Recitation session, March 7

Let \mathcal{O} be a ring with no zero divisors. We consider power series with coefficients in the ring \mathcal{O} . At the first recitation session, we looked at the following problems:

Problem 1. Let $B(x) = \sum_{n\geq 0} b_n x^n$ be a composable power series (which, we recall, means that $b_0 = 0$). Our goal is to find power series $A(x) = \sum_{n\geq 0} a_n x^n$ such that A(B(x)) = x. Prove the following facts:

- If b_1 has no multiplicative inverse in \mathcal{O} , then no such A(x) exists.
- If b_1 has a multiplicative inverse, then A(x) exists and is unique. Moreover, A(x) then has the following properties:
 - a) A(x) is composable,

b)
$$a_1 = \frac{1}{b_1}$$
,

- c) B(A(x)) = x,
- d) a_n only depends on b_1, \ldots, b_n .

Definition 1. For a formal power series $A(x) = \sum_{n\geq 0} a_n x^n$ we define its *formal derivative*, denoted by $\frac{d}{dx}A(x)$, as follows:

$$\frac{\mathrm{d}}{\mathrm{d}x}A(x) = \sum_{n \ge 1} n \cdot a_n x^{n-1},$$

where the expression $n \cdot a_n$ refers to the sum $a_n + a_n + \cdots + a_n$ with n summands (therefore $n \cdot a_n$ is well defined in any ring \mathcal{O}).

Problem 2. Show that the following holds for any power series A(x) and B(x):

- $\frac{\mathrm{d}}{\mathrm{d}x}(A(x) + B(x)) = \frac{\mathrm{d}}{\mathrm{d}x}A(x) + \frac{\mathrm{d}}{\mathrm{d}x}B(x),$
- $\frac{\mathrm{d}}{\mathrm{d}x}(A(x)B(x)) = (\frac{\mathrm{d}}{\mathrm{d}x}A(x))B(x) + A(x)(\frac{\mathrm{d}}{\mathrm{d}x}B(x)),$
- $\frac{\mathrm{d}}{\mathrm{d}x}A(B(x)) = \left(\left(\frac{\mathrm{d}}{\mathrm{d}x}A(x)\right) \circ B(x)\right) \frac{\mathrm{d}}{\mathrm{d}x}B(x)$, provided A(B(x)) is well defined.