic bridgeless graphs only.
Before our further considerations, let us state the following consequence of
the structure of the perfect matching polytope of a cubic bridgeless graph
G: every tight edge-cut of G has size 3. In particular, the graphs forming
the brick and brace decomposition of a cubic bridgeless graph are also cubic
and bridgeless. Furthermore, it follows from Theorem 8 that every cubic
brick is a simple graph.

We now prove several rather simple facts on the brick and brace de-
compositions of cubic bridgeless graphs, on cubic bricks and cubic braces.
Though the reader can be familiar with some of these facts, we give their
short proofs for completeness. Before our first lemma, we need two more
definitions. A vertex v of a cubic graph G is tricovered if there exists a
spanning subgraph H of G such that the degree of v in H is 3 and the de-
grees of other vertices of G are 1. A cubic graph G is well-covered if every
vertex of G is tricovered. If G is a simple graph, a vertex v with neighbors
v1, v2 and v3 is tricovered if and only if the graph G − {v, v1, v2, v3} has a
perfect matching.

Lemma 9. Every cubic brick G is well-covered.

Proof. Let v be any vertex of G and v1, v2 and v3 its neighbors. By Theo-
rem 8, the graph G− {v2, v3} has a perfect matching M . Since G is cubic,
this perfect matching includes the edge vv1. Since every cubic brick is sim-
ple, the perfect matching M together with the edges vv2 and vv3 is the
sought spanning subgraph of G.
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Using Lemma 9, we show that every non-trivial brick and brace decom-
position contains a brace.

Lemma 10. Every non-trivial brick and brace decomposition of a cubic
bridgeless graph contains a brace.

Proof. It is enough to prove that there is no graph whose brick and brace
decomposition consists of two bricks. Suppose on the contrary that G is
such a graph. Let E := {v1w1, v2w2, v3w3} be a tight edge-cut of G, and let
G1 and G2 be the two bricks obtained by splitting along E. We may assume
that G1 contains the vertices vi and we let u1 be the vertex corresponding
to the contracted part. Similarly, G2 contains the vertices wi and we let u2

be the vertex corresponding to the contracted part.
By Lemma 9, both bricks G1 and G2 are well-covered. In particular, the

vertex ui is tricovered in Gi for i ∈ {1, 2}. Let Hi be a spanning subgraph
of Gi such that ui has degree 3 in Hi and the other vertices have degree 1.
The subgraphs H1 and H2 combine to a perfect matching of G including all
three edges of E, which contradicts our assumption that E is tight.

Let us now turn our attention to cubic braces. Again, we have to intro-
duce a definition. An edge of a matching-covered graph G is a solo-edge if
it is contained in exactly one perfect matching. A matching-covered graph
is double-covered if it has no solo-edges.

Lemma 11. Every cubic brace different from A1 and A2 is double-covered.

Proof. Let G be a cubic brace. Since A1 and A2 are the only cubic braces
of order at most 2, the order of the brace G is at least 3. Let uv be an edge
of G and M a matching containing uv. Since the order of G is not 1, there
exists an edge u′v′ not in M and not adjacent with uv. By Theorem 7,
the graph G − {u, v, u′, v′} has a perfect matching M ′. We can extend M ′

to G by adding the edges uv and u′v′. Thus, M and M ′ are two distinct
perfect matchings of G containing the edge uv. Consequently, G has no
solo-edge.

We finish this section with a lemma on cubic graphs whose decomposi-
tion contains a brace different from A1 and A2.

Lemma 12. Every cubic bridgeless graph G whose brick and brace decom-
position contains a brace different from A1 and A2 is double-covered.
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Proof. We proceed by induction on the number k of graphs in the brick and
brace decomposition of G. If k = 1, then G is double-covered by Lemma 11.
Assume that k ≥ 2 and let us show that G is double-covered. To this end,
let e be an edge of G. Consider any tight edge-cut E of G. Let G1 and G2

be the graphs obtained from G by splitting along this edge-cut.
By Theorem 6, the brick and brace decomposition of G1 or G2 contains

a brace different from A1 and A2. Assume that G1 has this property. Thus,
G1 is double-covered by induction.

If e is in G1, then G1 contains two distinct perfect matchings containing
e, and each of them can be extended to a perfect matching of G since G2 is
matching-covered. Hence, e is not a solo-edge.

If e is in G2, then a perfect matching of G2 containing e can be extended
to a perfect matching of G in at least two different ways, since G1 is double-
covered. Consequently, e is not a solo-edge either.

3 Good cubic graphs

In this section, we present most of our tools for proving the lower bounds on
the number of perfect matchings in a cubic bridgeless graph. Let us start
with some terminology. An n-vertex cubic bridgeless graph G is α-good if G
has n/2+α perfect matchings, and G is (≥ α)-good if it has at least n/2+α
perfect matchings. Since the dimension of the perfect matching polytope
of an n-vertex cubic brick is n

2 , a theorem of de Carvalho, Lucchesi, and
Murty [1] on perfect matching polytopes with the lowest possible dimension
implies that every brick is (≥ 2)-good except the bricks I1, . . . , I10 depicted
in Figure 2.

