
Largest Inscribed Rectangles in Convex Polygons∗

Christian Knauer† Lena Schlipf‡ Jens M. Schmidt§

Hans Raj Tiwary¶

Abstract

We consider approximation algorithms for the problem of comput-
ing an inscribed rectangle having largest area in a convex polygon on
n vertices. If the order of the vertices of the polygon is given, we
present a randomized algorithm that computes an inscribed rectangle
with area at least (1− ε) times the optimum with probability t in time
O(1

ε log n) for any constant t < 1. We further give a deterministic ap-
proximation algorithm that computes an inscribed rectangle of area at
least (1− ε) times the optimum in running time O(1

ε2 log n) and show
how this running time can be slightly improved.

1 Introduction

Much work has been devoted in the past to compute inscribed objects of
maximum area in polygons. Most contributions focus on objects that are
again polygons, e. g., largest axis-aligned rectangles in convex or non-convex
polygons [2, 5], largest squares and equilateral triangles in convex polygons
[6], and largest empty rectangles on point sets [4].

Given a convex polygon P with n vertices, we want to compute a largest
inscribed rectangle in P . To our knowledge, no optimal algorithm for this
problem is published so far, although there is a straight-forward way in
time O(n4) (we will give a sketch in the next chapter). Moreover, we are
not aware of an algorithm that computes a (1 − ε)-approximation for this
problem. Ahn et al. describe how to approximate axially symmetric poly-
gons in the more general class of convex sets [1], however the computed
polygon is not necessarily a rectangle. Hall-Holt et al. restrict the problem

∗Work by Schlipf and Schmidt was partly supported by the Deutsche Forschungsge-
meinschaft within the research training group “Methods for Discrete Structures” (GRK
1408).
†Institute of Computer Science, Universität Bayreuth, Germany, christian.knauer@uni-

bayreuth.de.
‡Institute of Computer Science, Freie Universität Berlin, Germany, schlipf@inf.fu-

berlin.de.
§MPI für Informatik, Saarbrücken, Germany, jens.schmidt@mpi-inf.mpg.de.
¶Département de Mathématique, Université Libre de Bruxelles, Belgium,

hans.raj.tiwary@ulb.ac.be.

1

mailto:christian.knauer@uni-bayreuth.de
mailto:christian.knauer@uni-bayreuth.de
mailto:schlipf@inf.fu-berlin.de
mailto:schlipf@inf.fu-berlin.de
mailto:jens.schmidt@mpi-inf.mpg.de
mailto:hans.raj.tiwary@ulb.ac.be

to fat rectangles [7], i. e., rectangles with an aspect ratio that is bounded
by a constant. Under the assumption that a largest inscribed rectangle is
fat, they (1− ε)-approximate the largest fat rectangle in simple polygons in
time O(n); in polygons with holes, their approximation algorithm runs in
O(n log n) time.

We obtain approximation algorithms for general largest rectangles with
running times that are only logarithmically dependent on n, if the ordering
of the vertices of the convex polygon P is given. The assumption on the
vertex ordering is common when handling polygons: In fact, Alt et al. show
under this assumption that the largest axis-aligned inscribed rectangle inside
a convex polygon can be computed in logarithmic time [2]. If not already
given, the ordering can be computed using standard convex hull algorithms
in O(n log n) time. We will assume throughout the paper that the ordering
is given. Our results show that fatness is not required for approximating a
largest inscribed rectangle.

The main result of this paper can be stated as follows.

Theorem 1. Let P be a convex polygon with n vertices. Suppose the vertices
of the polygon are given in clockwise order. Then, an inscribed rectangle in
P with area of at least (1− ε) times the area of a largest inscribed rectangle
can be computed

• with probability t in O(1ε log n) deterministic time for any constant
t < 1.

• in O(1
ε2

log n) deterministic time.

• in O(1ε log 1
ε log n+ 1

ε28
) deterministic time.

