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1 Introduction
In this lecture notes we would like to explore some relationship between the notions of
graph minors and treewidth. After the course, the student should be familiar enough with
these notions to be be capable to apply them in the design of graph algorithms.

Some hard theorems in this course will be provided without proofs (the complete proof
of Robertson-Seymour theorem has been given in more than twenty papers). In simpler
cases proofs will be given, to distinguish hard and easy situations in this theory.

Students are welcome to solve exercises at the end of each lecture. Many exercises
are taken from [39]. Some straightforward exercises are inserted into the text for better
understanding of the subject.

A substantial part of these lecture notes is taken from the monograph [12]. An interested
reader can find there more details on the subject of graph minors and tree decompositions.

1.1 Basic definitions and properties of graph minors
If not specified otherwise, all graphs we consider are finite, undirected, simple and loopless.
It means that a graph G is given as a pair (V,E), where V is a finite set of vertices and E
is a set of unordered pairs which we call edges. Formally: G = (V,E), E ⊆

(
V
2

)
. We use

the notation (u, v) to denote the undirected edges, while directed edges will be written as
[u, v].

If loops and multiple edges are present, the structure is called multigraph.
A subgraph H = (VH , EH) of a graph G = (VG, EG), is a graph1 that satisfies VH ⊆ VG

and EH ⊆
(

VH

2

)
∩ EG. If EH =

(
VH

2

)
∩ EG, we say that H is a subgraph of G induced by

the set VH , or simply an induced subgraph. In such a case we write H = G|V (H).
1More precisely we would say that H is isomorphic to such graph. For simplicity we will avoid this

formalism. Similarly, we will not deal in details with the empty graph (∅, ∅) as the universal subgraph.
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Q3 K4 C7

Figure 1: Examples of graph minors

Let G be a graph G, w ∈ VG be a vertex of G and e = (u, v) ∈ EG be an edge. We
define the following operations:

• The deletion of the vertex w results into the graph G− w, which is the subgraph of
G induced by the set VG \ {w}.

• The deletion of the edge e gives the graph G− e = (VG, EG \ {e}).

• The subdivision of e yields the graph G · e, where V (G · e) = VG ∪ {v′ : v′ ̸∈ VG} and
E(G · e) = EG \ {e} ∪ {(u, v′), (v, v′)}.

• The contraction of e provides the graph G◦ e with the vertex set V (G◦ e) = VG \ {v}
and edges E(G ◦ e) = EG \ {e : v ∈ e} ∪ {(u, v′) : (v, v′) ∈ EG, v

′ ̸= u}.

• We say that a contraction G◦e is topological, if at least one vertex of e has degree two
in G. Such a contraction can be viewed as an inverse operation to the subdivision
operation.

Now we have enough knowledge to give the first nontrivial definition:

Definition. A graph H is a minor of a graph G, if H can be obtained from a subgraph of
G by a sequence of edge contractions. If H was derived from an induced subgraph of G,
we call H an induced minor. We say that H is a topological minor of G, if all contractions
used in the transformation of G into H were topological contractions.

In other words H is a topological minor of G, if G contains a subdivision of H as a
subgraph, i.e., a graph which can obtained from H by a series of subdivision operations.

An example is depicted in Fig. 1. Here K4 is an induced (and also a topological) minor
of Q3. Graph C7 is a topological minor of Q3, but not induced.

Definition. A class of graphs G is called (induced) minor closed, if it contains with every
G ∈ G all its (induced) minors.

We provide an alternative definition of the notion of minor:

Lemma 1.1. A graph H is an (induced) minor of G, if and only if there exists a mapping
f from the vertex set of H to the set of subsets of vertices of G, such that:
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Figure 2: An illustration for Lemma 1.1. The dotted line should not be present, when H
is an induced minor of G.

• For every u ∈ VH the graph G|f(u) is nonempty and connected.

• For every u, v ∈ VH sets f(u) and f(v) are disjoint.

• If (and only if) there is an edge (u, v) in H, then there exists an edge (u′, v′) in G,
such that u′ ∈ f(u), v′ ∈ f(v).

Proof. To get the mapping f : Assume that a vertex w of H is the result of contracting
edges e1, . . . , ek of G. Then these edges form a connected subgraph of G. Moreover, these
subgraphs are vertex-disjoint for different vertices w. Define f , s.t. f(w) is the set of
vertices incident with edges e1, . . . , ek. We prove the third property by contradiction: If
none (u′, v′) exists, then it is impossible to obtain the edge (u, v) by a series of contractions.
For induced minors: if some (u′, v′) exists, then it is impossible to get rid of the edge (u, v),
which must be present due to contractions.

In the opposite direction: having the mapping f , we first take the subgraph inG induced
by ⋃

u∈VH
f(u). Now every f(u) can be contracted into a single vertex, and analogously as

f(u) and f(v) are disjoint, the contraction of f(u) yields a different vertex than f(v). So
after these two steps we get an induced minor of G, which can be further reduced by edge
removal to a minor isomorphic to H.

We further link the notion of minor with the subdivision operation:
Lemma 1.2 ([31]). If H is of maximum degree at most three, then H is a minor of G if
and only if H is a topological minor of G.

Proof. Only ⇒ implication is sufficient to prove. Let G′ be the subgraph of G whose
contraction is isomorphic to H. Find a mapping f from Lemma 1.1. For every edge
e = (u, v) ∈ EH identify an edge f ′(e) = (u′, v′) ∈ EG′ , such that u′ ∈ f(u), v′ ∈ f(v), and
mark both vertices u′ and v′. As H is of maximum degree three every f(u) contains at
most three marked vertices. In each G′|f(u) we find some inclusion-wise minimal connected
subgraph containing all marked vertices. This graph is a tree of maximum degree at most
three and selection of such trees for every u ∈ VH , together with edges {f ′(e) : e ∈ EH}
creates the desired subdivision of H.
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Exercise 1: Show that the degree condition in Lemma 1.2 is necessary.
Exercise 2: Show that Lemma 1.2 does not hold for induced minors.

Let V = {u1, . . . , un} be the vertex set. We define:

• the empty graph En = (V, ∅), n ≥ 0

• the complete graph (clique) Kn = (V,
(

V
2

)
), n ≥ 1,

• the path Pn = (V, {(ui, ui+1), i = 1, . . . , n− 1}), n ≥ 2,

• the cycle Cn = (V,E(Pn) ∪ {(u1, un)}), n ≥ 3,

Exercise 3: Decide whether the class of all empty graphs, cliques, paths or cycles is
(induced) minor-closed.
Exercise 4: Find the minimum (inclusion-wise) minor closed class of graphs that contains
all paths, and all cycles, resp.

Two vertices u, v ∈ VG are connected in G if either u = v or G has a path as a subgraph
that contains both u and v. A graph G is called connected if every two vertices u, v
are connected. Every inclusion-maximal subset of vertices that are mutually connected is
called a component.

A forest is a graph which has no cycle. A connected forest is called a tree.
Exercise 5: Are connected graphs, or trees or forests (induced)-minor closed? Which
subclass of connected graph is (induced)-minor closed?
Exercise 6: Which degree-bounded graphs are minor closed?

Almost-k-trees are subgraphs of connected graphs on n vertices with at most n+ k− 1
edges.
Exercise 7: Show that forest are almost-0-trees.
Exercise 8: Show that unicyclic graphs (graph with at most one cycle) are almost-1-trees.
Exercise 9: Are unicyclic graphs and almost-k-trees (induced) minor-closed?

The intersection graph of a set system is defined as follows. Let X be a (finite) family
of sets, then the intersection graph IX of X has the vertex set V (IX) = X, and edges
connect the sets with nonempty intersection, i.e., E(IX) = {(x, y) : x, y ∈ X, x ∩ y ̸= ∅}.

A string graph is the intersection graph of a set of curves in the plane. Interval graphs
are intersection graphs of intervals of real line.
Exercise 10: Are string/interval graphs (induced) minor closed?

Line graphs are intersection graphs of edges of a graph.
Exercise 11: Are line graphs (induced) minor closed?
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K5 K3,3

Figure 3: Forbidden minors for planar graphs.

1.2 Minors and graph drawing
Planar graphs are graphs that can be drawn in the Euclidean plane such that vertices are
represented by points and edges are drawn as curves connecting adjacent vertices which
intersect only at their endpoints.

Observe that the operations of taking subgraphs and contracting edges preserve the
graph embedding in the plane. As this observation is valid for an arbitrary surface, it
follows that for any surface S (including the Euclidean plane) the class of graphs that can
be embedded on S is minor closed.

The class of planar graphs is well characterized by the celebrated Kuratowski theo-
rem [18]. For a formal proof see e.g. [25, 12].

Theorem 1.3. A graph is planar, if and only if it contains no subdivision of K5 nor of
K3,3 as a subgraph.

Idea of the proof [25]. We first restrict ourselves to 3-connected graphs as otherwise draw-
ings of 2-connected blocks can be combined together (in order to have each 2-cut in the
same face it is necessary to prove that each such cut can be assumed to be an edge.)

It is possible to assume that there exists an edge e = (u, v), such that G ◦ e is still
3-connected (if G has at least 6 vertices). Assume that G ◦ e has a planar drawing where
the boundary of each face is a convex polygon. We further assume that u and v are not
incident with the outer face. Restrict the drawing of G ◦ e to G − e. Let further C be
the cycle bounding the face containing the point that was representing e. The drawing of
G− e can be extended to a drawing of G with convex faces if the edges of C can be split
in two paths, one containing the neigbors of u and the other neigbors of v (the endpoints
may be neighbors of both).

If this is not possible, then either u and v have three common neighbors on C, which
together with C provide a subdivision of K5. Alternatively, there are distinct vertices
u′, v′, u′′, v′′ that appear on this order on C, where u′, u′′ are neighbors of u, and analogously
v′, v′′ are neighbors of v. Now u, v and C yield a subdivision of K3,3.

By the theorem, planar graphs are characterized by forbidden subdivisions (i.e., by
forbidden topological minors). We show that planarity could be expressed in terms of
forbidden minors:

Corollary 1.4. A graph G is planar, if and only if none of K5 and K3,3 is its minor.
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K5 = G ◦ e K3,3 ⊂ GG

e

Figure 4: Obtaining K3,3 minor from G.

Proof. If G is planar then it has no non-planar minor like K5 and K3,3. If G is not planar
then it has a subdivision of K5 or K3,3 which yield a minor.

Indeed the existence of a topological minor could be seen directly:

Observation 1.5. If G has a K5 or K3,3 minor, then it has a K5 or K3,3 topological minor.

Proof. As ∆(K3,3) = 3 we have due to Lemma 1.2 that if K3,3 is a minor of G then it is
also its topological minor.

Hence it suffices to show:”If G has a K5 minor, then it contains either K5 or K3,3 as
a topological minor.”

Assume that K5 was obtained by a series of contractions from a subgraph of G. If all
contractions were topological, then K5 is a topological minor of G.

Otherwise we have contracted some edges between vertices of degree at least three.
Without loss of generality we may assume that it is the last contraction. The graph before
the last contraction contains a K3,3 minor (see Fig. 4). By Lemma 1.2 we may conclude
that K3,3 is a topological minor of G.

To see that the existence of such characterization is a general principle, we leave for
the next lecture.

We further explore a relation to dual drawings.

Definition. Let G = (V,E) be a multigraph drawn on a surface S. Let F be a set of points
chosen such that each face of the drawing of G is represented by a single point in F . Then
the dual of G is the multigraph G∗ = (F,E∗) whose edges are given by the equivalence:

e = (u, v) ∈ E separates faces represented by points g and h
⇐⇒

e∗ = (g, h) ∈ E∗ separates faces represented by points u and v

The drawing of G∗ is given by drawing e∗ such that it intersects only e and the adjacent
faces (it is unique upto an homeomorphism).

In the sequel we straightforwardly extend the relation ”be a minor of” to the class of
multigraphs (with the modification that after edge contraction we do not purge loops and
multiple edges) and also to their drawings.
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Figure 5: Example of an outerplanar drawing of G (black vertices), it’s dual G∗ (white
vertices) and G∗

in (thick edges).

Observation 1.6. If a drawing of H is a minor of a drawing of (multi)graph G then the
drawing of H∗ is a minor of the drawing of G∗.

Proof. Without loss of generality we may assume that G and H have no isolated vertices,
since they disappear in the construction of the dual.

• Edge removal in G corresponds to an edge contraction in G∗ — two faces that were
separated become a single face.

• After a contraction of an edge e in G the two adjoint faces have shortened their
common boundary by the edge e — the edge e∗ disappears in the dual.

Note that if H has no isolated vertices then in the above observation we can state an
equivalence. This follows from the fact that (H∗)∗ = H in such a case.

We will continue with a special subclass of planar graphs. A planar graph is called
outerplanar if it allows a drawing where all vertices lie on the outer face.

For a planar drawing of a graph G we denote G∗
in the subgraph of its dual induced by

the inner faces. This multigraph represents the way the finite faces are connected together.
and we will show that it can be done only in a tree-like manner, see Fig. 5.