Theorem 13 (de Carvalho, Lucchesi, and Murty, 2005). Every brick
different from the 10 bricks I1, . . . , I10 depicted in Figure 2 is (≥ 2)-good.
All the bricks I1, . . . , I10 are 1-good.

Our lower bound argument is based on the analysis of the brick and brace
decompositions of cubic bridgeless graphs. We have introduced the opera-
tion of splitting along tight edge-cuts in Section 2. We now define the inverse
operation. Let G1 and G2 be cubic bridgeless graphs, u a vertex of G1 with
neighbors u1, u2 and u3 and v a vertex of G2 with neighbors v1, v2 and v3.
Let G be the graph obtained from G1 and G2 by removing the vertices u
and v and adding the edges u1v1, u2v2 and u3v3. We say that G is obtained
by gluing the graphs G1 and G2, or more precisely from G1 by gluing G2
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Figure 2: All 1-good bricks. The number near each edge indicates the
number of perfect matchings containing this edge.
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through the vertex u, or from G2 by gluing G1 through the vertex v. The
gluing is a solo-gluing if for every i ∈ {1, 2, 3}, the edge uui is a solo-edge
in G1 or the edge vvi is a solo-edge in G2.

We now prove two lemmas giving lower bounds on the number of perfect
matchings in graphs obtained by gluing smaller graphs. Before doing so, let
us introduce one more definition. If G is a cubic bridgeless graph and v a
vertex of G with neighbors v1, v2 and v3, then the pattern of v is the triple
(m1,m2,m3) where mi is the number of perfect matchings of G containing
the edge vvi for i ∈ {1, 2, 3}. We are now ready to prove the two lemmas.

Lemma 14. Let G be a cubic bridgeless graph obtained by gluing an α-good
graph Ga and a β-good graph Gb. The graph G is (≥ α+β− 1)-good unless
G is obtained by a solo-gluing, in which case G is (α + β − 2)-good.

Proof. Let na be the number of vertices of Ga and nb the number of vertices
of Gb. Next, let va be the vertex of Ga such that G is obtained from Ga

by gluing Gb through va. Similarly, vb is the vertex of Gb such that G is
obtained from Gb by gluing Ga through vb. Finally, let (ma,1,ma,2,ma,3)
be the pattern of va in Ga and (mb,1,mb,2,mb,3) the pattern of vb in Gb.

Since Ga is α-good and Gb is β-good,

na/2 + α = ma,1 + ma,2 + ma,3 (1)

and

nb/2 + β = mb,1 + mb,2 + mb,3 . (2)

Observe that xy ≥ x + y − 1 for every positive integers x and y, with
equality if and only x = 1 or y = 1. Hence, the definition of gluing and the
fact that ma,i ≥ 1 and mb,i ≥ 1 yield that the number of perfect matchings
of G is at least

ma,1mb,1+ma,2mb,2+ma,3mb,3 ≥ ma,1+ma,2+ma,3+mb,1+mb,2+mb,3−3
(3)

with equality if and only if for every i ∈ {1, 2, 3}, at least one of the numbers
ma,i and mb,i equals 1. Since G has na + nb − 2 vertices, (1), (2) and (3)
imply that G is (≥ α+β−2)-good. Moreover, G is (≥ α+β−1)-good unless
at least one of the numbers ma,i and mb,i equals 1 for every i ∈ {1, 2, 3},
i.e. unless G is obtained by a solo-gluing.

In the final lemma of this section, we show that the bound from Lemma 14
can be improved if one of the glued graphs is double-covered.
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Lemma 15. Let G be a cubic bridgeless graph obtained by gluing an α-good
graph Ga and a β-good graph Gb. If Ga is double-covered and Gb has at
least five perfect matchings, then G is (α + β)-good.

Proof. Let us keep the notation from the proof of Lemma 14. Assume that
mb,1 ≥ mb,2 ≥ mb,3, and let p be the number of perfect matchings of G. It
still holds that

p = ma,1mb,1 + ma,2mb,2 + ma,3mb,3 . (4)

First, assume that mb,2 = mb,3 = 1. Hence, mb,1 ≥ 3 since Gb has at
least five perfect matchings. Note that ma,i ≥ 2 for every i ∈ {1, 2, 3}
since Ga is double-covered. In particular, ma,1mb,1 ≥ ma,1 + mb,1 + 1 since
xy ≥ x + y + 1 for any x ≥ 2 and y ≥ 3. Thus, the bound (4) translates to

p ≥ ma,1 + mb,1 + 1 + ma,2 + ma,3

= ma,1 + ma,2 + ma,3 + mb,1 + mb,2 + mb,3 − 1

=
na

2
+

nb

2
+ α + β − 1 .

Since the number of vertices of G is n = na + nb − 2, the equalities (1)
and (2) imply that G is (α + β)-good.