2 Preliminaries

We denote the area of a polygon P by |P |. A line segment connecting two
points a and b is denoted by ab and its length by |ab|. For a given convex
polygon P , let Ropt be a largest inscribed rectangle. Note that in general
the largest inscribed rectangle is not unique; we will use Ropt to denote any
one of the largest inscribed rectangles.

A slow but optimal algorithm. We briefly sketch an optimal algorithm
with running time O(n4). If a corner of Ropt coincides with a vertex of P ,
we call it a vertex-corner ; if it is contained in a boundary edge of P , we call
it an edge-corner (note that an edge-corner can be a vertex-corner). It is
easy to prove that Ropt is either a square with two opposite vertex-corners or
contains at least 3 edge-corners. The largest square in a convex polygon can
be computed in O(n2) time [6]. For the latter case, let e1, e2, e3 be boundary

2

edges of P containing the edge-corners. If the fourth corner is also an edge-
corner, let e4 be an edge containing it; otherwise, let e4 be a boundary edge
that is intersected by extending the longer side of Ropt. For each of the

(
n
4

)
possible edge sets {e1, . . . , e4}, we compute all largest area rectangles with
corners in at least 3 of the edges e1, . . . , e4 such that the possibly leftover
edge is intersected by the extension of the largest rectangle side. This is
a problem of constant size, as it can be expressed as optimization problem
with a constant number of variables and polynomial inequalities of constant
degree each. Solving this problem takes therefore constant time, which gives
the total running time O(n4).

We want to approximate the largest inscribed rectangle in a convex poly-
gon. This will allow us to obtain exponentially better running times for every
fixed approximation ratio. If we know the direction dopt of one of the sides
of Ropt, we can compute the largest rectangle Ropt itself in O(log n) time by
applying the algorithm of Alt et al. [2]. The general idea of our algorithm
is to approximate the direction of alignment of a largest inscribed rectangle
and to prove that the area of the largest inscribed rectangle aligned along
this direction also approximates |Ropt|. For the computation, we construct
a set of candidate directions and find the largest inscribed rectangle along
each of these directions using the algorithm of Alt et al. [2]. The num-
ber of candidate directions will be O(1ε) for the randomized version of our
algorithm, and O(1

ε2
) or O(1ε log 1

ε) for the deterministic one.

3 Approximating the direction of Ropt

We want to find a direction close enough to the direction of any side of
Ropt. This direction will be called an ε-close direction, for a fixed ε > 0. To
define what ε-close means, first suppose that we know Ropt and denote the
intersection of its diagonals as its center s. Let ab be one of the two shortest
sides of Ropt and let d be the midpoint of the segment ab, see Figure 1. Then
∠(asb) ≤ π

2 and we can define the triangles T1 and T2 as the two triangles
with vertices s, d and the third vertex being either f1 := d + ε(b − d) or
f2 := d − ε(b − d). Analogously, choosing the side of Ropt opposite of ab
gives the two triangles T3 and T4 having the same area. The area for each
triangle Ti is ε|db||sd|/2 and therefore an ε/8-fraction of |Ropt| = 4|db||sd|.
We define a direction to be ε-close if the line containing s with that direction
intersects f1f2.

Lemma 2. A largest inscribed rectangle Rapx that is aligned to an ε-close
direction contains an area of at least (1− 8ε)|Ropt|.

Consider the triangle T = asb in Ropt (see Figure 2) and an ε-close
direction dapx. Let ` be the line with direction dapx that contains s ; we

3

s

ba

PRopt

T4

d f1

T1

T3

T2

f2

Figure 1: A largest rectangle Ropt in a convex polygon P . The area for each
Ti, 1 ≤ i ≤ 4, is an ε/8-fraction of |Ropt|.

a

s

a′ d

d′

`

α
θ

b

b′T ′
T

Figure 2: The triangle T = asb.

assume w. l. o. g. that ` intersects df1 in Figure 1, as the case for df2 is
symmetric. We denote the angle between sd and dapx by θ and the angle
between dapx and sb by α. Let T ′ be the isosceles triangle of maximum area
that is contained in T and symmetric along ` (i. e., with ` as perpendicular
bisector of the base side). Note that T ′ must contain s as vertex. Let a′ and
b′ be the two remaining vertices of T ′ and consider the midpoint d′ of the
segment a′b′.