Lemma 1.7. A drawing G of a planar graph is outerplanar if and only if G∗
in is a forest.

Proof. ”⇒”: any cycle, multiple edge or a loop in the dual separates at least one vertex of
the original drawing from the outerface.

”⇐”: If G∗
in is a forest, then the faces of G∗ became as a partition of the only face of

G∗
in. They all are incident with the only new vertex representing the outer face, hence in

the original drawing of G the vertices they represent lie on the outer face as well.
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Theorem 1.8. A graph G is outerplanar if and only if none of K4 and K2,3 is its minor.

Proof. Firstly, K4 and K2,3 are two minor-minimal non-outerplanar graphs. As the class of
outerplanar graphs is minor closed, K4 and K2,3 cannot appear as a minor of an outerplanar
G.

For the opposite direction we show that every non-outerplanar graph G contains K4 or
K2,3 as a minor. Without loss of generality assume that G is 2-connected, since each block
of 2-connectivity can be treated separately.

We use the well known fact that every 2-connected graph can be inductively obtained
from a cycle by adding edges and paths to prove a stronger claim: Every 2-connected graph
with no K4 and K2,3 minor has an outeplanar drawing where the outer face is bounded by
a convex polygon.

If G is a cycle, then the statement is clearly satisfied. Otherwise we identify and edge e
or a path P , s.t. G−e or G−P is 2-connected2. By induction assume that G−e or G−P
has a drawing according to the claim. In the first case, if e cannot be added to a drawing
of G − e then it means that e crosses another edge e′. Hence, the outer cycle together
with e, e′ yields a subdivision of K4, a contradiction. In the other case, P can be added
if and only if its ends are two consecutive vertices of the outer cycle of G− P . Otherwise
P together with the outer cycle yield a subdivision of K2,3. A simple geometric argument
shows that P can be added such that the outer cycle of G is a convex polygon.

Exercise 12: Prove Theorem 1.8 as a consequence of Kuratowski theorem.

2 Well quasi-orderings and the minor theorem
A binary relation ⪯ on a class X which is reflexive and transitive is called a quasi-ordering.
If it is in addition antisymmetric, it is a partial ordering.
Exercise 13: Find all non-isomorphic partial orders and quasi-orders on a three-element
set X.

Definition. A quasi-ordered class (X,⪯) is called well quasi-ordered, if for every infinite
sequence (ai)∞

i=1 of elements from X there exist elements ai and aj, such that ai ≤ aj and
i < j.

Exercise 14: Are vectors of Nd or of Qd
+ well (quasi) ordered either with the order on all

coordinates ≤d or with the lexicographic order ≤d
Lex, respectively?

A pair ai, aj of a sequence (ai)∞
i=1 in a quasi-ordered set (X,⪯) is called good, if ai ⪯

aj, i < j. We call a sequence a1, a2, . . . bad, if it contains no good pair. Obviously well
quasi-ordered sets are exactly those without bad sequences.

Observation 2.1. In any well quasi-ordered class, every sequence (ai)∞
i=1 contains a non-

decreasing subsequence.
2Here G − P means the graph obtained by removal of the internal vertices of P .
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Proof. The fact that a sequence is good implies directly that it contains infinitely many
nondecreasingly ordered pairs. However, by use of the infinite Ramsey theorem, there
must be also a nondecreasing subsequence: We construct an infinite graph on {ai}, with
edges connecting (ai, aj) : ai ⪯ aj, i < j. Since it cannot contain an infinite independent
set, it must contain an infinite clique, which corresponds to an infinite nondecreasing
subsequence.

We show that in a well ordered class, certain subclasses allow an easy description by
forbidden elements.

Definition. We say that a set F is the obstruction set for a subclass Y of a quasi-ordered
class X if the following duality holds:

∀a ∈ X : a ̸∈ Y ⇐⇒ ∃b ∈ F : b ⪯ a

Observation 2.2. Let Y be a subclass of a well-ordered class X, such that Y is closed on
smaller elemets in ⪯. (Formally: b ⪯ a, a ∈ Y =⇒ b ∈ Y .) Then an obstruction set F
exists, and is finite.

Proof. Take all minimal elements of X \ Y and pick a single representative from each
equivalence class. This forms the set F .

As X is well ordered, there is no infinite set of incomparable elements. Hence, F is
finite, since the elements of F are incomparable.

If a ̸∈ Y then a decreasing chain in X \ Y starting from a must end in finitely many
steps in an element of F , otherwise X would not be well ordered.

If a ∈ Y , then no b ∈ F can satisfy b ⪯ a, since as Y is closed under ⪯, it would give
b ∈ Y , a contradiction.

Observe that by the above construction the inclusion-wise minimal set F is unique
under taking ⪯-equivalent elements.

Assume that a set X has a quasi-order ⪯. We extend this quasi-order onto the class
of finite subsets of X denoted by X<ω as follows: We say that finite sets A,B ⊂ X satisfy
A ⪯ B, if there exists an injective mapping f : A → B such that a ⪯ f(a) for all a ∈ A.

Theorem 2.3 (Higman). If a set X is well quasi-ordered by ⪯, then (X<ω,⪯) is also a
well quasi-ordered set.

Proof. We prove the theorem by contradiction. Construct the sequence (Ai)∞
i=1 inductively

as follows: We select Ai such that |Ai| is minimal among all possible Ai such that an
infinite bad sequence starts with A1, . . . , Ai. Such Ai exists for all i ∈ N, and hence the
sequence (Ai)∞

i=1 is well defined.
For each i we select some ai ∈ Ai, and set Bi = Ai \{ai}. Since the set X itself is well

quasi-ordered, there exists an infinite nondecreasing subsequence ai1 , ai2 , . . . . The sequence
A1, A2, . . . , Ai1−1, Bi1 , Bi2 , . . . contains a good pair, due to the minimality of selection of
Ai1 : |Ai1 | > |Bi1|.

10



The good pair of this sequence should not be of the form (Aj, Aj′), since (Ai)∞
i=1 is bad.

Similarly the good pair is not of the form (Aj, Bik
). In this case the relation Aj ⪯ Bik

⪯ Aik

yields the same contradiction.
However, the existence of a good pair of form (Bik

, Bi′
k
), causes a contradiction as well:

Due to aik
⪯ ai′

k
we get that Aik

⪯ Ai′
k
.

Rado provided the following example showing that the Higman’s theorem can not be
extended to infinite countable sets.

First take X = N2 and a quasiorder ⪯ defined by (a, b) ⪯ (a′, b′) iff either a = a′ and
b ≤ b′ or alternatively a, b ≤ a′. Observe that (X,⪯) is well quasi-ordered — every first
coordinate may appear only finitely many times. Consequently the first coordinates are
unbounded, so some ai satisfies ai ≥ a1, b1.

In contrary (Xω,⪯) is not well quasi-ordered. Consider seqences Ai = ((i, i+ 1), (i, i+
2), . . . ) ∈ Xω. For any i < j it holds that Ai ̸⪰ Aj easily. Simultaneously, Ai ̸⪯ Aj, since
(i, j) ̸⪯ (j, k) for any (j, k) ∈ Aj.

2.1 The minor order
Observe that the relation “H is a minor of G” is reflexive and transitive, in other words it
defines a quasi-order on the class of finite graphs G. For such situation we write H ⪯ G.

Observe also that ⪯ is also antisymmetric when we restrict ourselves on non-isomorphic
graphs.
Exercise 15: Find the minor ordering ⪯ on all non-isomorphic graphs on four vertices.

The following theorem is one of the jewels of graph theory:

Theorem 2.4 (Robertson and Seymour). The class of finite graphs ordered by the minor
relation is well quasi-ordered.

The complete proof of this theorem, formerly known as Wagner conjecture, has been
published in a series of papers in Journal of Combinatorial Theory, Ser. B in late 80s.
As its proof is far behind the scope of this course we present much simpler variant of the
”Excluded Minor Theorem”, namely for the class of forests. We further discuss some ideas
which were used in the general proof.

The most important corollary of Theorem 2.4 is that every minor-closed class of graphs
can be characterized by a finite obstruction set, in this context often called Kuratowski set.

Also observe that this gives us a positive answer to the question whether Kuratowski
theorem can be generalized for surfaces of higher genus, since such graph class is minor-
closed. However, the number of forbidden minors grows fast: graphs embedable into the
projective plane have 35 forbidden minors (surprisingly, 3 of them are disconnected) [3].
For no other surface than the Euclidean plane and the projective plane the obstruction set
is known.

The test ”Is H a minor of G?” can be done in time O(|VG|3) for a fixed graph H [35].
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~T

~T ′

Figure 6: The topological minor relation.

Corollary 2.5. The membership test for a minor closed class of graphs can be performed
in O(n3) time. (The constant hidden in the O-notation depends on the graph class.)

In particular, any class of graphs embedable on a fixed surface can be recognized even
faster [24].
Theorem 2.6 (Mohar). For every surface S there exists a linear-lime algorithm that de-
cides whether a given graph G can be embedded into S.

Due to Theorem 2.3 it suffices to show well quasi-ordering on connected graphs (which
usually do not form a minor-closed set), and the well quasi-order will be also transferred
to finite disjoint unions of such graphs. (E.g., from trees to forests.)

Now we are ready to prove the minor theorem for the class of forests. We prove a
stronger version of the theorem (with an easier proof): Consider only rooted trees and only
those minor relations that obey the parent-child relation (also in the sense of Lemma 1.1).
More precisely we define:

Every rooted tree T has a unique orientation T⃗ such that each edge is oriented towards
the parent vertex.

We extend the notion of being a topological minor to rooted trees in a the following
sense: A rooted tree T is a topological minor of a rooted tree T ′, if T⃗ can be obtained from
a subtree of T⃗ ′ by a series of contractions of edges incident with vertices of indegree one
(see Fig. 6).
Theorem 2.7 (Kruskal). The class of finite rooted trees is well quasi-ordered by the topo-
logical minor relation.

Proof. As in the previous proof, we will proceed by contradiction. First, we construct a
bad sequence of rooted trees (Ti)∞

i=1, such that Ti is selected as the minimal rooted tree
such that T1, . . . , Ti has an infinite bad extension.

Denote by ri the root of tree Ti, and let Fi be the forest of rooted trees Ti − ri, where
the children of ri are selected as roots of the new trees.

It is enough to prove that the set F = ⋃∞
i=1 Fi is well quasi-ordered by the topological

minor relation. Consider any sequence (Bj)∞
j=1 of trees from F , and for each j select arbi-

trarily i(j), such that Bj ∈ Fi(j). Select a subsequence Bj1 , Bj2 , . . . such that i(j1), i(j2), . . .
is non-decreasing.
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The sequence T1, T2, . . . , Ti(j1)−1, Bj1 , Bj2 , . . . is not bad due to the minimal selection
of Ti(j1), hence it contains a good pair, either of form (Ti, Bj) or (Bj, Bj′). Any good pair
of the first form satisfies Ti ⪯ Bj ⪯ Ti(j) and i < i(j1) ≤ i(j). The existence of such pair
contradicts the assumption that the sequence (Ti)∞

i=1 is bad. A good pair of the second
form is also a good pair for the sequence (Bj)∞

j=1. Hence, the set F is well quasi-ordered.
Finally, we apply Theorem 2.3 and get that F<ω is well quasi-ordered too. Therefore,

any extension of the topological minor relation Fi ⪯ Fi′ can be extended to a minor relation
Ti ⪯ Ti′ . Observe that to get a minor of Ti in Ti′ , it is enough to contract paths in Ti′ to
the roots of minors in Fi′ into a single edge.

The proof of Robertson-Seymour theorem follows in some situations the above proof of
Kruskal theorem. The central notion on the general proof takes the notion of treewidth.
Graphs with bounded treewidth have a tree-like structure, hence similar arguments might
be used. We introduce this notion in the next section.
Exercise 16: Show that the subgraph relation is not well-ordering of all graphs. I.e.,
exhibit a class of graphs that is closed on taking subgraphs which has infinitely many
forbidden subgraphs.
Exercise 17: Find the obstruction set for the class of all forests and for the class of graphs
of maximum degree two. What is the intersection of these two classes?
Exercise 18: Show that the finite trees are not well quasi-ordered by the subgraph relation.

3 Treewidth
Treewidth was used first by Halin in 1976 in attempt to solve the Hadwiger conjec-
ture [16]. In 1980 Proskurowski rediscovered the concept of k-trees for its algorithmic
consequences [29]. Independently, Robertson and Seymour used tree decompositions as a
main tool in their proof of the Wagner’s conjecture [33].

3.1 Definition and basic properties
We start with the formal definition of tree-decomposition and treewidth.

Definition. The tree decomposition of a graph G is a tree T satisfying the following
properties:

• V (T ) ⊆ P(VG), i.e., the nodes of T are subsets of VG.

• For each edge (u, v) ∈ EG there is a node Xi of T , such that both u, v ∈ Xi.

• For each vertex u ∈ VG, the subgraph of T induced by sets containing u is nonempty
and connected (i.e. it is a subtree).