We next assume that both mb,1 and mb,2 are at least 2. Recalling that
xy ≥ x + y − 1 for two positive integers x and y, with equality if and only
if x = 1 or y = 1, we deduce from (4) that

p ≥ ma,1 + mb,1 + ma,2 + mb,2 + ma,3 + mb,3 − 1 ≥ na

2
+

nb

2
− 1.

Therefore, G is (α + β)-good.

4 Bipartite cubic graphs

In this section, we will revisit a simple bound on the number of perfect
matchings in bipartite graphs, which can be found in the book of Lovász
and Plummer [7]. We need to slightly tune up the constants so that they
are good enough for our later considerations. Let us start by defining two
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n 1 2 3 4 5 6 7 8 9 10
f(n) 3 5 6 8 12 17 23 30 41 54
g(n) 2 3 4 6 8 11 15 20 27 36

Table 1: The values f(n) and g(n) for n ∈ {1, . . . , 10}.

auxiliary functions f, g : N → N recursively, as follows.

g(n) =

{
2 if n = 1,⌈

4
3g(n− 1)

⌉
otherwise,

f(n) =
⌈

3
2
g(n)

⌉
for every n ≥ 1.

The values of the functions f(n) and g(n) for small n can be found in
Table 1.

We follow the lines of the proof of Theorem 8.7.1 from the book of
Lovász and Plummer [7, Chapter 8] to prove the next lemma. In our further
considerations, a bipartite graph is near-cubic if all its vertices have degree
3 except one vertex in each color class that has degree 2.

Lemma 16. For each positive integer n, every cubic bipartite 2n-vertex
graph contains at least f(n) perfect matchings and every near-cubic bipartite
2n-vertex graph contains at least g(n) perfect matchings.

Proof. The proof proceeds by induction on n. The only cubic bipartite 2-
vertex graph is the brace A1, which has 3 = f(1) perfect matchings. The
only near-cubic bipartite 2-vertex graph is obtained from A1 by removing
an edge: it has 2 = g(1) perfect matchings. Thus, the bounds claimed in
the statement of the lemma hold if n = 1.

Assume that n ≥ 2. Let us first consider a near-cubic bipartite 2n-vertex
graph G and let u and v be its vertices of degree 2. If u and v are adjacent,
we show that G contains at least f(n− 1) perfect matchings. Indeed, let v′

be the neighbor of u distinct from v and u′ the neighbor of v distinct from
u. Let G′ be the graph obtained from G by removing the vertices u and v,
and adding an edge between u′ and v′. Since G′ is a cubic bipartite graph,
it contains at least f(n− 1) perfect matchings by the induction hypothesis.
The perfect matchings of G′ that contain the edge u′v′ can be converted to
perfect matchings of G by replacing the edge u′v′ with the edges uv′ and

11



u′v, and those matchings of G′ that avoid the edge u′v′ can be extended
to perfect matchings of G by adding the edge uv. Since different perfect
matchings of G′ yield different perfect matchings of G, we deduce that G
has at least f(n − 1) perfect matchings. The desired bound follows since
f(n− 1) ≥ 4

3g(n− 1).
We now consider the case where the vertices u and v are not adjacent.

Let v1 and v2 be the two neighbors of u, and for i ∈ {1, 2} let ui and u′i be
the two neighbors of vi different from u. Finally, let G1, G2, G3 and G4 be
the four graphs obtained from G by removing the vertex u, identifying the
vertices v1 and v2 and removing one of the four edges u1v1, u′1v1, u2v2 and
u′2v2. Each of the four graphs Gi is a near-cubic bipartite graph.

Every perfect matching of Gi corresponds to a perfect matching of G,
e.g., any perfect matching of G1 can be completed to a perfect matching of G
by adding the edge uv1 or uv2. On the other hand, a perfect matching of G
corresponds to perfect matchings in exactly three of the graphs G1, . . . , G4

since it includes exactly one of the four edges u1v1, u′1v1, u2v2 and u′2v2.
Hence, G has at least 4g(n− 1)/3 perfect matchings.

We have shown that G contains at least 4g(n− 1)/3 perfect matchings.
Since the number of perfect matchings of G is an integer, G contains at
least g(n) perfect matchings, as asserted.

Assume now that H is a bipartite cubic graph. Let v be a vertex of H and
v1, v2 and v3 the three neighbors of v. For i ∈ {1, 2, 3}, let Hi be the near-
cubic bipartite graph obtained by removing the edge vvi. As shown before,
Hi contains at least g(n) perfect matchings. If M is a perfect matching
of H, then M is also a perfect matching of exactly two of the graphs H1,
H2 and H3. Hence, H contains at least 3g(n)/2 perfect matchings. Since
the number of perfect matchings is an integer, H contains at least f(n) =
d3g(n)/2e perfect matchings.

Lemma 17. For each n ≥ 5, every brace G of order n, is (≥ n + 2)-good.