Instead of comparing |Rapx| with |Ropt| directly, we now compare the
triangles T and T ′. If we can show that |T ′| ≥ (1−cε)|T | for some constant c,
then the largest rectangle aligned to dapx has at least an area of (1−cε)|Ropt|.
The reduction to triangles does not matter for the approximation, as |Ropt| =
4|T | and |Rapx| ≥ 4|T ′|.

Recalling elementary trigonometry we see that

ε ≥ tan θ

tan (θ + α)
, (*)

|T | = |sa|2 sin(α+ θ) cos(α+ θ), and

|T ′| = |sa′|2 sin(α) cos(α) = |sa|2 cos2(α+ θ)

cos2(α− θ) sin(α) cos(α).

4

On the other hand, we want to show that

|T ′| ≥ (1− cε)|T |

⇔|T
′|
|T | ≥ 1− cε

⇔
|sa|2 cos2(α+θ)

cos2(α−θ) sin(α) cos(α)

|sa|2 sin(α+ θ) cos(α+ θ)
≥ 1− cε

⇔ sin(α) cos(α)

cos2(α− θ) tan(α+ θ)
≥ 1− cε

for a constant c. We use the following lemma.

Lemma 3. The function sin(α) cos(α)
cos2(α−θ) + c tan(θ) − tan(θ + α) is positive for

0 ≤ α ≤ π
4 , 0 ≤ θ ≤ π

8 and any constant c ≥ 8.

To prove this lemma, we need the following two propositions.

Proposition 4. 1
4 tan(x) ≤ tan(x3) for 0 ≤ x ≤ π

4 .

Proof. Consider the function f(x) = 1
4 tan(x) − tan(x3). We have to show

that f(x) ≤ 0 for 0 ≤ x ≤ π
4 . The first and second derivatives of f(x) with

respect to x are:

f ′(x) =
1

4
sec2(x)− 1

3
sec2(

x

3
),

f ′′(x) =
1

2
sec2(x) tan(x)− 2

9
sec2(

x

3
) tan(

x

3
)

Since tan(x) ≥ tan(x3), we have

f ′′(x) ≥ 2 tan(
x

3
)(

1

4
sec2(x)− 1

9
sec2(

x

3
)).

Let x′ be the root of f ′(x) = 0. That is, let x′ ∈ [0, π4] be such that

1

4
sec2(x′)− 1

3
sec2(

x′

3
) = 0

Since tan(x) ≥ 0 in the domain 0 ≤ x ≤ π
4 , we have

f ′′(x′) ≥ 2 tan(
x′

3
)
2

9
sec2(

x′

3
) ≥ 0

Therefore in the range [0, π4], f(x) attains minima whenever f ′(x) = 0
and the maxima are attained only at the boundary. Since f(0) = 0 and
f(π4) < 0, f(x) ≤ 0 for 0 ≤ x ≤ π

4 .

5

Proposition 5. If we choose ε ≤ 1
4 , then θ ≤ α

2 .

Proof. This proof uses Proposition 4 for the inequality marked with (×).

tan(θ)

tan(α+ θ)
≤ ε ≤ 1

4

tan(θ) ≤ 1

4
tan(α+ θ)

(×)
≤ tan(

θ + α

3
)

θ ≤ θ + α

3
for [0,

π

4
]

θ ≤ α

2

Now we can continue with the proof of Lemma 3.