The width of a decomposition T is maxXi∈VT
|Xi|−1. The treewidth of a graph G, denoted

by tw(G), is the minimum width among all its decompositions.
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Figure 7: An example of a tree decomposition of a graph.

In the following text we call the vertices of the tree T nodes, to distinguish them from
the vertices of the graph G.
Exercise 19: Prove that the connectivity condition in the last item of the definition of
the tree decompositionis the equivalent with: “If a node Xj of T lies on the unique path
between nodes Xi and Xk then Xi ∩Xk ⊆ Xj”.

Observation 3.1. The treewidth of the disjoint union G1 ∪G2 is max{tw(G1), tw(G2)}.

We show that vertices of each complete subgraph of G form a subset of some node in
any tree decomposition of G. This yields the following lemma:

Lemma 3.2. For every graph G it holds that tw(G) ≥ ω(G) − 1.

Exercise 20: Prove Lemma 3.2

Proposition 3.3. If H is a minor of G, then tw(H) ≤ tw(G).

Proof. If H is a subgraph of G, then tw(H) ≤ tw(G), because from a minimal tree-
decomposition of G we delete all vertices outside H and get a tree decomposition of H
of width at most tw(G). (On edge removal no modification of the tree decomposition is
necessary.)

So the only non-trivial part corresponds to the edge contraction. Assume inductively
that H is a graph that came out of G after contracting an edge (u, u′) into the new vertex
v. Then in the minimal tree decomposition replace each occurrence of u or u′ by v and get
a tree decomposition of H.

Proposition 3.4. If G is a subdivision of H, then tw(H) = tw(G).

Proof. If tw(H) = 0 or 1 then the claim is valid, since in an edgeless graph there is no
edge to be subdivided (the first case) and the subdivision of a forest is a forest (the second
case).

Assume now that T is a tree decomposition of H of width tw(H). Let G = H · (u, v)
and v′ be the new vertex of G. Then T has a node Xi containing both u and v. By
attaching a new node {u, v, v′} to Xi we obtain a decomposition of G of the same width.
Consequently tw(G) ≤ tw(H)

As H is a minor of G we get by Proposition 3.3 that tw(H) = tw(G). For a series of
individual subdivisions we apply induction.
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Exercise 21: Determine the treewidth of a tree (or of a forest).
Exercise 22: Determine the treewidth of the cube Q3.
Exercise 23: Determine the treewidth of a complete bipartite graph.
Exercise 24: What is the treewidth of a cycle, or of an outerplanar graph, respectively?
Exercise 25: Find a graph of treewidth 2 that is not outerplanar.

3.2 Recursively defined graph classes
Definition. A k-terminal graph is a graph with k distinguished vertices, t1, . . . , tk called
terminals.

Definition. We say that ⊙ is an m-ary graph connecting operation on k-terminal graphs, if
for H = ⊙(G1, . . . , Gm) holds that H is constructed from the disjoint union of G1, . . . , Gm

by further unifications prescribed by ⊙. Within each unification from each Gi is chosen
either a predetermined terminal or no vertex and the vertices of the resulting set (which
must have at least one vertex) are merged together. Each terminal of each Gi participates
in a unique unification. It is also specified, whether such newly constructed vertex is a
particular terminal of H or whether it looses its terminal status.

Formally, the operation ⊙ can be described as a partition of the union of the sets of
terminals of G1, . . . , Gm, together with a bijection between the set of terminals t1, . . . , tk
of H and chosen k sets of the partition. It is required that no set of the partition contains
two terminals from the same graph Gi and that all these sets are nonempty.

For example consider the following binary connection operations on 2-terminal graphs:

• the serial connection ⊙s: identify t21 with t12; the new terminals are t1 = t11 and t2 = t22,

• the parallel connection ⊙p: merge t11 with t12 into the new terminal t1, and analogously
{t21, t22} → t2,

• the jackknife connection ⊙j: let t1 = t11, and also merge t21 with t12 into t2.

Definition. Recursively defined graph class given by a pair (O,B) contains all graphs that
can be constructed from graphs from the base set B by connecting operations from the set
O.

The membership of any graph from such set can be justified by so called construction
term or construction tree.

Observation 3.5. The recursive class given by ({⊙j}, {K2}) is the class of all trees.

Definition. The class given by ({⊙s,⊙p}, {K2}) is the class of series-parallel graphs.

See Fig. 8 for an example a series-parallel graph together with its construction tree and
construction term.
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Figure 8: An example of the construction tree and construction term of a series-parallel
graph. In each graph used in the recursion the two terminals are colored black.

Theorem 3.6. A graph is of treewidth at most two if and only if it is a subgraph of a
series-parallel graph.

Proof. We first prove by induction that the treewidth of a series-parallel graph is bounded
by two. We use decompositions where the two terminals t1 and t2 belong to one of the
nodes. Then to implement the parallel operation we join the two trees by an edge between
the two special nodes. The serial operation can be implemented by connecting the two
fragments by a node consisting of all three terminals t12, t21 = t12 and t22.

Now consider a graph G of treewidth at most two. Without loss of generality we may
assume that it is connected. Any tree decomposition of G with nodes of size three can
be modified by insertion of new nodes such that in the final decomposition T every two
adjacent nodes intersect on exactly two vertices of G.

Let G′ be the graph which arose by adding edges of (u, v) into G whenever u and v
belong to the same node. We show that G′ is series-parallel.

Any leaf node of T contains a vertex u such that u does not appear elsewhere in T .
The graph G′ \ u is of treewidth 2 and is series-parallel by the induction hypothesis. Let
v, w be the two vertices which appear in the same node as u. Since (v, w) is an edge of
G′ \ u, it had to be inserted as an edge K2 in its construction tree. But, at this moment
we can extend K2 onto the triangle K3 by a parallel connection with the path vuw and get
the construction tree for G′.

Theorem 3.7. A graph is a subgraph of series-parallel if and only if it has no K4 minor.

Proof. First observe that every 3-connected graph contains a K4 minor: Choose any pair
of vertices u, v. By 3-connectivity we can find three internally disjoint paths P1, P2, P3
between u and v, and at lest two of them, say P2 and P3 have length at least two. Moreover
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G\{u, v} is also connected, in particular one can identify the shortest path path P4 between
two internal vertices of P2 and P3. These paths P1, . . . , P4 yield a K4 subdivision.

If G is not connected, we insert new edges between components to make it connected.
Every added edge is a bridge, hence it cannot form a K4 minor.

If u is an articulation and v, v′ it neighbors from distinct 2-connected blocks, we add
the edge (v, v′). This operation avoids creation of a K4 minor: Vertices u, v form a cutset,
hence they could only belong to the same path of a K4 subdivision. As they are are
adjacent, they could be chosen consecutive on the path. Afterwards the K4 minor would
avoid any edge of the 2-connected block containing v′.

When G has at least 4 vertices, it has a 2-cut. Choose a cutset {v, w} so that G\{v, w}
has a component on the smallest possible subset of vertices U . Consider the graphH formed
from the subgraph of G induced by U ∪ {v, w} together with the edge (v, w), if it was not
present in the subgraph. By the same argument as above H has no K4 minor, as otherwise
it would appear already in G.

Moreover H is 2-connected and every 2-cut of H would be a 2-cut of G separating even
smaller subset of vertices. Thus H ≃ C3, and U consists of a single vertex u. If v and w
are not adjacent in G we can add the edge (v, w) without forming a K4 minor.

Then, as in the proof of Theorem 3.6 we apply induction on G′ = G ∪ (v, w) \ u to
obtain a construction tree for (a supergraph of) G.

Series-parallel graphs are often defined as K4 minor free graphs or alternatively with
help of ≤ 2-sums. Here G is k-sum of a graphs G1 and G2 if it can be formed from G1 ∪G2
by one by one merge of vertices of a k-clique in G1 with vertices of a k-clique in G2 followed
by possible deletion of edges in the resulting k-clique.

Observe that from Lemma 1.7 follows the treewidth of a dual of an outerplanar graph
is at most two. Robertson and Seymour conjectured in 1986 [34] that the treewidth of a
planar graph differs from th treewidth of its dual by at most one. This conjecture was
proved in 1996 by Lapoire [21], see a paper by Bouchitté et al. for a simpler proof [8].

3.3 Chordal graphs
For a better understanding of the structure of graphs of bounded treewidth, we give another
characterization in terms of k-trees.

Definition. A graph is called chordal, if it contains no induced cycle of length at least
four as a subgraph.

We note here that chordal graphs have nice properties from the algorithmic point of
view. As they are perfect, they allow a polynomial time algorithms for several problems
that are NP-hard for general graphs, like the coloring problem. In particular we later show
a similar coloring algorithm for graphs of bounded treewidth.

Observe that chordal graphs can be obtained from a complete graph by repeating the
following operation: Find a set of mutually adjacent vertices and add a new vertex adjacent
to all of them.
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Figure 9: Two illustrations for the proof of Proposition 3.8.

Proposition 3.8. Every chordal graph G has a vertex whose neighborhood induces a com-
plete subgraph in G.

Proof. For a contradiction assume that this is not the case and take a graph G with
this property. Then any vertex u has at least one pair of neighbors v and v′ such that
(v, v′) ̸∈ EG.

Now choose a minimal set of vertices Su that v and v′ belong to different components
A and A′ of G \ Su. We claim that such Su induces a clique in G. For contrary assume
that for some x, x′ ∈ Su are nonadjacent. Then take two shortest paths P and P ′ between
x and x′ whose internal vertices are in A and A′ resp. As both x, x′ are adjacent to both
A,A′ (otherwise Su is not minimal) these two paths must exist. But their composition
yields a chordless cycle of length at least 4, a contradiction.

Denote A1, . . . , Ak the components of G \ Su. Clearly, any other Sv must lie in one
of Ai ∪ Su. Such Sv may not have a nontrivial intersection with two components Ai, Aj

because the two components would become adjacent in G \ Su. We call this property that
the sets Su and Sv are noncrossing.

Select u such that G \ Su contains a component A of the smallest size and take v ∈ A.
As Su and Sv are noncrossing, at least one component B of G \ Sv, satisfy B ⊊ A, a
contradiction on the minimality of |A| (see Fig. 9).

Note that sets Su are special kinds of separators. Importance of separators for bounded
treewidth graphs will be in detail discussed in section 3.5.

The property of Proposition 3.8 can be used iteratively and produce so called perfect
vertex elimination scheme of a graph. It is an ordering of it’s vertices v1, . . . , vn such that
for any vertex vi its higher numbered neighbors {vj : j > i, vj ∈ N(vi)} induce a clique in
G.

Corollary 3.9. Every chordal graph has a tree decomposition such that every node induces
a clique.

Proof. The insertion of a vertex u, whose neighborhood induces a clique, corresponds with
an insertion of a leaf node on {u} ∪N(u) which also forms a clique.

Definition. A graph is called k-tree, if it can be constructed from the complete graph
Kk+1 by a sequence of vertex insertions. Each time a new vertex is inserted, it is made
adjacent to some clique of size k.
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Observe that k-tress are chordal. The same graph class can be obtained by generalized
jackknife operations on (k + 1)-terminal graphs. Here in G1 ⊙j G2 some k terminals of G2
are merged with terminals of G1, and terminals of the result are the same as in G1. It is
necessary to allow all k + 1 possible jackknife oprerations.

In another point of view a k-tree is a graph G which has a perfect vertex elimination
scheme where each vertex vi has exactly min{k, |VG| − i} following neighbors.

Due to the following fact, the graphs of treewidth at most k are also sometimes called
partial k-trees.

Lemma 3.10. Every graph of treewidth at most k is a subgraph of a k-tree and vice versa.

Proof. First, if a node Xi has size at most k insert into Xi a vertex from a neighbouring
node as long as all nodes are of size k+ 1. Then add extra nodes such that adjacent nodes
have k common vertices. These manipulations do not affect the width of the decomposition.

Observe that the insertion of edges that have both ends in the same node does not
increase the treewidth of the graph, but yields to a k-tree. (The construction of the k-tree
can be derived from the tree decomposition.)

For the opposite implication it is easy to show that every k-tree has treewidth at most k.
The tree decomposition of width k can be derived from the construction of the graph.

Corollary 3.11. Show that tw(G) = min{ω(G′) : G ⊆ G′, G′ is chordal} − 1

Corollary 3.12. Every graph G has an optimal tree decomposition on at most |VG| nodes.

Exercise 26: Show that chordal graphs are intersection graphs of subtrees of a tree.
Exercise 27: Show that graphs G of treewidth at most k with k ≥ 1 have strictly less
than k|VG| edges.
Exercise 28: Design a polynomial-time coloring algorithm for chordal graphs.

3.4 Search games
We relax from the formal presentation and present a simple “cops-and-robber” game (by
LaPaugh [20]) played on a graph. Imagine that the graph represents a town with vertices
as crossings and edges as streets. The game is played between one robber on a motorbike
and several police helicopters. The police always knows the position of the robber, but
the robber on a motorbike can quickly move from a vertex to any of its neighbors. The
police helicopters do not need to follow edges of the graph, however their movement needs
much more time. The robber may move through several edges during a single movement
of a police helicopter, however he cannot pass through a crossing occupied by a helicopter.
Even if a helicopter decides to land at the robber’s standpoint, the robber has enough
time to run away through any free adjacent vertex. The robber’s aim is to escape forever,
whereas the police wants to encircle him, forbid any his movement and finally capture him
by landing a helicopter on the vertex of his position.