Proof. Since g(5) = 8, we infer that for all n ≥ 5,

f(n) ≥ 3
2
·
(

4
3

)n−5

· 8 =
4n−4

3n−6
≥ 2n + 2 .

By Lemma 16, G has at least f(n) ≥ 2n + 2 perfect matchings and thus G
is (≥ n + 2)-good.
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We finish this section with a simple constant lower bound on the number
of perfect matchings in cubic bridgeless graphs which turns out to be useful
in our further considerations.

Lemma 18. Every cubic bridgeless graph different from A1, I1 and I2 has
at least five perfect matchings.

Proof. Let G be a cubic bridgeless graph. If G is a brace, then G has at least
five perfect matchings unless G = A1 by Lemma 16. If G has a non-trivial
brick and brace decomposition, then its decomposition contains a brace by
Lemma 10, which cannot be A1. Hence, the brace in the decomposition of G
has at least five perfect matchings. Since the number of perfect matchings
of a graph is at least the minimum of the number of perfect matchings of the
graphs in its brick and brace decomposition (because every perfect matching
of a graph in the decomposition can be extended to a perfect matching of
the original graph), G has at least five perfect matchings.

It remains to consider the case where G is a brick. By Theorem 13,
every n-vertex brick has at least n/2+1 perfect matchings. Hence, if G has
less than five perfect matchings, then G has at most six vertices. The only
two bricks with at most six vertices are the bricks I1 and I2, which have
three and four perfect matchings, respectively.

5 Single-brace cubic graphs

In this section, we analyze the number of perfect matchings in graphs whose
brick and brace decomposition contains exactly one brace. Such cubic
bridgeless graphs are referred to as single-brace graphs. Before we pro-
ceed further, let us state a simple lemma on tricovered vertices in cubic
graphs.

Lemma 19. If G is a cubic graph obtained from G′ by gluing a graph G′′

through a vertex v, then every vertex w 6= v of G′ that is tricovered in G′ is
also tricovered in G.

Proof. Let H ′ be a spanning subgraph of G′ such that the vertex w has
degree 3 in H ′ and the other vertices of G′ have degree 1. Let e be the
edge of H ′ incident with v and let f be the edge corresponding to e in G′′.
Let M be a perfect matching of G′′ that contains the edge f (recall that
every cubic bridgeless graph is matching covered). The subgraph H ′ and
the matching M combine to a spanning subgraph H of G where the degree
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of w is 3 and the degrees of other vertices are 1. Hence, the vertex w is
tricovered in G.

Let us now apply Lemma 19 to establish the following auxiliary lemma
restricting the set of vertices through which a brick can be glued to a brace.

Lemma 20. Let G be a single-brace graph. If the brick and brace decompo-
sition consists of a brace B of order n and bricks B1, . . . , Bk, and the brace
B is not A2, then k ≤ n and G can be obtained from B by gluing Bi through
a vertex vi of B for each i ∈ {1, . . . , k} such that all the vertices vi are in
the same color class of B.

Proof. The proof proceeds by induction on k, the conclusion holding triv-
ially when k = 1. Assume that k ≥ 2. Let us consider a tight edge-cut E
of G and let G1 and G2 be the two graphs obtained by splitting along the
edge-cut E. By Theorem 6 and Lemma 10, one of the graphs G1 and G2

is a brick. By symmetry, we can assume that G2 is the brick Bk. Let w be
the vertex such that G is obtained from G1 by gluing Bk through w.

By the induction hypothesis, G1 is obtained from the brace B by glu-
ing Bi for each i ∈ {1, . . . , k − 1} through a vertex vi, and the vertices
v1, . . . , vk−1 are in the same color class of B. In order to finish the proof of
the lemma, we have to exclude the following two cases.

• The vertex w is a vertex of one of the bricks B1, . . . , Bk−1.

• The vertex w is in the other color class than the vertices v1, . . . , vk−1.

To this end, we show if w is one of the above two types, then w is tricovered
in G1. Since G2 is well-covered by Lemma 9, this will imply that the edge-
cut E is not tight. If w is a vertex of one of the bricks, then it is tricovered
by Lemma 19 (apply this lemma several times while gluing the bricks to
construct G1). Hence, we have to focus on the case where w is in the other
color class of B.

Since the brace A1 does not appear in any non-trivial brick and brace de-
composition and B 6= A2, the brace B is simple (by Theorem 7). Let w′ and
w′′ be two neighbors of w distinct from v1, and let v′ and v′′ be two neigh-
bors of v1 distinct from w. By Theorem 7, the graph B − {v′, v′′, w′, w′′}
has a perfect matching. Adding the edges v1v

′, v1v
′′, ww′ and ww′′ to this

perfect matching yields a spanning subgraph HB of B, all of whose vertices
have degree 1 except for the vertices v1 and w, which both have degree 3.
Along the brick and brace decomposition, using the fact that the bricks are
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H0 H1

H2

Figure 3: The exceptional graphs H0, H1 and H2.

well-covered by Lemma 9, the subgraph HB can be extended to a spanning
subgraph H of G1 in which every vertex has degree 1 but the vertex w,
which has degree 3. Hence, w is tricovered in G1.