Proof of Lemma 3.

sin(α) cos(α)
cos2(α−θ) + c tan(θ)− tan(θ + α)

= tan(α) cos2(α)
cos2(α−θ) + c tan(θ)− tan(θ)

1−tan(θ) tan(α) −
tan(α)

1−tan(θ) tan(α)

Since 1
1−tan(θ) tan(α) ≤ 1

1−tan(π
8
) , it suffices to show that

tan(α)
cos2(α)

cos2(α− θ) + c tan(θ)− tan(α)

1− tan(θ) tan(α)
≥ 0

for some constant c′ = c− 1.71 > 0.

tan(α) cos2(α)
cos2(α−θ) + c′ tan(θ)− tan(α)

1−tan(θ) tan(α)

= tan(α)

(
1+

(tan(α)−tan(θ))2

(1+tan(θ) tan(α))2

1+tan2(α)
+ c′ tan(θ)tan(α) − 1

1−tan(θ) tan(α)

)
Replacing tan(θ) by x and tan(α) by y, we want to show that

y(
1 + (y−x)2

(1+xy)2

1 + y2
+ c′

x

y
− 1

1− xy) > 0

y

(
1+

(y−x)2

(1+xy)2

1+y2
+ c′ xy − 1

1−xy

)

=
y(1− xy)(1 + x2) + c′x(1 + xy)2(1− xy)− y(1 + xy)2

(1 + xy)2(1− xy)

6

Then, it suffices to show that

y(1− xy)(1 + x2) + c′x(1 + xy)2(1− xy)− y(1 + xy)2 > 0

Expanding the left-hand side gives the equivalent inequality

x
(
(c′ + 1)xy − 3y2 − x2y2 + c′ + c′x2y2 − c′x3y3 − 2c′x2y2 − xy3

)
> 0

Since tan(α) ≤ 1, it suffices to show that
(
−3− x2 + c′ − c′x3 − 2c′x2 − x

)
>

0. That is (c′− 3− x− (2c′+ 1)x2− c′x3) > 0. Since x = tan(θ) ≤ tan(π8) it
suffices to pick c′ such that c′− 3− tan(π8)− (2c′+ 1) tan2(π8)− c′ tan3(π8) >

0. Thus c′ >
3+tan(π

8
)+tan2(π

8
)

1−2 tan2(π
8
)−tan3(π

8
)
≈ 6.12. This implies that the function

sin(α) cos(α)
cos2(α−θ) + c tan(θ)− tan(θ + α) is positive for 0 ≤ α ≤ π

4 , 0 ≤ θ ≤ π
8 and

for any c ≥ 8.

Using Lemma 3 with (*), we obtain the following corollary.

Corollary 6. Let 0 ≤ α ≤ π
4 , 0 ≤ θ ≤ π

8 and let c ≥ 8. Then |T ′|
|T | =

sin(α) cos(α)
cos2(α−θ) tan(α+θ) ≥ 1− c tan θ

tan (θ+α) ≥ 1− cε.

Corollary 6 shows that |T ′| ≥ (1 − 8ε)|T |, implying that |Rapx| ≥ (1 −
8ε)|Ropt|.

4 How to get an ε-close direction

It only remains to show how to compute a direction ε-close to dopt efficiently.
Assume first that we know the center s of Ropt. If we choose Θ(1ε) random
points uniformly distributed inside P , at least one of them lies with high
probability in one of the triangles T1, T2, T3 and T4. Thus, taking the di-
rection from s to this point gives us immediately an ε-close direction (see
Figure 1). As we do not have the information about the location of s, as-
sume that any other point p inside Ropt is given. Then at least one triangle
Ti, 1 ≤ i ≤ 4, has a translated copy T ′i , where the translation maps s to
p. The triangle T ′i is contained in Ropt and therefore also contained in P .
Picking a point q′ in T ′i and taking the direction pq′ has the same effect as
picking a point q in Ti and taking the direction sq. Thus, we do not have to
compute s explicitly. Instead, it is sufficient to find a point inside Ropt.

Even though we do not know Ropt, picking points from it essentially
amounts to picking points from the input polygon because the area of the
largest inscribed rectangle in a convex polygon is at least a constant factor
of the area of the polygon. More formally,

Lemma 7 ([10]). Let P be a convex polygon and Ropt be a largest inscribed
rectangle in P , then |Ropt| ≥ |P |/2.