The classification winning strategies for the game is given by the following proposition:

19



XjXiT :

nodes with u nodes with v

v

Xi XjG :

separator

u

Figure 10: An illustration for Proposition 3.14.

Proposition 3.13. The police has a winning strategy with k + 1 helicopters if and only if
the graph has treewidth at most k.

We partially prove the proposition in the forthcomming exercises. Try to find some
property of a graph that provides a winning strategy for the robber. Such a property
would yield better lower bound on a treewidth of a graph.
Exercise 29: Assume that the police has two helicopters. On which graphs the robber
has a winning strategy, and on which the police wins?
Exercise 30: Prove the ⇐ implication of Proposition 3.13.
Exercise 31: Decide who wins on the n×n grid, depending on the number of helicopters.
What is the consequence for the treewidth of a planar graph? (Assume correcteness of
Proposition 3.13.)

3.5 Separators
Definition. If VG can be partitioned into three disjoint sets A, B and S such that every
path from a vertex from A to a vertex from B contains a vertex from S, then we say that
S separates A and B, or, shortly, that S is a separator.

By the definition, S may be empty if A and B are formed from different components
of G.

Separators or also called cutsets, play important role in the finding good tree decom-
positions. We show that nodes of a tree decomposition are good candidates for separators.

Proposition 3.14. Let T be a tree decomposition of a connected graph G. For every edge
(Xi, Xj) ∈ ET the following holds:

• either the intersection Xi ∩Xj is a separator in G

• or all nodes of the component of T − (Xi, Xj) containing the node Xi are subsets of
Xj.

• or the vice-versa for Xj
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Proof. Let T be a tree-decomposition of G. Assume Xi and Xj are two nodes of T that
violate the last two conditions of the lemma. Hence a vertex u exists such that u ∈ Xi′ \Xj

where Xi′ is behind Xi (i.e., u belongs to the component of T − (Xi, Xj) containing Xi).
Also we can find v ∈ Xj′ \Xi where Xj′ is behind Xj.

Assume for a contradiction that u and v are connected by a path in G \ (Xi ∩Xj). See
Fig. 10.

Vertices of a path from u to v induce in T a subtree, hence the tree must contain the
edge (Xi, Xj). Thus a vertex from this path belongs to Xi ∩Xj and u and v are separated
in G \ (Xi ∩Xj), a contradiction.

Definition. For a graph G and a set of vertices W ⊆ VG we say that S separates W , if
at least two vertices of W are separated by S, i.e. such S separates A and B where both
intersect W .

We say that a separator S is good for a given set W , if S separates sets A and B, where
both contain at least one and at most 2

3 |W | vertices of W .

Note that neither A nor B have to induce connected subgraphs of G.

Lemma 3.15. If the treewidth of a graph G is at most k, then any W ⊆ VG of size at least
2k + 3 has a good separator S of size at most k + 1.

Proof. Take a tree-decomposition T of G of width k, where each node has at most three
neighbors. We will show that some node Xi of T is a good separator for W .

If some node Xi has the property that some of the at most three subtrees of T \ Xi

contains more than 1
2 |W | vertices of W \Xi, then orient the corresponding edge from Xi.

In particular, each edge adjacent to a leaf Xi is oriented from Xi, because |W \ Xi| ≥
2k + 3 − (k + 1) = k + 2 > 1

2 |W |.
No edge may be oriented in both directions, as on both sides would be more than 1

2 |W |
vertices of W . Hence there exists an internal node Xi with no outgoing edge.

If the internal node Xi is of degree two, we take S = Xi.
Otherwise the three subtrees of T \Xi provide a partition of W \Xi into three subsets,

W1,W2 and W3, each of size at most 1
2 |W |. Without loss of generality assume that |W1| ≥

|W2| ≥ |W3|.
Now assume for a contradiction that |W2 ∪ W3| > 2

3 |W |. Consequently, |W2| > 1
3 |W |

as well as |W1| < 1
3 |W |, which contradicts the choice |W1| ≥ |W2|. Hence S = Xi is a good

separator, if A and B are chosen such that W1 ⊆ A and W2 ∪W3 ⊆ B.

Indeed, a slightly stronger variant of the last argument of the proof will be useful later.
We state it separately as follows:

Observation 3.16. If W1,W2,W3 are disjoint subsets of W , such that none contains more
than 2

3 |W | elements of W , then for some pair Wi,Wj it holds that the union Wi ∪Wj also
does not contain more than 2

3 |W | elements of W .

In Section 5.1 we will show that the existence of good separators implies bounded
treewidth:
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Theorem 3.17 (Reed [30]). If every set W of size at least 2k + 3 has a good separator of
size at most k + 1 then tw(G) ≤ 4k + 3.

Sets without good separators hence provide arguments for showing high treewidth.

Definition. A set W ∗ ⊆ VG is strongly k-linked if it has no good separator with at most
k vertices.

Corollary 3.18. If G has treewidth at least 4k then it contains a strongly k-linked set.

Some classes of graphs allow separators of sufficiently small size. For instance, planar
graphs on at least five vertices have separators of size at most five, since they always have
a vertex of degree at most five. Now we show that they contain also small good separators
for W = VG.

Theorem 3.19 (Lipton-Tarjan [23]). Every planar graph G on n vertices has a separator
S of size at most 2

√
2n such that each component of G \ S has less than 2

3n vertices.

Proof (Alon, Seymour, Thomas [2]). Without loss of generality assume that G is triangu-
lated. Sets A,B,C form a partition of the vertex set of G such that C is a cycle separating
A and B. The set A consists of the vertices inside C, and B outside.

Denote k := ⌊
√

2n⌋. We select C such that |C| ≤ 2k, |B| < 2
3n and |A| − |B| is as

small as possible. Assume for a contrary that |A| ≥ 2
3n.

For u, v ∈ C let c(u, v) be the distance between u and v along the cycle C, and d(u, v)
their distance measured in the graph D encircled by the cycle C (consisting of the cycle
edges, edges between C and A, and of the subgraph induced by A).

We claim that for any u, v ∈ C the equality c(u, v) = d(u, v) holds. We prove this claim
by contradiction. Take u, v such that c(u, v) > d(u, v) and d(u, v) is minimal. Let P be
the path of length d(u, v) between u and v. This P splits the set A into two pieces A1 and
A2. Assume that |A1| ≥ |A2| and further denote A1, B1 and C1 to be the partition of G
derived from A1. We show that this partition violates the optimal choice of A,B and C.
Observe that

n− |B1| = |A1| + |C1| ≥ 1
2 (|A1| + |A2| + |P | − 2) = 1

2 |A| ≥ 1
3n.

Consequently, |B1| < 2
3n. Since P is a shortcut of C we have |C1| ≤ |C| ≤ 2k. Finally, as

A1 is a subset of A, the difference |A1| − |B1| is smaller.
We continue with the main thread of the proof. Without loss of generality we assume

that |C| = 2k, (if C would be smaller we extend it by some triangles inside A and get a
better partition). Let v0, v1, . . . , v2k = v0 be the vertices of C.

We claim thatD has k+1 disjoint paths starting from v0, . . . , vk and ending in v2k, . . . , vk

(the first and the last path has length zero). If these paths would not exist, then by
Menger’s theorem D has a cut of size k. This cut also yields a path of length k−1 between
v0 and vk, a contradiction.

The total number of vertices of these paths is at least:
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• 1 + 3 + 5 + · · · + k + k + · · · + 1 = 2
(

k+1
2

)2
= 1

2(k + 1)2 for k odd,

• 1 + · · · + (k− 1) + (k+ 1) + (k− 1) + · · · + 1 = k+ 1 + 2
(

k
2

)2
> 1

2(k+ 1)2 for k even.

In both cases we derive that |VD| ≥ 1
2(k + 1)2 = 1

2

(
⌊
√

2n⌋ + 1
)2
> n, a contradiction.

We have already mentioned in Section 3.4 that planar n×n grid G has treewidth n, i.e.,
tw(G) =

√
|VG|. In particular, these grids are planar graphs with asymptotically maximal

treewidth.
Exercise 32: Show that for each W ⊆ VG, and any tree decomposition T of G it holds
that either W is a subset of some node Xi ∈ VT or W is separated by Xi ∩ Xj for some
edge (Xi, Xj) ∈ ET .
Exercise 33: For each k construct a graph G of treewidth k and a set W s.t. any separator
S of size k separates two connected components A and B, where one of these contains

k
k+1 |W | vertices of W .

(Hence Lemma 3.15 is tight in the sense that for k ≥ 3 we cannot force at most 2
3 |W |

vertices of W in both parts A and B with cuts of size k.)

Exercise 34: Show that tw(G) = O
(√

|VG|
)

for all planar graphs G.

3.6 Brambles
We now focus our attention on a method to prove a lower bound on treewidth. For this
purpose we define a notion of bramble:

Definition. A family B of subsets of vertices of G is called a bramble, if

• Each B ∈ B induces a connected subgraph of G.

• For each pair of sets B, B′ in B the union B∪B′ induces a connected subgraph in G.
In other words either B and B′ have at least one vertex in common, or there exist
an edge between B and B′.

We say that a set W covers a bramble B if the set W intersects every set B of the bramble
B. The order of a bramble B is the minimum number of vertices of a set that covers B.

Exercise 35: Find a bramble of order n+ 1 in the n× n grid graph.

Lemma 3.20. If G has a bramble B of order k + 1, then tw(G) ≥ k.

Proof. Let T be a tree-decomposition of G. We claim that there exists a node of T that
intersects all sets in the bramble B.

If not, then for every node Xi at least one B ∈ B exists such that Xi does not intersect
B. As B is connected, the nodes containing vertices of B form a connected subtree T ′ of
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T . This subtree T ′ does not contain Xi, hence we identify the unique edge incident with
Xi separating Xi from T ′. We orient this edge towards T ′.

Now, some edge (Xi, Xj) is oriented in both directions. The cutset Xi ∩ Xj separates
sets Bi and Bj, a contradiction.

In fact, the opposite implication in Lemma 3.20 holds, but it is not trivial to prove.
The theorem is called the treewidth minimax theorem and was proved by Seymour and
Thomas in 1993 [37].

Theorem 3.21. G contains a bramble of order k + 1 if and only if k ≤ tw(G).

E.g., the n× n grid has brambles of order 1, . . . , n+ 1, while it is of treewidth n.
In the usual notation this theorem can also be written as: max

B
min

W
|W | = min

T
max

X
|X|

The forward implication of Theorem 3.21 has been already proved by Lemma 3.20. The
backward implication follows from the following stronger theorem, which is better suited
to be proved by induction:

Theorem 3.22. Let G have no bramble of order k + 1. Then for each bramble B there
exists a tree decomposition T , such that each node X ∈ VT of size at least k+ 1 is a leaf in
T and this node also does not cover B.

Proof of Theorem 3.21. By contrary assume that G has no bramble of order k + 1. Then
apply Theorem 3.22 on the bramle B = {VG}. This bramble is covered by any nonempty
set. Hence the corresponding tree decomposition T may not contain a node of size k + 1,
therefore tw(G) < k.

Proof of Theorem 3.22. We use induction on the brambles, ordered by the number of cov-
ering sets of size at most k. For any bramble B assume that the statement is valid for all
brambles which have smaller number of small covering sets.

Without loss of generality we may assume that |VG| ≥ k + 1 since otherwise we can
take T as the one-vertex tree with X = VG.

For a given bramble B select the set W of the minimal size that covers B. Since no
bramble has order at least k + 1, we have |W | ≤ k. Denote by A1, . . . Ar the components
of the graph G \W . Since |VG| ≥ k + 1 we have that at least one such component exists.

We now prove an auxiliary statement:
For any i = 1, . . . , r there exists a tree decomposition Ti of Gi = G|Ai∪W such that:

• W is a node of Ti,

• each node of size at least k + 1 in Ti is a leaf and does not cover B.

We distinguish two cases. Firstly, if B ∪ {Ai} is not a bramble then Ti is the tree
on two nodes W and Ai ∪ N(Ai). Since Ai is separated from some B ∈ B, we have
B ∩ (Ai ∪N(Ai)) = ∅, i.e., Ai ∪N(Ai) does not cover B.

For the other case we assume that B′ = B ∪ {Ai} is a bramble. Every set that covers B′

covers also B. In addition, the set W covers B but not B′ as W is disjoint with Ai. Then B′

24



Ai

S

B ∈ B

WX

Figure 11: No small separation exists between X and W .

has smaller number of covering sets of size at most k than B. By the induction hypothesis
there is a tree decomposition T ′ of G for B′ with properties given by the statement of the
theorem.

If T ′ is valid also for B no more construction is needed. Otherwise T ′ contains a node
X of size at least k + 1, which is a leaf disjiont with Ai and which covers B.