Since gluing a brick to a graph through a tricovered vertex does not
create a new tight edge-cut, the vertex w must belong to the same color
class as v1, . . . , vk−1. In particular, G can be obtained from the brace B
by gluing the bricks B1, . . . , Bk through vertices v1, . . . , vk contained in the
same color class. Since each color class of B contains n vertices, the number
k of bricks is at most n. The proof of the lemma is now finished.

With Lemma 20, we are ready to consider single-brace graphs whose
decomposition contains the brace A3.

Lemma 21. If G is a single-brace graph that contains A3 in its brick and
brace decomposition, then G is (≥ 2)-good unless it is one of the graphs H0,
H1 and H2 depicted in Figure 3.

Proof. By Lemma 20, the graph G is obtained from the brace A3 by gluing
at most three bricks through vertices of the same color class of A3. Let i1
be the number of bricks I1 glued to A3, i2 the number of bricks I2 glued to
A3, and i the number of other bricks glued to A3. Thus, i1 + i2 + i ≤ 3.
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H3 H4 H5

Figure 4: The exceptional graphs H3, H4 and H5.

The graph A3 is 3-good and double-covered (the latter being implied by
Lemma 11). Since I1 is 1-good, the graph G1 obtained by gluing i1 bricks
I1 to A3 is (≥ 3− i1)-good by Lemma 14.

Let G2 be the graph obtained from G1 by gluing i2 bricks I2 according
to the brick and brace decomposition of G. Note that I2 is 1-good, and no
vertex of I2 is incident with three solo-edges. Moreover, the graph G1 is
double covered by Lemma 12. Consequently, none of these i2 gluings is a
solo-gluing. Hence, the graph G2 is (≥ 3− i1)-good by Lemma 14.

Finally, each of the remaining i bricks contains at least five perfect
matchings by Lemma 18 and is (≥ 1)-good by Theorem 13. Since the graph
G2 is double-covered by Lemma 12, the final graph G is (≥ 3 − i1 + i)-
good by Lemma 15. Hence, if G is not (≥ 2)-good, then i1 ≥ 2 + i. Since
i1 + i2 + i ≤ 3, we deduce that i = 0 and i2 ∈ {0, 1}. So, either i1 = 3 and
i2 = 0, or i1 = 2 and i2 = 0, or i1 = 2 and i2 = 1. The graph G is then
either H0, H1, or H2, respectively. It is straightforward to verify that H0 is
0-good and the graphs H1 and H2 are 1-good.

Before we proceed with analyzing single-brace graphs whose brick and
brace decomposition contains a brace of order at least 4, let us deal with
those whose decomposition contains the brace A2.

Lemma 22. If G is a single-brace graph that contains A2 in its brick and
brace decomposition, then G is (≥ 2)-good unless it is one of the graphs H3,
H4 and H5 depicted in Figure 4.

Proof. Let B = A2 be the brace and B1, . . . , Bk the bricks forming the brick
and brace decomposition of G. As in the proof of Lemma 20, it is possible
to argue using Lemma 19 that G is obtained by gluing B1, . . . , Bk through
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distinct vertices v1, . . . , vk of the brace B (this part of the proof was only
using the fact that every brick is well-covered). However, since B is not
simple, it is not possible to argue that the vertices v1, . . . , vk lie in the same
color class of A2 as in the proof of Lemma 20. In fact, they do not have to,
as we shall see in what follows.

Although the vertices v1, . . . , vk do not have to be contained in the same
color class of B, it still holds that k ≤ 2. Suppose on the contrary that
k ≥ 3. Then, two of the vertices vi, say v1 and v2, are in the same color
class of B. We show that the graph G′ obtained from B by gluing the brick
B1 through the vertex v1 and the brick B2 through the vertex v2 is well-
covered. Since B3 is a brick, and thus is well-covered by Lemma 9, this will
eventually contradict that the edge-cut of G used to split off B3 is tight.

Let u and u′ be the vertices of the other color class of B than v1 and v2.
By Lemma 19, all the vertices of G′ except possibly u and u′ are tricovered.
Let us establish that the vertices u and u′ are also tricovered in G′.

By symmetry, we can assume that u is joined by two parallel edges to v1.
Let u1 and u2 be the neighbors (in G) of u inside the brick B1, u3 the vertex
of B1 adjacent to u′ and u0 the remaining neighbor of u. Observe that u0 is
in the brick B2. Since B1 is well-covered, there exists a subgraph H ′ of G
spanning B1 that contains the edges uu1, uu2 and u′u3 and every vertex of
B1 has degree 1 in H ′. Adding to H ′ a perfect matching of B2 containing
the edge uu0 yields a spanning subgraph H of G′, in which the vertex u has
degree 3 and the remaining vertices have degree 1. Since the case of the
vertex u′ is symmetric, we have proved that G′ is well-covered. As argued
before, the number of bricks in the brick and brace decomposition of G is
at most 2, i.e. k ≤ 2.