7

4.1 Randomized algorithm

It follows from Lemma 7 that if we pick k points sampled uniformly at
random from a convex polygon P , the expected number of points inside
Ropt is k

2 . All these points are distributed uniformly at random inside Ropt.
Moreover, if we pick Θ(1ε) points uniformly at random, the expected number
of points inside the triangle T ′i is Θ(1). This obtains a constant success
probability, which can be increased to an arbitrary high constant t < 1 by
probability amplification, without decreasing the asymptotic running time.
Thus, we have the following lemma.

Lemma 8. Let a convex polygon P and a source of random points in P be
given. Then we can compute a (1 − ε)-approximation Rapx for the largest
inscribed rectangle in P with probability t in time O(1ε log n) for an arbitrary
constant t < 1.

We can achieve the same running time without random points in P being
given. It is easy to see that with a preprocessing of O(n log n) we can create a
data structure for a (not necessarily convex) polygon P that returns a point
distributed uniformly at random inside P in O(log n) time per sample. This
can be achieved by first computing a triangulation of the point set and then
creating a balanced binary tree with the triangles as leaves, where the weight
of any node is the sum of areas of all triangles contained in the subtree rooted
at that node. Sampling a random point from P then amounts to traversing
this tree from root to a leaf and following the left or the right child at any
node with the probability proportional to their weights.

Since the ordering of the vertices of P is given and we want to avoid
any preprocessing for P , we will not sample points from P uniformly at
random. Instead, we take a uniform distribution over a square and fit these
points inside the polygon. Thus, the sampling from P will simulate the
sampling of random points from a square. Let vt, vb be the topmost and the
bottommost vertices of P ; their computation takes O(log n) time. We pick a
height h between the two vertices uniformly at random and take the longest
horizontal segment that fits inside P at this height. Again, this segment can
be computed in O(log n) time. We pick a point uniformly at random on this
segment. This will be our sample point in P. We can repeat this process as
many times as desired to get a large set of sample points that are in P. Each
of these sample points can be generated in O(log n) time assuming that the
ordering of vertices of P is known in advance.

We show that such a sampling works for our algorithm. Recall that two
points p and q from P are needed such that p lies in a largest inscribed
rectangle Ropt and q lies in a triangle of area Ω(ε) that is a translated copy
of one of the Ti’s (see Figure 1). With our sampling method, the probability
that a sample point is contained in any convex region Q of area ε|P | will be
at least ε

2 .

8

1

0

Lh

P

lh

Q

1

0

Lh

P

lh

Q

h1

h2

Figure 3: Sampling from a convex region Q in P .

Let Lh be the length of the largest horizontal segment inside P at height
h, and lh be the length of the largest horizontal segment inside Q at height h.
Also, assume that the bottommost and topmost points in P are at heights 0

and 1 respectively (see Figure 3). Then |Q||P | =
∫ 1
0 lh dh∫ 1
0 Lh dh

. The probability that

a sample point using the above sampling method lies in Q is
∫ 1
0

lh
Lh
dh. For

any value of h, we can find a quadrilateral that fits inside P and has area
at least Lh

2 . This implies that Lh
2 ≤

∫ 1
0 Lh dh and∫ 1

0

lh
Lh

dh ≥ 1

2

∫ 1
0 lh dh∫ 1
0 Lh dh

.

Since each of these sample points can be generated in logarithmic time,
the complexity of our algorithm is O(1ε log n). We summarize the steps in
Algorithm 1.

Algorithm 1

1: Take Θ(1) points in P with the aforementioned distribution and store
them in U .

2: Take Θ(1/ε) points in P with the aforementioned distribution and store
them in V .

3: |Rapx| = 0
4: for all u ∈ U do
5: for all v ∈ V do
6: Compute the largest inscribed rectangle S that is aligned to uv.
7: if |S| ≥ |Rapx| then
8: Rapx = S

return Rapx

4.2 Deterministic algorithm

We begin by summarizing the results of this section.

9

Lemma 9. Let a convex polygon P and the cyclic order of vertices in P be
given. Then we can compute a (1 − ε)-approximation Rapx for the largest
inscribed rectangle in P in O(1ε log 1

ε log n+ 1
ε28

) time.