Observe that no set S of size less than |W | separates W and X, since it would had to
cover B (see Fig. 11). By Menger’s theorem there exists a set of |W | vertex-disjoint paths
which connect W and X. Without loss of generality we may assume that each such path
intersects W only in one vertex.

We now modify the tree decomposition T ′ into Ti as follows:
1. Restrict all nodes of T ′ to Ai ∪W .

2. For every w ∈ W insert w to all nodes that are in T ′ on a path between X and a
node with w.

Observe that except the node X all nodes with added w are internal in T ′. Thus each
leaf node of Ti is a subset of the original leaf node of T ′ (except X). Also the size of no
node has increased, since the addition of w is compensated by the deletion of some vertex
from the path between W and X starting from w. Any node Y of Ti of size at least k + 1
was of size at least k + 1 already in T ′. By the statement of the theorem, Y is a leaf and
does not cover B′ = B ∪ {Ai}. As Y ⊂ W ∪Ai and W has at most k vertices, the node Y
contains at least one vertex of Ai. Therefore Y is disjoint with some B ∈ B, hence it does
not cover B.

In the final step in the construction of T (if it wasn’t found earlier) we take a disjoint
union of the auxiliary tree decompositions T1, . . . , Tr and merge the nodes with W into a
single node.

Exercise 36: Show that the existence of a bramble of order k+1 gives a robber a winning
strategy if the police has at most k helicopters.

(Together with Theorem 3.21 this proves the ⇒ implication of Proposition 3.13.)

3.7 Treewidth and the minor theorem
In this section we overview main ideas that were used in the proof of Robertson-Seymour
minor theorem (Theorem 2.4). We refer to [12] as a source for the contents of this section,
where an interested reader can find more details. We omit all proofs due to their complexity.
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Proposition 3.3 implies that every class of graphs of treewidth bounded by a constant
is minor-closed. The following generalization of Kruskal Theorem was one of the first basic
steps in the proof of Robertson-Seymour theorem.

Theorem 3.23. For every k, the class of graphs of treewidth bounded by k is well quasi-
ordered by the minor relation.

We showed in Section 2 the case k = 1. The case of an arbitrary k is solved by k
iterations of arguments used in the proof of Kruskal theorem.

Conversely, we can characterize those classes of graphs that have bounded treewidth
and exclude a certain minor.

Theorem 3.24. For every graph H the following equivalence holds: H is planar if and
only if the class of graphs which do not contain H as a minor has bounded treewidth.

Since every planar graph is a minor of a grid of sufficient size, it is sufficient to prove:

Theorem 3.25. For every integer n exists kn such that every graph of treewidth at least
kn contains the n× n grid as a minor.

Based on these results we are ready to briefly describe the idea of the proof of Theo-
rem 2.4. Consider a sequence of finite graphs G0, G1, . . . . We find a good pair Gi ⪯ Gj,
i < j as follows. If G0 is planar and if it is not a minor of the forthcoming graphs then
graphs in the rest of the sequence have bounded treewidth. Since they are well quasi-
ordered a good pair exists.

If G0 is not planar then we may assume that none of G1, G2, . . . contains K|V (G0)| as
a minor. Such graphs can be characterized by their tree decompositions and by their
embedding into surfaces of bounded genus. Robertson and Seymour proved that these
graphs are also well quasi-ordered by the minor relation.

Finally, we show weaker version of Theorem 3.25, restricted to planar graphs.

Theorem 3.26 (Alon, Seymour and Thomas). Every planar graph of treewidth at least
20k − 12 with contains the k × k grid as a minor.

The proof is adapted from [32].

Proof. By Corollary 3.18 G contains a strongly (5k − 3)-linked set W ∗.
We now fix a planar drawing of G and find a simple (i.e. non-selfintersecting) closed

curve φ subject to the following conditions:

• φ intersects the drawing of G only in vertices,

• φ contains at most 4k vertices of G,

• the internal face (without the boundary) of φ contains more than 2
3 |W ∗| vertices of

W ∗,
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Figure 12: Vertices on φ ∪ ψ form a separator showing that W ∗ is not strongly (5k − 3)-
linked.

• subject to the above conditions the internal face of φ contains as few vertices of G
as possible.

Such curve φ exists, since a circle around G fulfills the first three necessary conditions.
Observe that φ contains exactly 4k vertices of G: If two adjacent vertices are consecutive
on φ, we draw φ such that the edge is in the external face of φ. Then φ can be adjusted
to accommodate further vertices from the adjoining faces of G.

Let us denote the 4k vertices along φ by v1, . . . , v4k. We show that there are k vertex
disjoint paths R1, . . . , Rk between pairs v1 and v3k; v2 and v3k−1; . . . ; vk and v2k+1.

Assume the opposite. By a planar version of Menger’s theorem there is a cutset S of
size at most k − 1 for the subgraph Gφ of G induced by the vertices of the internal face
of φ. Note that S contains at least two vertices lying on φ. Let φ1 and φ2 be the two
fractions of the curve φ.

We draw a curve ψ through the cutset S and obtain two closed curves φ1 ∪ψ and φ2 ∪ψ.
As both have at most 4k vertices, their internal faces contain at most 2

3 |W ∗| vertices of
W ∗ — otherwise it would contradict the choice of φ. But by Observation 3.16 the set
of vertices lying on φ ∪ ψ is a good separator contradicting the fact that W ∗ is strongly
(5k − 3)-linked, see Fig. 12.

Analogously we find k vertex disjoint paths C1, . . . , Ck between pairs vk+1 and v4k; . . . ;
v2k and v3k+1.

We form the k × k grid from the union of paths R1, . . . , Rk (considered as rows) and
C1, . . . , Ck (considered as columns). Adjust the drawing such that rows are straight hori-
zontal lines ordered from top to bottom and columns are ordered left to right.

Whenever possible, we purge edges with a vertex of degree one, and contract one of
two consecutive edges of the same row or column, resp., if the middle vertex is of degree
two.

We sweep the drawing left to right and adjust these paths so that each column becomes
monotone, i.e., each edge traverses to a highly numbered row. By induction, assume that
C1, . . . , Ci−1 are already adjusted. From Ci first select all leftmost edges that are monotone.
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Figure 13: Construction of the k × k grid.
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Figure 14: Forbidden minors for graphs of treewidth at most three.

If this set forms a path, we are done. Otherwise we contract the row segments between
the chosen fragments of the path Ci.

It may happen that some row segment contains vertices of sequel columns. In such
a case the row should be adjusted to bypass these vertices (see the situation depicted in
Fig. 13).

The resulting graph is a k × k grid minor of the original graph G.

Finally, we show that some classes of graphs of bounded treewidth have known a good
characterization in terms of forbidden minors [5].

Theorem 3.27. The treewidth of a graph is

• at most one if and only if it does not contain K3 = C3 as a minor.

• at most two iff it contains no K4 minor.

• at most three iff no graph depicted in Fig. 14 is its minor.

Observe that the first case describes forests. Subgraphs of series-parallel graphs corre-
spond to the second case by Theorem 3.6.

We conclude this section by one of the core conjectures of structural graph theory:
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Conjecture 3.28 (Hadwiger, 1943). The chromatic number χ(G) of an arbitrary graph G
is at most the size of the largest complete graph which is a minor of G.

Define the Hadwiger number h(G) as the size of the largest complete graph which is a
minor of G.

When h(G) ≤ 2 (i.e. K3 is the forbidden minor) then the graph is a forest. Forests are
bipartite, hence 2-colorable.

Every series-parallel graph has a vertex of degree at most two. Hence graphs with no K4
minor are 2-degenerate, and consequently 3-colorable, which yields the case for h(G) = 3.

Every planar graph has forbidden K5, hence Hadwiger’s conjecture for h(G) = 4 implies
four color theorem. Wagner indeed showed in 1937 their equivalence. The idea is that every
graph without K5 as a minor can be decomposed into pieces that are planar or thar are
isomorphic to the Wagner graph W depicted in Fig. 14.

The conjecture was proved also for graphs with h(G) = 5. Robertson, Seymour and
Thomas [36] showed that this case is equivalent to the four color theorem as well.

A k-decomposable graph allows an ordering of its vertices, such that each vertex is
adjacent to at most k its successors. Obviously, every partial k-tree is k-decomposable.
Exercise 37: Show that k-decomposable graphs are not necessarily subgraphs of k-trees.

Degeneracy of a graph G is defined as the maximum of the minimum degree δ(H) taken
over all induced subgraphs H ⊆ G. In other words, k-decomposable graphs are graphs of
degeneracy at most k.
Exercise 38: Show that the degeneracy of a graph is a lower bound on its treewidth.

4 Further graph decompositions

4.1 Nice tree decomposition
A better structured tree-decompositions might be often helpful, especially in the algorithm
design.

Definition. The nice tree decomposition of G ([17]) is a tree decomposition where T is a
rooted binary tree and for each inner node Xi it holds that:

• either Xi has two children Xj and Xj′ , where Xj = Xj′ = Xi,

• or Xi has one child Xj, where sets Xi and Xj differ by exactly one vertex.

Sometimes it is required that all leaves in T contain only one vertex of G. We adopt
the following terminology: Nodes with two children are join nodes. A node that has an
additional vertex compared to is only child is an introduce node. If in such situation some
vertex is missing, then it is is a forget node.

Observation 4.1. Any tree decomposition can be transformed in polynomial time into a
nice tree decomposition of the same width.
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Proof. Pick a root arbitrarily and then perform further local replacements. Each node Xi

of degree at least four will be substituted by at degT (Xi) − 2 union nodes, each edge will
be substituted by at most k forget and at most k indroduce nodes, where k is the width
of T .

If leaves should be of size one, we replace current leaves by paths of introduce nodes of
length at most k.
Corollary 4.2. Each graph G has a nice tree decomposition on O(|VG|tw(G)) nodes with
all leaves of size one.
Proof. Apply Observation 4.1 on an optimal tree decomposition on at most n nodes.

We show that the constuction of Observation 4.1 is asymptotically tight:
Proposition 4.3. For every k there exist a graph on 3k vertices whose any optimal nice
tree decomposition with leaves of size one has Ω(k2) nodes.
Proof. We first build an auxiliary tree consisting of a matching on k edges (ui, vi) and
a vertex r connected to all vertices vi. To form G we further add k universal vertices
w1, . . . , wk−1. Straightforwardly tw(G) = k.

Take a nice optimal tree decomposition T of G. Each set {ui, vi, w1, . . . , wk−1} induces
a clique in G and hence forms a node of Xi of T . Observe that only one component of
T \Xi contains nodes with r, while nodes of the other components are subsets of Xi.

The minimum subtree of T containing nodes X1, . . . , Xk is still valid (non-nice) tree
decomposition of G, where each Xi for i = 1, . . . , k is a leaf. Only at most one such
leaf, say X1, can be predecessor of the other nodes X2, . . . , Xk in T . Therefore, the nodes
X2, . . . , Xk−1 are in no predecessor-successor relation.

Finally, since all leaves of T should be of size one, each subtree of T rooted in Xi for
i = 2, . . . , k−1 has at least k+1 introduce or leaf nodes. Hence, the required decomposition
contains at least (k − 2)(k + 1) nodes.

Finally we prove that for ordinary nice tree decompositions (with leaves of any size),
the number of nodes can be reduced.
Proposition 4.4 ([17]). Any graph G allows an optimal nice tree decomposition with at
most 4|VG| nodes.
Proof. Without loss of generality we may assume that G is a k-tree, and hence by Propo-
sition 3.8 it contains a vertex u whose neigborhood N(u) induce a clique of size k.

Assume by induction that T ′ is a suitable decomposition of G − u. Here, let Xi be a
node of T ′ containing N(u) as a subset.

If Xi is a join node, then we use one of its children instead of it. Hence we may assume
that Xi has at most one child.

If Xi is not a leaf, then we fist subdivide the edge from its parent to Xi by a new join
node Xj. The new join node Xj will also have a chid Xj′ which is a leaf. Now we use this
leaf instead of Xi.

Finally, if Xi is a leaf, then we promote it into a introduce node by adding one forget-
type child Xj = N(u) and grandchild Xj′ = N(u) ∪ {u}.

30



4.2 Treewidth versus pathwidth
A path decomposition of a graph is a tree decomposition where the underlying tree forms
a path. The notion of the pathwidth is defined analogously. Clearly tw(G) ≤ pw(G) for
any graph G, because a path decomposition can be viewed as a tree decomposition. On
the other hand, graphs with bounded treewidth may attain arbitrarily high pathwidth.

Proposition 4.5. The pathwidth of the rooted ternary tree Tk with k + 1 levels is at least
k.

Proof. We proceed by induction. Let P be a path decomposition of T = Tk and let T 1,
T 2 and T 3 be the three trees isomorphic to Tk−1 rooted at the three children of the root of
T . Without loss of generality we may assume that the leftmost node of P contains some
vertices of T 1. and that the rightmost node contains some vertices of T 1 or of T 3. Then
all nodes of P that contain some vertices of T 2 include also some vertex of T \ T 2, hence
pw(T ) ≥ pw(T 2) + 1.