If k = 0, then G = A2 which is 3-good. If k = 1, then G is (≥ 2)-good
by Lemma 14 since every brick is (≥ 1)-good. If k = 2, then G is again
(≥ 2)-good by Lemma 14 unless both B1 and B2 are 1-good bricks and
both gluings are solo-gluings. Since the pattern of every vertex of A2 is
(1, 2, 2), a gluing can be a solo-gluing only if the brick Bi contains a vertex
of pattern (1, 1, x) for some x ∈ N. However, there are only three 1-good
bricks containing a vertex of pattern (1, 1, x); see Figure 2. In particular,
both the bricks B1 and B2 must be one of the bricks I1, I2 and I3.

Let us now argue that at least one of the bricks B1 and B2 is I1. To this
end, we prove that one of the two solo-gluings must be through a vertex of
a brick with pattern (1, 1, 1). This will yield the desired conclusion since,
among I1, I2 and I3, only I1 contains a vertex with such a pattern. Let
G′ be the graph obtained from B = A2 by solo-gluing I2 or I3. As argued
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Figure 5: The graphs that can be obtained from the brace A2 by solo-gluing
the brick I1 and one of the bricks I1, I2 and I3 through vertices joined by
parallel edges in A2.

before, the solo-gluing is through a vertex of the brick with pattern (1, 1, x).
By the structure of I2 and I3, it holds that x ≥ 2. Let v be a vertex of G′

that is not contained in the glued brick and e an edge incident with v. If e is
contained in two different perfect matchings of A2, then e is also contained
in at least two different perfect matchings of G′. If e is contained in a single
perfect matching of A2, then this perfect matching can be extended in x
different ways to the glued brick. Hence, every edge incident with v is in
at least two different perfect matchings of G′. Since the choice of v was
arbitrary among the vertices not contained in the brick, we deduce that
only a brick containing a vertex with pattern (1, 1, 1) can be solo-glued to
G′ (recall that gluing the second brick through a vertex contained in the
first one would not yield a tight edge-cut). Hence, at least one of the bricks
B1 and B2 is I1.

By symmetry, we can assume in the rest that B1 = I1 and B2 ∈
{I1, I2, I3}. Let u and u′ be vertices of one of the color classes of B = A2.
Let v be the vertex of the other color class joined by two parallel edges to
u, and v′ the vertex joined by two parallel edges to u′. By symmetry, the
brick B1 = I1 is glued to B = A2 through the vertex u. If the brick B2

is glued through the vertex u′ or the vertex v′, we obtain one of the three
1-good graphs depicted in Figure 4. Note that although the brick B2 can
be glued in several non-symmetric ways, there is a unique way how it can
be solo-glued. Finally, if the brick B2 is glued through the vertex v, then
the resulting graph is (≥ 2)-good. See Figure 5 for the three graphs that
can be obtained in this way.

It remains to analyze single-brace graphs whose brace-decomposition
contains a brace of order at least four.

18



H6

Figure 6: The exceptional graph H6.

Lemma 23. If G is a single-brace graph that contains neither A2 nor A3

in its brick and brace decomposition, then G is (≥ 2)-good unless it is the
graph H6 depicted in Figure 6.

Proof. Let B be the brace in the decomposition of G, n the order of B and
B1, . . . , Bk the bricks in the decomposition. By Lemma 20, k ≤ n. Let i1 be
the number of bricks B1, . . . , Bk isomorphic to the brick I1. If the brace B
is A4, then B is 5-good. After gluing the i1 bricks I1, the resulting graph G′

is (≥ 5− i1)-good by Lemma 14. Since G′ is double-covered by Lemma 12,
none of the gluings of the other k − i1 bricks to G′ is a solo-gluing. Hence,
G is (≥ 5− i1)-good. We conclude that if G is not (≥ 2)-good, then i1 = 4
and G is the exceptional graph H6 depicted in Figure 6.

Assume now that B is not the brace A4. Since B is also neither A2 nor
A3 by the assumption of the lemma, B is (n + 2)-good by Lemma 17. As
in the previous paragraph, we argue that G is (≥ n + 2 − i1)-good. Since
i1 ≤ k ≤ n (the latter inequality is implied by Lemma 20), it follows that
G is (≥ 2)-good.

Lemmas 21–23 imply the following theorem. Note that every brace is
(≥ 2)-good as shown in Section 4.

Theorem 24. A single-brace graph G is (≥ 2)-good with the following
exceptions:

• the graph H0 which is 0-good, and

• the graphs H1, . . . ,H6 which are 1-good.

The exceptional graphs are depicted in Figures 3, 4 and 6.
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Figure 7: Spanning subgraphs of the graph H0 witnessing that every vertex
of H0 is tricovered (symmetric cases are omitted). The edges contained in
the subgraphs are dashed.

Figure 8: Spanning subgraphs of the graph H1 witnessing that all but one
vertices of H1 are tricovered (symmetric cases are omitted). The edges
contained in the subgraphs are dashed.

