Recitation session, March 7

Let \mathcal{O} be a ring with no zero divisors. We consider power series with coefficients in the ring \mathcal{O}. At the first recitation session, we looked at the following problems:

Problem 1. Let $B(x)=\sum_{n>0} b_{n} x^{n}$ be a composable power series (which, we recall, means that $b_{0}=0$). Our goal is to find power series $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ such that $A(B(x))=x$. Prove the following facts:

- If b_{1} has no multiplicative inverse in \mathcal{O}, then no such $A(x)$ exists.
- If b_{1} has a multiplicative inverse, then $A(x)$ exists and is unique. Moreover, $A(x)$ then has the following properties:
a) $A(x)$ is composable,
b) $a_{1}=\frac{1}{b_{1}}$,
c) $B(A(x))=x$,
d) a_{n} only depends on b_{1}, \ldots, b_{n}.

Definition 1. For a formal power series $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ we define its formal derivative, denoted by $\frac{\mathrm{d}}{\mathrm{d} x} A(x)$, as follows:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} A(x)=\sum_{n \geq 1} n \cdot a_{n} x^{n-1}
$$

where the expression $n \cdot a_{n}$ refers to the sum $a_{n}+a_{n}+\cdots+a_{n}$ with n summands (therefore $n \cdot a_{n}$ is well defined in any ring \mathcal{O}).

Problem 2. Show that the following holds for any power series $A(x)$ and $B(x)$:

- $\frac{\mathrm{d}}{\mathrm{d} x}(A(x)+B(x))=\frac{\mathrm{d}}{\mathrm{d} x} A(x)+\frac{\mathrm{d}}{\mathrm{d} x} B(x)$,
- $\frac{\mathrm{d}}{\mathrm{d} x}(A(x) B(x))=\left(\frac{\mathrm{d}}{\mathrm{d} x} A(x)\right) B(x)+A(x)\left(\frac{\mathrm{d}}{\mathrm{d} x} B(x)\right)$,
- $\frac{\mathrm{d}}{\mathrm{d} x} A(B(x))=\left(\left(\frac{\mathrm{d}}{\mathrm{d} x} A(x)\right) \circ B(x)\right) \frac{\mathrm{d}}{\mathrm{d} x} B(x)$, provided $A(B(x))$ is well defined.