Theorem 4.6. For every graph G on n vertices it holds that pw(G) = O(tw(G) ln(n)).

Proof. Consider a rooted tree decomposition T of G of width tw(G) with at most n nodes.
Such a decomposition can be derived from an embedding of G into a k-tree.

We first define an auxiliary labeling l of the tree T as follows: Put 1 as the label for
every leaf of T . If an internal node Xi has only one child Xj, we set l(Xi) := l(Xj). If Xi

has more children Xj, Xj′ , Xj′′ , . . . ordered nonincreasingly by their labels, then we select
l(Xi) := max{l(Xj), l(Xj′) + 1}. Observe that the root has label at most log2(n) + 1, since
l(Xi) is greater than l(Xj) if and only if l(Xj) = l(Xj′). By induction we can derive that
a tree whose root is labeled by i contains at least 2i − 1 nodes.

We now define a path decomposition P according to the labeling of T recursively. For
any subtree Ti rooted in a node Xi we define a path decomposition Pi of Gi, i.e. of the
subgraph of G induced by the vertices of ⋃

X∈Ti
.

A leaf Xi of T is viewed as a single-node path decomposition of Gi. If a node Xi has only
one children Xj, then we attach Xi to the path decomposition Pj. If Xi has more children
then we construct the path decomposition Pi as the concatenation of Pj ◦P ′ ◦P ′′ ◦ · · · ◦Xi,
where P (s) is the path decomposition of Gj(s) , where each node is extended by the set Xi.

These decompositions have the property that Xi is always the last node of Pi, hence
are valid path decompositions.

Observe that for any node Y of Pi the number of nodes from T , that were used to build
Y , is bounded by l(Xi). Hence, the width of any path decomposition Pi of G is bounded
by l(Xi)tw(G). This yields that pw(G) ≤ (log2(n) + 1)(tw(G) + 1) − 1.

Note that this upper bound is asymptotically tight — from the previous proposition
we have pw(Tk) ≥ k = ⌈log3 |VTk

|⌉ − 1.
Observe that graphs of pathwidth at most k are exactly those graphs where k+1 police

helicopters can capture an invisible robber. In other words police helicopters move without
knowing the robber’s position and the game ends when the robber cannot move.
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Figure 15: An example of a graph and its branch decomposition of width 3.

4.3 Treewidth versus branchwidth
The notion of branchwidth in fact preceded the notion of treewidth. It is defined as follows:

Definition. A branch decomposition of a graph G with at least two edges is a tree B where
each internal node has degree three and leaves of B are in one-to-one correspondence with
edges of G. Each edge f ∈ EB splits EG into the two sets Ef and E ′

f = EG \Ef where the
edges of Ef are indicated by the leaves of one of the two components of B \ f .

The width of an edge f is the number of vertices that appear both in Ef and in E ′
f as

an endvertex of some edge. Formally, w(f) = |Vf | = |{(⋃
Ef ) ∩ (⋃

E ′
f )}|. The width of a

branch decomposition B is the maximum width among all its edges and the branchwidth
of G, denoted by bw(G), is the minimum width out of all possible branch decompositions
of G.

The branchwidth of a graph with at most one edge is considered to be 0.

Exercise 39: Characterize graphs of branchwidth one.
Exercise 40: For each tree, construct a branch decomposition of width at most two.
Exercise 41: Show that bw(H) ≤ bw(G) whenever H is a minor of G.
Exercise 42: Show that the branchwidth of the complete graph Kn on at least 3 vertices
is at least ⌈2

3n⌉.

Theorem 4.7. For any graph G of branchwidth at least two it holds that bw(G) ≤ tw(G)+
1 ≤ ⌊3

2bw(G)⌋.

Proof. Let T be a tree decomposition of G of width tw(G). For each edge e ∈ EG select a
node X and join X with an exposed leaf representing e.

We now take the smallest subtree containing all the exposed leaves and contract all
vertices of degree 2 and possibly replace internal vertices of higher degree by ternary trees.
We claim that B has width at most tw(G) + 1.

If f ∈ EB is incident with a node X of the original tree decomposition then Vf ⊆ X,
since other vertices are separated by X (from Ef or E ′

f ), and cannot contribute to Vf . This
establish the first inequality.

Let B be an arbitrary branch decomposition of G of width bw(G). We construct a tree
decomposition T = B of G as follows: If a leaf Xe corresponds in B to the edge e of G
we let Xe = e = {u, v}. For each pair of edges e, e′ ∈ EG with a common vertex u we

32



insert u into all internal nodes on the unique path between Xe and Xe′ . This is a tree
decomposition of G of width at most ⌊3

2bw(G)⌋, because each vertex is inserted twice in
each internal node.

4.4 Treewidth versus NLC-width
The major disadvantage of all already discussed decompositions is that they cannot capture
well some classes of graphs, especially when they contain large cliques, e.g. complete graphs
or cographs.

This is possible in the notions of cliquewidth [10], node label controlled width (NLC-
width) [41] or rankwidth [28]. Similarly as in the previous cases a graph is described in a
tree-like manner.

Definition. Let I = {1, . . . , k} be a set of labels. A expression tree of a graph G is a
binary tree E of the following form:

• The nodes of E are of the three types i, ⊕ and ρ:

• Introduce nodes i(v) are leaves of E, corresponding to a graph, with only one vertex
v of label i ∈ I.

• A join node ⊕S, where S is a binary relation S ⊆ I × I, stands for a disjoint union
of the two graphs associated with its two children, where for each pair (i, j) ∈ S all
edges are added between vertices labeled by i of the left child and vertices labeled by
j of the right child.

• A relabel node ρr, where r is a mapping r : I → I is associated with the graph of its
only child, where in addition each vertex label i is replaced by the label r(i).

• The graph G is isomorphic to the graph associated with the root of E with all vertex
labels removed.

The size of the minimum set of labels necessary to construct an expression tree for a
graph G is denoted by nlcw(G) and is called the NLC-width of G.

Exercise 43: Determine the NLC-width of trees and of complete graphs.
Exercise 44: Show that graph of cliquewidth one are so called complement-reducible
graphs (shortly cographs). i.e. graphs G where G or G are disconnected and where the
components are cographs.

Cographs are known to be exactly those graphs with no induced path of length four.
Exercise 45: Show that graphs of bounded degree and bounded NLC-width have bounded
treewidth.

We show that graphs of bounded treewidth have bounded NLC-width.

Theorem 4.8. For any graph G it holds that nlcw(G) ≤ 2tw(G)+1 + tw(G) + 1.
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Proof. Let a graph G have a nice tree decomposition T of width k with root node Xr. We
construct by induction an expression tree E that can be split into three parts:

• a subtree Er for Gr, the subgraph of G induced by Xr,

• a subtree E ′ corresponding to G′ = G \Gr,

• a union node ⊕S above Er and E ′, where S describes the edges between Xr and
VG \Xr.

The labels on E are chosen as follows: vertices on Gr have k+1 distinct labels, different
from the labels used on G′. Vertices in G′ are labeled such that vertices of the same label
have the same neighbors in Xr (could be empty as well).

In total we need k + 1 labels for Gr and at most 2k+1 labels for G′.
We now mimic the construction of E as was shown above for the case of trees. If Xr is

• the leaf node corresponding to a vertex v, we take E = {1(v)},

• the introduce node, we modify only Er (the child has at most k vertices, so we may
use a new label),

• the forget node for a vertex v — we remove v from Er, and extend E ′ such that v is
(see Fig. 16):

– introduced with the same label as it was in Gr,
– joined to E ′ by ⊕S node (as labels on Gr and G′ are distinct, we may assume

that S is the same on all nodes inside Er and that it describes also all edges
between Gr and G′),

– relabeled to j, i.e. the label of vertices in G that have the same neighbors in Xr

as v.

We finally merge some labels in G′ ∪ v for the vertices which have the same neigh-
borhood in Xr \ v.

• the union node with respect to subtrees T ′ and T ′′. Observe that VG′ must be disjoint
from VG′′ . Without loss of generality we may assume that vertices of G′ and G′′ have
the same label iff they have the same set of neighbors in Gr, in particular, the relation
S is the same the root ⊕S of both trees T ′ and T ′′. Then we place E ′ ⊕ E ′′ below
the union node with Er (see Fig. 17).

In total we use 2k+1 + k + 1 labels and the claim follows.

Expression trees for the closely related graph parameter called cliquewidth have the
following differences:

• A relabel node ρi→j is associated with the graph of its only child, where in addition
each vertex label i is replaced by the label j.
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• A node ⊕ stands only for the disjoint union of the two graphs associated with its
two children (no edges are added).

• A new type of node ηi,j is introduced, where i, j ∈ I, i ̸= j and the associated graph is
obtained by joining nodes of label i to the nodes of label j in the graph corresponding
to the only child of the node.

It is possible to construct graphs whose cliquewidth is exponential in treewidth. In
particular there exists a k-tree with cliquewidth at least 2⌊k/2⌋−1 [9].
Exercise 46: Determine the relation between cw(G) and nlcw(G).

4.5 NLC-width versus rankwidth
Rankwidth is another graph parameter introduced by Oum and Seymour [28]. The defini-
tion of rankwidth is similar to the definition of branchwidth:

Definition. A rank decomposition of a graph G is a ternary tree R whose leaves are in
bijection with vertices of G. Each edge f ∈ ER corresponds to a partition of vertices of G
into two sets Vf and Vf . The width of f is the rank of the adjacency matrix Af between
Vf and Vf over the field GF (2).

The width of the decompositionR is the maximum width of its edges, and the rankwidth
rw(G) of G is the minimum possible width among its rank decompositions.

Exercise 47: Determine the rankwidth of a complete graph.
It is known that rw(G) = 1 if and only if G is distance-heriditary [26], i.e. graphs,

where distances in each induced connected subgraph are the same as in the original graph.

Proposition 4.9 ([28]). For any graph G it holds that

rw(G) ≤ nlcw(G) ≤ 2rw(G).

Proof. In order to prove the first inequality we transfom an expression tree E into a rank
decomposition R in a straightforward way — we contract all relabel nodes.

The leaves of R are in one-to-one correspondence to vertices of G as they were in-
troduced in E. It suffices to observe that for any edge f ∈ ER either the set Vf or Vf

correspond to the vertex set of a labeled graph given by a subtree of E. Assume without
loss of generality that Vf is such set.

Vertices with the same labels in Vf will be treated uniformly during join operations,
hence they have the same neighbors in Vf . The rank of the adjacency matrix is bounded
by the number of its distinct rows. As vertices of Vf of the same label provide identical
rows, the first inequality follows.

For the other bound we convert a rank decomposition R into an expression tree E. We
subdivide any edge of R by an extra new vertex and promote it to the root of the tree.
Now leaves are in bijection with vertices of G and internal nodes can be viwed as union
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nodes. It remains to implement labels and join nodes to introduce edges into the graph.
Let k be the width of the rank decomposition R.

For an internal node Xi ∈ VR, let Gi be the subgraph of G induced by the vertices
corresponding to descendants of Xi. Assume that VGi

= Vf for the edge f leaving from Xi

to its parent (the root node is treated similarly).
We choose a labeling of V (Gi) such that vertices u and v share the same label if and

only if they have the same neighbors in VG \ VGi
. Observe that the same labels should be

assigned to vertices corresponding to the same rows in the associated adjacency matrix.
As the matrix may have at most 2k distinct rows, we get that 2k distinct labels suffices for
the desired labeling.

Let Xi be the parent of Xj and Xk and assume by induction that Ej and Ek are
expression trees for the labeled graphs Gj and Gk. We construct an expression tree Ei of
Gi as follows:

• join the two trees by ⊕S, where S describes all edges between vertices of VGj
and

VGk
,

• add a relabel node to get the same label for verices that have the same neighbors
outside Gi.

To argue feasibility of the second step note that by the choice of the labeling we know
that vertices of the same label in Gj could not be distinguished by the neighbors outside Gj.
Observe that their neighborhood outside Gi is even more restricted, hence these vertices
should have identical labels also in Gi (and vice-versa for vertices of Gk).

Straightforwardly, we have used at most 2k+1 − 1 distinct labels in Ei.

Definition. Let v be a vertex of G, then by a local complementation of v in G we get a
graph G ∗ v that differs from G only by edges on N(v). Namely, the induced subgraph
G|N(v) is replaced by its complement G|N(v).

We say that H is a vertex minor of G if it can be obtained by vertex deletions and
local complementations.

Proposition 4.10 (Oum [26]). The local complementation does not alter the width of any
edge in a rank decomposition.

Proof. Let v be any vertex of G and let f be any edge of a rank decomposition of G.
Without loss of generality we may assume that v ∈ Vf .

We alter the matrix Af by adding the row corresponding to v to all rows corresponding
to vertices on N(v) ∩Vf . As the result is the adjacency matrix of G ∗ v with respect to the
same partition Vf and Vf , the claim follows straightforwardly.

Corollary 4.11. If H is a vertex-minor of G then rw(H) ≤ rw(G).