6 More-brace cubic graphs

In this section, we analyze cubic bridgeless graphs whose brick and brace
decompositions contain at least two braces. Before we do so, we have to
establish two auxiliary lemmas. The first one asserts that almost every
single-brace graph that is not (≥ 2)-good is well-covered.

Lemma 25. The cubic graphs H0, . . . ,H6 are well-covered with the excep-
tion of H1 which contains a single vertex that is not tricovered. The pattern
of this vertex of H1 is (2, 2, 2).

Proof. It is enough to exhibit spanning subgraphs of the graphs H0, . . . ,H6

witnessing the statement of the lemma. Such subgraphs can be found in
Figures 7–13; the exceptional vertex of H1 is the vertex of A3 of the color
class where the brick I1 was glued through the other two vertices.

In the next lemma, we restrict the structure of cubic bridgeless graphs
that are not double-covered.
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Figure 9: Spanning subgraphs of the graph H2 witnessing that every vertex
of H2 is tricovered (symmetric cases are omitted). The edges contained in
the subgraphs are dashed.

Figure 10: Spanning subgraphs of the graph H3 witnessing that every vertex
of H3 is tricovered (symmetric cases are omitted). The edges contained in
the subgraphs are dashed.
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Figure 11: Spanning subgraphs of the graph H4 witnessing that every vertex
of H4 is tricovered (symmetric cases are omitted). The edges contained in
the subgraphs are dashed.

Figure 12: Spanning subgraphs of the graph H5 witnessing that every vertex
of H5 is tricovered (symmetric cases are omitted). The edges contained in
the subgraphs are dashed.
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Figure 13: Spanning subgraphs of the graph H6 witnessing that every vertex
of H6 is tricovered (symmetric cases are omitted). The edges contained in
the subgraphs are dashed.

Lemma 26. If G is a cubic bridgeless graph that is neither a brick nor the
brace A1, then every vertex of G is incident with at most one solo-edge.

Proof. We proceed by induction on the number of vertices of G. If G has
no tight edge-cuts, then it must be a brace. If G is the brace A2, then every
vertex of G has pattern (1, 2, 2) and the statement holds. Otherwise, G is
double-covered by Lemma 12 and thus G has no solo-edges at all.

Assume that G has a non-trivial tight edge-cut E = {e1, e2, e3}, and let
G1 and G2 be the graphs obtained by splitting along E. Lemma 10 ensures
that any non-trivial brick and brace decomposition contains at least one
brace. Thus, we can assume that the brick and brace decomposition of G1

contains a brace. By the induction hypothesis, every vertex of G1 is incident
with at most one solo-edge.

For i ∈ {1, 2}, let Vi be the set of vertices of G contained in Gi. Further,
let v be the vertex of G2 such that G is obtained from G2 by gluing G1

through v. In particular, v 6∈ V2. Note that the edges e1, e2 and e3 one-
to-one correspond to the edges of G2 incident with v. Since every vertex
of G1 is incident with at most one solo-edge, we can assume that, for each
i ∈ {1, 2}, the graph G2 admits a perfect matching that contains the edge
ei and can be extended to G1 in at least two different ways.

Let w be any vertex of V2 and let f1, f2 and f3 be the three edges
incident with w. We aim to show that at most one of these edges is a
solo-edge. Since a cubic bridgeless graph is matching covered, there exists
a perfect matching M1 of G2 containing the edge e1. By symmetry, we can
assume that M1 also contains the edge f1. Since any matching containing
the edge e1 can be extended to G1 in at least two different ways, the edge
f1 is not a solo-edge.

On the other hand, as noted after Theorem 1, there exists a perfect
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matching M2 of G2 avoiding both the edges e3 and f1. By symmetry, we
may assume that M2 contains the edge f2. Since M2 also contains the edge
e1 or e2, it can be extended to G1 in at least two different ways. Hence,
the edge f2 is not a solo-edge either. We conclude that every vertex of V2

is incident with at least two edges that are not solo-edges.
Since the number of perfect matchings containing a given edge can only

increase by gluing a graph through a vertex, every vertex of V1 is incident
with at most one solo-edge. This finishes the proof of the lemma.

In the next lemma, we show that every cubic bridgeless graph G that
is neither a brick nor a single-brace graph contains a tight edge-cut with a
useful property.

Lemma 27. Let G be a cubic bridgeless graph that is neither a brick nor
a single-brace graph. Then, G contains a tight edge-cut E such that neither
of the graphs obtained by splitting along E is a brick.