For the deterministic case, it remains to show how the algorithm com-
putes sample points in P . First, we compute an enclosing rectangle Re of
P such that |Re| is only a constant factor times bigger than |P |. This can
be done using the following lemma due to Ahn et al. [1].

Lemma 10 ([1, Lemma 5]). Let P be a convex polygon with n vertices given
in a cyclic order. Then there is an algorithm that computes an enclosing
rectangle R such that P ⊂ R and |R| ≤ 2

√
2|P | in O(log n) time.

Creating a grid of constant size in an enclosing rectangle R of Lemma 10
allows us to ensure a constant number of grid points in P . This is proven
in Lemma 12 by using Pick’s theorem.

Theorem 11 (Pick’s Theorem [9]). Let an integer grid and a simple polygon
P with all vertices lying on the grid points be given. Let i be the number
of grid points contained in P and b be the number of grid points on the
boundary of P . Then |P | = b

2 + i− 1.

Lemma 12. For a convex set S, a constant c, and every enclosing rectangle
R of S with |R| ≤ c|S|, S contains at least k2

2c grid points of a k× k grid on
R for k being a sufficiently large constant (k ≥ 8c).

Proof. Let G be a k × k grid on R and let |R| = 1. We shrink S to a
maximum area polygon S′ ⊆ S having all vertices on grid points of G.
Because of convexity, |S| − |S′| is at most the area of 4k grid cells.

|S′| ≥ |S| − 4k
1

k2
≥ 1

c
− 4

k

|S′| = (
b

2
+ i− 1)

1

k2
≥ 1

c
− 4

k
(by Pick’s theorem)

b+ i ≥ k2

c
− 4k + 1

Thus, at least 1
2ck

2 grid points lie in S, for k being a sufficiently large
constant (k ≥ 8c).

It follows from Lemma 12 that choosing a grid with constant size on the
rectangle R implies that Ropt in P contains a constant number of grid points

(in fact k2

2c). For the next algorithm (Algorithm 2), we will only use one of
these grid points. Additionally, Lemma 12 shows that every ε-fraction of P ,
in particular every triangle T ′i , contains many grid points for a big enough
grid on R. This fact will be used later to improve the running time of the
algorithm with ε-nets.

10

Algorithm 2

1: Compute an enclosing rectangle Re with area |Re| ≤ 2
√

2|P |
2: Compute a Θ(1)×Θ(1) grid on Re. Let G1 be the set of grid points.
3: Compute a Θ(1ε)×Θ(1ε) grid on Re. Let G2 be the set of grid points.
4: |Rapx| = 0
5: for all u ∈ G1 do
6: for all v ∈ G2 do
7: Compute the largest inscribed rectangle S that is aligned to uv
8: if |S| ≥ |Rapx| then
9: Rapx = S

return Rapx

The idea is to take two grids G1 and G2 on R of size Θ(1) × Θ(1) and
Θ(1ε)×Θ(1ε), respectively, iterate through all pairs of grid points in G1×G2

and get at least one pair (u, v) with u ∈ Ropt and v ∈ T ′i using Lemma 12.
Hence, the direction of uv is ε-close. We summarize the steps in Algorithm 2.

Algorithm 2 is deterministic with running time O(1
ε2

log n). We can
further reduce the running time to O(1ε log 1

ε log n+ 1
ε28

) by using the tools
from the theory of ε-nets. Here we just give an outline of how these tools
can be used, and we refer the reader to [8] for more details.

A subset S′ of a given set S of N points is called an ε-net for S with
respect to a set of objects, if any object containing at least ε

2N points of
S contains a point of S′. For objects with VC-dimension d, a subset S′

of size O(1ε log 1
ε) always exists and can be computed in deterministic time

O(N2d). Triangles have VC-dimension 7, and we consider the set S of grid
points of a 1

ε × 1
ε grid, so N = 1

ε2
. Thus, we can compute an ε-net for S of

size O(1ε log 1
ε) in time O(1

ε28
).