Oum proved that:

Theorem 4.12 ([27]). The class of graphs of bounded rankwidth is well-quasi ordered by
the vertex-minor relation.
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The proof is complicated and omitted here.
Compare the last theorem with Theorem 3.23 of Robertson and Seymour, which shows

that the minor relation also provide a well-quasi ordering on more restricted graph classes
(bounded treewidth yields bounded rankwidth by Theorem 4.8 and Proposition 4.9).

5 Algorithms for bounded treewidth graphs

5.1 Computing treewidth
The problem to determine whether a given graph G has treewidth at most k is NP-
complete [4].

On the other hand for fixed k the problem tw(G) ≤ k could be decided in linear time [6].
Here we prove Theorem 3.17 and present a simple quadratic algorithm that either

answers that the tw(G) > k or outputs a tree-decomposition of width at most 4k + 3 [30].
Then the exact treewidth of G could be computed by the technique described in Section 5.2.

The basic idea is that we try to find recursively a good separator S of size at most k
for a set W whose size is between 2k+ 3 and 3k+ 3. If no such good separator exists then,
by Lemma 3.15, the treewidth of G is greater than k. If we succeed in all recursive steps,
we construct a tree decomposition of width at most 4k + 3 as depicted in Fig. 18.

The code of the algorithm follows. To obtain the decomposition of the entire graph G
we choose for W any set of size 3k + 3.

Tree decomposition (G,W )
Input: A graph G, tw(G) ≤ k, a set W ⊆ VG, |W | ≤ 3k + 3.
Output: A rooted tree decomposition T of G of width at most 4k + 3,

where W ⊆ root(T ).
begin

if |VG| ≤ 4k + 4 then let T has the only node VG; exit
else

if |W | ≤ 2k + 2 then augment W arbitrarily to the size 2k + 3 endif
find a good separator S for W in G of size at most k + 1
for I = A,B where A and B are the two sets separated by S

GI := subgraph of G induced by I ∪ S
WI := S ∪ (W ∩ I)
TI :=Tree decomposition (GI ,WI); endfor

T := tree rooted at {W ∪ S} with subtrees TA and TB endif
end.

The correctness of the algorithm follows from the following arguments.
The size of the set WI is bounded, since

|WI | ≤ |S| + 2
3 · |W \ S| ≤ k + 1 + 2

3 · (3k + 3) = 3k + 3.
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Figure 18: Recursive finding good separators and building tree decomposition.

The constructed tree decomposition T is of width at most |W | + |S| − 1 ≤ 4k + 3. We
have obtained a proper tree decomposition, since every edge of G will be represented either
in the node W ∪ S or in one of recursive trees for GI . Moreover all nodes containing a
fixed vertex form a connected subtree, since the only vertices that appear simultaneously
in the nodes of TA and TB are the elements of S and hence appear in particular in the tree
nodes XG, XGA

and XGB
(consult Fig. 18).

Now the only missing step is to find good separators quickly:
Lemma 5.1. For any graph G with n vertices and at most kn edges, and for any W ⊆ VG

of size at most 3k+ 3, it is possible to find a good separator S for W of size at most k+ 1
or answer that no such good separator exists in time O(27kn).
Proof. From the definition of a good separator S for W follows that W should be parti-
tioned into three disjoint sets Wa, Wb and Wc, where |Wa|, |Wb| ≤ 2

3 |W |, and where Wc

is a subset of a separator of size at most k + 1 separating A and B, where Wa ⊆ A and
Wb ⊆ B (consult Fig. 18).

Observe first that Wc can be extended to such desired separator if and only if in the
graph G\Wc there are at most k+ 1 − |Wc| vertex disjoint paths between sets Wa and Wb.

Hence, we try all possible partitions of W into three parts Wa, Wb and Wc with appro-
priate sizes. There are at most 33k+3 possibilities.

For each partition we solve the vertex-disjoint path problem. If all tests fail then no
good separator for W exists..

Note that the existence of the disjoint paths could be decided by the maximum flow
technique. It needs at most k+ 1 iterations of finding an augmenting path in a graph with
O(kn) edges. This step requires O(k2n) time.

The time complexity of the Tree decomposition algorithm composes of at most n
iterations of the Separator search algorithm, because the final tree-decomposition has at
most n nodes. In total we get O(27kn2) required operations.

5.2 More applications and nice decompositions
In this section we show how some computationally hard problems allow a tractable solution
when instances are restricted to graphs of bounded treewidth.
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The general scheme is based on a “brute force” enumeration of all feasible solutions of
the given problem when restricted onto graph Gi, i.e. the subgraph of G induced by the
node Xi. We assume that the tree T is rooted, and for each node Xi we build a table
Tabi of constant or polynomial size, whose entries describe necessary properties of partial
solutions on the graph Gi, and sometimes also on the graph G′

i, that is the subgraph of
G induced by the union of Xi and all its descendants. The data entries for Xi should be
computed in polynomial time from the entries in Tabj, corresponding the children Xj of
Xi.

The situation when the table Tabm is nonempty for the root node Xm usually indicates
that a proper solution of the entire graph G exists.

We illustrate this approach on the problem of computing the size of the maximal inde-
pendent set α(G).

Each entry in Tabi is the pair (S, a), where S is an independent set in Gi (possibly
empty) and a is the size of the maximum independent set of G′

i with S as its intersection
with Xi.

In the following algorithm we call an independent set Sj of Gj feasible for Si if Xj ∩Si =
Xi ∩ Sj.

The algorithm works as follows:

Maximum independent set
Input: A tree decomposition of a graph G of fixed width k.
Output: Size of the maximal independent set α(G).
begin

mark all nodes as unfinished
while exists an unfinished node Xi with all children finished do

begin
for all independent sets Si in Gi do

if for all children Xj of Xi there exists
a set Sj feasible for Si, s.t. (Sj, aj) ∈ Tabj

then
begin

for each Xj select a Sj feasible for Si

s.t. (Sj, aj) ∈ Tabj and aj is maximized
ai := |Si| + ∑

j(aj − |Sj ∩ Si|)
store (Si, ai) into Tabi

end;
mark Xi as finished

end;
α(G) = max{am : (Sm, am) ∈ Tabm}.

end.

Observe that for any Xi the computation of the table Tabi requires at most O(22|Xi|)
operations. By assuming that the treewidth of G is bounded by a constant, the algorithm
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runs in time O(|T |) which is function linear in n.
Exercise 48: Modify the algorithm such that it outputs also an independent set of size
α(G).

We use nice decompositions to solve efficiently the graph coloring problem, e.g. a
decision problem, testing whether χ(G) ≤ c. Observe that χ(G) ≤ tw(G) + 1, so we can
assume c ≤ tw(G).

Now the table Tabi stores all colorings (viewed as vertex partitions) of Gi with at most
c colors which allow an extension to G′

i.

c-Colorability
Input: A tree decomposition of a graph G of width k, an integer c.
Output: Decision whether χ(G) ≤ c.
begin

if c ≥ k then return ”YES” and quit
mark all nodes as unfinished
for all leaves Xi put all colorings ϕ of Gi with at most
c color classes into Tabi and mark Xi as finished

while exists an unfinished node Xi with all children finished do
begin

case Xi of
— introduce node with child Xj and v = Xi \Xj

then store in Tabi all extensions ϕi of ϕj ∈ Tabj onto Gi

where no neighbor of v is in the same color class as v
and ϕi has at most c color classes

— forget node with child Xj,
then store in Tabi all ϕj ∈ Tabj restricted to Xi

and remove duplicate entries
— join node with children Xj, Xj′

then Tabi = Tabj ∩ Tabj′

esac
mark Xi as finished

end;
return ”YES” if Tabroot ̸= ∅ and ”NO” otherwise.

end.

Exercise 49: Modify the algorithm such that it finds χ(G) and outputs also an optimal
coloring of G.
Exercise 50: Design an algorithm for testing whether a graph of fixed treewidth c is
Hamiltonian, provided that the tree-decomposition of width at most c is a part of the
input.
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5.3 Properties expressible in MSO
The fact that several graph properties can be tested in linear time on graphs of bounded
treewidth was generalized by Courcelle to all graph properties expressible in monadic
second order logic (MSO). We recall that in the first order logic a formula allows quantifiers
over single elements, while in the second order logic a quantification over predicates is
allowed. The monadic second order logic restricts predicates only to unary predicates, i.e.
to sets of elements.

A graph G may be modelled in a predicate logic in several ways. E.g. the universe
may consists of vertices of G and the edges are given as the binary adjacency relation.
This graph model in MSO is often denoted as MSO1. Another way is to use the edges
and vertices as the universe and describe the graph by the binary incidence relation. This
model is often denoted as MSO2. We show that since the quantifiers may range also over
sets of edges, more graph properties may be expressed in this logic.

In summary MSO1 formuli for testing graph properties may contain:

• the usual logical conenctives ¬,∧,∨,⇔,⇒ . . . .

• variables for vertices and vertex sets

• predicates for the membership ∈, equality =, and for the adjacency relation

• constants: particular vertices or subsets of VG, e.g. ∅

The MSO2 allows variables and constants for edge sets, and also quantification over
edge sets.

As an example we show a MSO2 formula for testing Hamiltonian graphs:

∃E ⊆ EG :
[∀u ∈ VG ∃v, w ∈ VG : (v ̸= w) ∧ ((u, v) ∈ E) ∧ ((u,w) ∈ E) ∧

∧[∀x ∈ VG : (u, x) ∈ E ⇒ ((x = v) ∨ (x = w))]]
. . .E is a 2-factor

∧[∀V ⊆ VG : ((V ̸= VG) ∧ (∃u ∈ VG : u ∈ V )) ⇒
⇒ (∃v, w ∈ VG : (v, w) ∈ E ∧ (v ∈ V ) ∧ (w /∈ V ))]

. . . and it is connected

We note that the graph property of being Hamiltonian is not expressible in MSO1.
This could be argued as follows. Words of length n over alphabet {a, b} can be modeled
as linearly ordered sets of size n with one unary predicate Pa indication on which positions
the letter a appears (formally the vocabulary for these models contains two predicates:
unary Pa and binary <). It is known that regular languages are exactly those definable
by a MSO formula on this word model [13, Thm 5.2.3]. By Pumping lemma, the language
{akbk : k ∈ N} is not regular, hence not MSO-definable.
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From a word represented by (X,Pa, <) we would construct a graph model (X,E) where
edges connect possitions of different letters, formally E(u, v) ⇐⇒ (Pa(u) ̸⇔ Pa(v)). For
example for a word abbaa, we get the word model X = [1, 5] with the usual ordering <,
and the predicate Pa = {1, 4, 5}. The associated graph model is the complete bipartite
graph between sets {1, 4, 5} and {2, 3} given as X and the adjacency relation E.

If the existence of a Hamiltonian cycle in a graph would be decided by an MSO1 formula,
then we replace each occurrence of the adjacency predicate E(u, v) by the the equivalent
expression Pa(u) ̸⇔ Pa(v). The resulting formula together with an expression that all b’s
follow all a’s, namely ∀u, v : (Pa(u) ∧ ¬Pa(v)) ⇒ u < v, would yield an MSO formula that
defines {akbk : k ∈ N}, a contradiction.
Exercise 51: Specify axioms for the theories of simple (i.e. loopless) undirected graphs
in MSO1 and MSO2.
Exercise 52: Show that any MSO2 expression without edge set variables/constants can
be transformed to an equivalent MSO1 expression and vice versa:
Exercise 53: Show that in MSO2 only the ∈ predicate suffices to substitute the other
predicates. Show that the predicates for set equality and set inclusion could be implemented
in this way.

5.4 Alhorithmic metatheorem for bounded treewidth
We show that MSO2 properties can be tested in linear time on bounded treewidth graphs.
We avoid the word ”efficiently” in this context since the evaluation time is a tower function
whose height is proportional to the quantifier depth of the given formula.

Theorem 5.2 (Courcelle [10]). Let G be a class of graphs of treewidth bounded by k. Then
every MSO2 formula Φ can be evaluated on every graph G ∈ G in time c|VG|, where the
constant c depends only on k and the formula Φ.

In the first step we reduce the expressive power of the formula.

Proposition 5.3. For every MSO2 formula Φ exists an MSO1 formula Φ′ s.t. on any
graph G there exists a graph G′ of the same treewidth such that G |= Φ if and only if
G′ |= Φ′

Proof. Subdivide each edge of G once to get G′, by Proposition 3.4 tw(G′) = tw(G). The
new vertices correspond to the edges of G.

To get Φ′ we first rewrite the incidence relation by the adjacency relation. As the inci-
dence relation is not symmetric as the adjacency relation we shall distinguish the vertices
from edges by an extra predicate P , which shall be valid on all variables that correspond
to edges in Φ. This could assured when P holds only on vertices of degree two, and when
P is satisfied on exactly one of each pair of adjacent vertices of G′.

The predicate P may wrongly identify the added vertices only on components that are
cycles. But this situation is isomorphic (in G′) to the correct identfication of the added
vertices and makes no impact on the evaluation of Φ′.
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Observe that the properties of P can be expressed by a subformula with three quanti-
fiers. Hence the quantifier depth of Φ′ is the maximum of four, and the quantifier depth
of Φ increased by one.