Proof. We proceed by induction on the number K of graphs in the brick
and brace decomposition of G. The result is true if K = 2. Assume now
that K > 2 and the theorem holds for smaller values of K. Since G is
neither a brick nor a brace, G contains a tight edge-cut E. Let G1 and G2

be the two graphs obtained from G by splitting along E. By symmetry, we
may assume that G2 is a brick (otherwise E is the sought tight edge-cut).
Hence, as G is not a single-brace graph, the brick and brace decomposition
of G1 contains at least two braces. Thus, by induction, G1 contains a tight
edge-cut E′ that splits G1 into two graphs G′

1 and G′
2 such that neither of

them is a brick, i.e., the brick and brace decomposition of both G′
1 and G′

2

contains a brace. Let v be the vertex of G1 such that G is obtained from
G1 by gluing G2 through v. By symmetry, we can assume that the vertex
v is contained in G′

2.
We assert that E′ is also a tight edge-cut of G. Indeed, if G contains

a perfect matching containing all three edges of E′, then this matching
uses exactly one edge of E because E is a tight edge-cut. Hence, the edge
contained in E can be replaced with an edge of G1 incident with v yielding
a perfect matching of G1 containing all three edges of E′.

Split now the graph G along the tight edge-cut E′. One of the obtained
graphs is the graph G′

1, which is not a brick. The other graph cannot be a
brick either, since its brick and brace decomposition must contain a brace
contained in the decomposition of G′

2 (recall that Theorem 6 ensures that
the brick and brace decomposition of G is unique).
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We are now ready to analyze cubic bridgeless graphs whose brick and
brace decomposition contains two or more braces. We start with the case
of two braces, which will be the core of our inductive argument later.

Theorem 28. If the brick and brace decomposition of a cubic bridgeless
graph G contains two braces, then G is (≥ 2)-good.

Proof. Since the brick and brace decomposition of G is non-trivial, G has
a tight edge-cut E. Let G1 and G2 be two graphs obtained from G by
splitting along E. By Lemma 27, we can assume that neither G1 nor G2 is
a brick. Hence, both G1 and G2 are single-brace graphs. By the definition
of the brick and brace decomposition, neither G1 nor G2 can be the brace
A1. Note that both G1 and G2 have at least five perfect matchings by
Lemma 18.

Assume first that G1 is (≥ 2)-good. By Lemma 26, the gluing of G1

and G2 resulting to G is not a solo-gluing. Hence, if G2 is (≥ 1)-good,
then G is (≥ 2)-good by Lemma 14. If G2 is not (≥ 1)-good, then G2

must be the graph H0 by Theorem 24. In particular, G2 is double-covered.
Consequently, G is (≥ 2)-good by Lemma 15 since G1 has at least five
perfect matchings. A symmetric arguments applies if G2 is (≥ 2)-good.

It remains to consider the case where neither G1 nor G2 is (≥ 2)-good.
Theorem 24 yields that each of G1 and G2 is one of the graphs H0, . . . ,H6.
For i ∈ {1, 2}, let vi be the vertex of Gi such that G is obtained from Gi

by gluing G3−i through vi. At least one of the vertices v1 and v2 is not
tricovered, since the edge-cut E used to split G is tight. By Lemma 25 and
symmetry, we can assume that G1 is the graph H1 and the pattern of v1 in
G1 is (2, 2, 2).

If G2 is 1-good, then G is (≥ 2)-good by Lemma 15 since G1 is 1-
good and double-covered. The other case is that G2 is not 1-good. Then
Theorem 24 implies that G2 is the graph H0. Consequently, the pattern
of v2 is also (2, 2, 2), and the graph G has at least 3 · (2 · 2) = 12 perfect
matchings. Since the number of vertices of G is 10+12− 2 = 20, the graph
G is 2-good.

Finally, we can prove the main theorem of this section.

Theorem 29. If the brick and brace decomposition of a cubic bridgeless
graph G contains at least two braces, then G is (≥ 2)-good.

Proof. The proof proceeds by induction on the number of braces in the brick
and brace decomposition of G. If the brick and brace decomposition of G
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contains exactly two braces, then G is (≥ 2)-good by Theorem 28. Assume
now that the decomposition of G contains at least three braces. Let G1 and
G2 be two graphs that can be obtained from G by splitting along a tight
edge-cut. By Lemma 27, we can assume that neither G1 nor G2 is a brick.
By the definition of the brick and brace decomposition, neither G1 nor G2

is the brace A1.
Since the brick and brace decomposition of G contains at least three

braces, at least one of G1 and G2 is not a single-brace graph. By symmetry,
we can assume that G1 is not a single-brace graph, and thus G1 is (≥ 2)-good
by the induction hypothesis. The graph G2 is (≥ 0)-good. This follows from
Theorem 24 if G2 is a single-brace graph, and from the induction hypothesis
otherwise. By Lemma 26, the gluing of G1 and G2 resulting in G is not a
solo-gluing. So, if G2 is (≥ 1)-good, then G is (≥ 2)-good by Lemma 14.
If G2 is 0-good, then G2 must be the graph H0 by Theorem 24 and the
induction hypothesis. In particular, G2 is double-covered. Moreover, G1

has at least five perfect matchings by Lemma 18. Hence, Lemma 15 implies
that G is (≥ 2)-good.

Theorems 13, 24 and 29 imply Theorem 5, the main result of this paper.
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