5 Largest inscribed rectangles in simple polygons

The same ideas can be used to approximate the largest inscribed rectangle
in a simple polygon with or without holes. It is easy to see that the largest
inscribed rectangle Ropt in a simple polygon (with or without holes) on n
vertices has an area of at least 1

2(n−2) times the area of the polygon. More-
over, a largest axis-aligned rectangle in a simple polygon can be computed in
O(n log n) time [3] and in a simple polygon with holes in O(n log2 n) time [5].
Since |Ropt| is an Ω(1

n)-fraction of P and the area of each of the four triangles
inside Ropt is an Ω(εn)-fraction of P , we get the following running times for
computing an inscribed rectangle of area at least (1− ε)Ropt.

• For simple polygons: With constant probability in time O(1εn
3 log n).

• For polygons with holes: With constant probability in timeO(1εn
3 log2 n).

11

In comparison with the algorithm of Hall-Holt et al. [7], which deals
only with fat rectangles, our algorithm can handle general rectangles at the
expense of a slower running time.

6 Open Problems

One open related problem is to approximate a largest perimeter inscribed
rectangle. Our algorithms base on the fact that the area of a largest area
inscribed rectangle has constant fraction of the area of the polygon itself.
This is not the case for a largest perimeter rectangle. Consider a triangle
with two angles being strictly smaller than π/4. Then the largest perimeter
rectangle is exactly the largest side of this triangle, hence its area is zero.

Another remaining open problem is to find an efficient exact algorithm
for computing a largest area inscribed rectangle in a convex polygon.

Acknowledgments

We thank the anonymous referees for their helpful comments.

References

[1] H.-K. Ahn, P. Brass, O. Cheong, H.-S. Na, C.-S. Shin, and A. Vigneron.
Inscribing an axially symmetric polygon and other approximation al-
gorithms for planar convex sets. Computational Geometry, 33(3):152 –
164, 2006.

[2] H. Alt, D. Hsu, and J. Snoeyink. Computing the largest inscribed
isothetic rectangle. In Proc. 7th Canad. Conf. Comput. Geom., pages
67–72, 1995.

[3] R. P. Boland and J. Urrutia. Finding the largest axis-aligned rectangle
in a polygon in O(n log n) time. In In Proc. 13th Canad. Conf. Comput.
Geom, pages 41–44, 2001.

[4] J. Chaudhuri, S. C. Nandy, and S. Das. Largest empty rectangle among
a point set. J. Algorithms, 46(1):54–78, 2003.

[5] K. Daniels, V. Milenkovic, and D. Roth. Finding the largest area axis-
parallel rectangle in a polygon. Comput. Geom. Theory Appl., 7:125–
148, 1997.

[6] A. DePano, Y. Ke, and J. O’Rourke. Finding largest inscribed equi-
lateral triangles and squares. In Proc. 25th Allerton Conf. Commun.
Control Comput., pages 869–878, Oct. 1987.

12

[7] O. Hall-Holt, M. J. Katz, P. Kumar, J. S. B. Mitchell, and A. Sityon.
Finding large sticks and potatoes in polygons. In SODA ’06, 2006.

[8] J. Matoušek. Approximations and optimal geometric divide-and-
conquer. In STOC’91: Proceedings of the twenty-third annual ACM
symposium on Theory of computing, pages 505–511, 1991.

[9] G. Pick. Geometrisches zur Zahlenlehre. Sitzungber. Lotos, Naturwissen
Zeitschrift, Prague, 19:311–319, 1899.

[10] K. Radziszewski. Sur une problème extrémal relatif aux figures in-
scrites et circonscrites aux figures convexes. Ann. Univ. Mariae Curie-
Sklodowska, Sect. A6, pages 5–18, 1952.

13

	Introduction
	Preliminaries
	Approximating the direction
	How to get an epsilon-close direction
	Randomized algorithm
	Deterministic algorithm

	Largest inscribed rectangles in simple polygons
	Open Problems