The following approach to the proof of Courcelle’s theorem is due to Hliněný, Král’ and
Obdržálek3. We first derive several properties of evaluation of MSO1 formuli on general
graphs.

Assume that Φ is in the prenex normal form and let Ψ(z1, . . . , zq) be the quantifier-free
part of Φ. We distinguish between qv variables that are quantified over single vertices and
call these individual variables and the remaining qs variables that are quantified over sets
of vertices, called set variables. The total quantifier depth is q = qv + qs.

Observation 5.4. When a set assigned to a variable zi contains a vertex u that is not as-
signed to any other individual variable, then u does not participate in any of the membership
predicates. Hence the evaluation of Ψ is independent of its presence in zi.

Hence, we may assume without loss of generality that during evaluation of Ψ, the set
variables are restricted only to those vertices that are assigned to individual variables.
Consequently, G |= Ψ(z1, . . . , zq) ⇐⇒ G′ |= Ψ(z′

1, . . . , z
′
q), where G′ is the subgraph of G

induced by the vertices assigned to individual variables zi = z′
i, and where each set variable

z′
i is restricted to this subgraph.

The evaluation of Φ on a general graph G on n vertices can be represented as a rooted
tree with the following structure.

Definition. The evaluation tree for a formula Φ and a graph G is a rooted tree F with
q + 1 levels constructed recursively as follows. For each level l = 1, . . . , q, a node w of the
l-th level corresponds to a particular choice of the first l − 1 quantified variables in the
order of quantification. If zl is an individual variable, then w has n children, representing
all possible choices of vertices for zl. Analogously, for a set variable zl there are 2n choices
among all possible subsets of VG.

An example of the evaluation tree for the rather trivial formula for the existence of the
set of all vertices and G being a path of length two is depicted in Fig. 19. In this figure —
and we assume this also in general — edges between w and its children are labeled by the
chosen values of the associated variable.

The answer whether Φ is satisfied on G can be obtained by a traverse through F from
leaves towards the root. Leaves in F correspond to different assignments of Ψ, and can
be evaluated directly. The value of each internal node straightforwardly depends on the
quantifier and values of its children: a node w corresponding to a universally quantified
variable (∀) must have all children satisfied to became satisfied as well. Similarly, an
existentionally quantified variable (∃) needs for the corresponding node at least one satisfied
child.

3personal communication to D. Král’, 2011
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Figure 19: The evaluation tree for Φ = ∃U∀u : u ∈ U and G = P3. Under each leaf is
depicted the graph G′ and the restricted domain of the set variable U . Black boxes of F
are truly evaluated vertices, while white are falsely evaluated.

However this approach can be used in general, its disadvantage is that the evaluation
tree F is too large. First we show a method that reduce the tree such that size of the
resulting tree is bounded by a constant independent of the size of G. Later we show, that
the reduced trees can be computed effectively on graphs of bounded treewidth.

The reduction goes inductively in the bottom-up manner. Each leaf of F corresponds
to an evaluation of Ψ on a subgraph G′, determined by qv vertices. The number of noni-
somorphic graphs with at most qv vertices is bounded by 2(qv

2 ) = 2O(q2
v).

The number of possible assignments of individual and set variables over G′ is bounded
by qqv

v (2qv)qs = 2O(qv(qs+log qv)). In total, we get 2O(qvq) nonisomorphic combinations of G′

and variable assignments.
Leaves of F correspond to such combinations, hence there are 2O(qvq) isomorphism

classes for the leaves. Assume that w is a parent of several leaf vertices. As leaves from the
same isomorphism class have the same value, the evaluation of w does not affect when leaves
from some particular isomorphism class appear once or more times among its children. It
suffices to keep one leaf for each isomorphism class that appears there. Hence, we may
remove redundant children of w and do the same for all vertices at the q-th level of F .
After this adjustment, each node at the q-th level of F will have at most 2O(qvq) children
— leaves.

We now distinguish nodes at the q-th level by their children. There are 22O(qvq) possible
sets of children. Each such set defines the isomorphism class of a tree of height one. We
determine isomorphism classes of all subtrees rooted in vertices at the q-th level. Now
we reduce isomorphic subtrees under a common parent analogously as we have removed
redundant leaves.

In general, assume that each node on the (l+1)-th level belongs to one of the possible t
isomorphism classes. Then, if a node on l-th level has two isomorphic children, we remove
one of them and reduce the tree as along as possible. Then the isomorphism class of a node
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Figure 20: The reduced tree for the tree from Fig. 19.
T

X1 = {v2}

X2 = {v2}

X3 = {v1, v2}

X4 = {v2}

X5 = {v2, v3}

G1

v2

G2 = G4

v2

G5

v3

v2
G3
v1

v2

Figure 21: A tree decomposition of G = P3 and the corresponding graphs Gi.

on the l-th level is defined as the set of isomophism classes of its children. Consequently,
the number of isomorphism classes at the l-th level is bounded by 2t.

Definition. The tree F− obtained by the above described reduction toward the root of
the evaluation tree F is called reduced evaluation tree for Φ on G.

The following two claims are immediate:

Observation 5.5. The reduced evaluation tree F− can be evaluated instead of the expres-
sion tree F to decide whether G |= Φ or not.

Observation 5.6. The size of the reduced evaluation tree F− is bounded by 2..
.2

O(qvq)
}

q+1.
In particular, this bound depends only on the number of individual and set variables and is
independent on the size of the graph G.

The reduced tree F− for the tree from Fig. 19 is depicted in Fig. 20
So far we did not utilize the fact that G has bounded treewidth. We show how this

property enables us to construct the reduced expression tree for a node of the tree decom-
position from the evaluation trees of its children. For this purpose we first generalize the
notion of the evaluation tree and the associated configuration.

Proof of Theorem 5.2. Let Xi be a node of a tree decomposition of G and let Gi be the
subgraph induced by Xi and its descendants. (See Fig. 21.)

We extend the evaluation tree Fi for Φ on Gi to adopt the situation where value of
some individual variable does not belong to Gi: for each individual variable zl we add to
each associated node w an extra child representing the case where zl is not determined.
We say that its value is external and label the edge by “ext”. The resulting tree is called
partial evaluation tree.
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Note that partial evaluation trees cannot be evaluated directly, since predicates on
external values may not evaluated and hence the value of Ψ is not well defined in some leaf
configurations. On the other hand, if we prune in such Fi all configurations containing a
external choices, then Ψ is well defined on each leaf. Observe that the resulting evaluation
tree tests whether Gi |= Φ.

We reduce the size of partial evaluation trees similarly to the case of general graphs.
A leaf of Fi corresponds to a situation when some or all individual variables zi are

assigned the elements of Gi and set variables zi are assigned appropriate subsets of the
individual variables. Each such assignment again defines a subgraph of Gi. In comparison
to the case of general graphs we distinguish which elements of G[Xi] are selected by the
assignment, hence we include the whole subgraph G[Xi] in the resulting subgraph G′, and
extend all the choices of set variables on this domain.

We again list all nonisomorphic graphs G′ together with the assignment and require
that the possible isomorphism must fix G[Xi]. Such representative of the isomorphism
class will be called a configuration. We summarize that a configuration is formed of

• the graph G′ induced by the union of G[Xi] and at most qv further vertices,

• a partial mapping between the individual variables and the vertices of G′,

• a mapping between the set variables and the subsets of VG′ .

Namely, in a configuration a vertex variable may be assigned a particular vertex of Xi

or it could be assigned an unspecified vertex in VG′ \ Xi (we call it an internal value) or
it may not be assigned any value. Set variables are composed from the elements of G[Xi]
and chosen internal individual variables.

We first reduce labels of the edges in the tree Fi so that whenever an individual variable
is assigned an element of Gi \G[Xi] the label becomes “int”, and so that labels representing
choices of set variables became restricted to G[Xi]. Still, one node w of Fi may leave several
edges with the same label. Now we are ready transform the tree Fi into the partial reduced
evaluation tree F−

i by the same procedure as in the case of general graphs.
The number of nonisomorphic configurations is at most 2(qv+k+1

2 )(qv+k+2)qv(2qv+k+1)qs =
2O((qv+k)(q+k)). By the same arguments as before we get that each node Xi may be assigned
a the partial reduced evaluation tree F−

i of size 2..
.2

O((qv+k)(q+k))
}

q+1.
The direct evaluation of F−

i makes no sense similarly as for Fi. On the other hand, the
removal of all branches with choices of external values from F−

i yields an evaluation tree
for Gi |= Φ as it has been observed for Fi.

It remains to show, how F−
i can be constructed without Fi, but with help of the tree

decomposition T of G. Without loss of generality we assume that the tree decomposition
T is nice.

In each leaf Xi of T the tree F−
i can be constructed directly by the reduction of the

full evaluation tree, since the size of Gi is bounded by a constant O(k2) (encounting edges,
for an example see Fig. 22 left).
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For a forget node Xi above Xj we modify each configuration in F−
j such that the

forgotten vertex become internal whenever is chosen for an individual variable. We restrict
all choices of set variables to G[Xi]. Consequently, we reduce the evaluation tree as some
configurations may became isomorphic (see Fig. 22 right).

For an introduce node, each configuration containing an external choice is altered as
follows: for each subset of unassigned variables (external) we introduce a new case when
variables of this subset are assigned the new element of Xi. Analogously, set variables are
extended in all possible combinations by the new element. These new choices result in new
branches in F−

i .
It remains to show how a tree F−

i can be obtained from trees F−
j and F−

k if the node
Xi is the parent of nodes Xj and Xk. We use a specific product of trees defined as follows.
We choose the root of F−

i as the pair formed from the two roots of F−
j and F−

k . By
induction assume that wi = (wj, wk) is a node of F−

i on the l-th level where wj ∈ F−
j and

wk ∈ F−
k . For each combination of children w′

j and w′
k of wj and wk, respectively, we put

w′
i = (w′

j, w
′
k) in F−

i as a child of wi if the following condition is satisfied:

• If the l-th quantified variable in Φ is an individual variable zl′ then

– either zl is assigned the same vertex of Xi in both w′
j and w′

k (then in w′
i the

variable zl keeps the same value),
– or in w′

j the variable zl external and in w′
k it is an internal element of Gk \G[Xk]

– or vice-versa where k and k′ are exchanged with j and j′

(in both cases zl becomes in wi an internal element of Gi \Xi)
– or the variable zl chosen external in both w′

j and w′
k; here zl remains external

also for wi.

• If zl is a set variable then

– the value of zl on w′
j, on w′

k and hence also on w′
i restricted to Xi is the same

in all three cases. I.e. in all three trees the labels of edges towards w′
j, w′

k and
w′

i are the same.

The value of a set variable zl is determined on each leaf of F−
i as the union of its values

in the corresponding leaves of trees F−
j and F−

k . Note that it may contain futher internal
vertices of Gj or of Gk. These internal vertices must be chosen by individual variables zl′

including also the cases l′ > l, i.e. they might be on a higher depth of the quantification.
When the entire product tree is formed, we reduce it again.
Observe that in the tree F−

i any possible configuration on Gi provides particular con-
figurations in trees F−

j and F−
k . Also we have just described a method that allows us to

reconstruct the original configuration from the two derived ones.
The time complexity is mainly determined by the construction of the tree products for

the union nodes, which has
(

2..
.2

O((qv+k)(q+k))
}

q+1

)2
= 2..

.2
O((qv+k)(q+k))

}
q+1 vertices.
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Figure 22: Partial reduced evaluation trees for the decomposition from Fig. 21 — leaf and
forget nodes. Bold elements in graphs are assigned to some variables, while thin are the
remaining elements of G[Xi]. Nodes corresponding to the external choices are excluded
from the evaluation.

We conclude that the total time complexity of this method is linear in n, the number
of vertices of G, with the multiplicative constant of order 2..

.2
O((qv+k)(q+k))

}
q+1.

Exercise 54: Decide whether the problem χ(G2) ≤ k is expressible in MSO1 or MSO2
and if so, construct a linear-time algorithm for graphs of bounded treewidth.
Exercise 55: Settle the computational complexity of the decision problem whether a graph
of bounded treewidth is 3-choosable, provided the list assignment is a part of the input.
Could this property be expressed in MSO1 or in MSO2?

6 Algorithms based on other width parameters

6.1 Two algorithms for graphs with bounded NLC-width
We first present a ch-coloring algorithm for graphs of bounded NLC-width. We use an
analogous notation as for treewidth-bounded graphs: Xl stands for a node of the expression
tree and Gl is the subgraph of G induced by vertices of the introduce nodes which are
descendants of Xl. Finally denote Ei,j(Gl) the set of edges of Gl between vertices of labels
i and j.

Consider a coloring c of a graph Gi, and let W be a color class of c, i.e. a set of vertices
of Gi of the same color. We say that W is labeled by J ⊆ I, if J is exactly the set of labels
used on W , i.e., if every label of J appears on some vertex of W and no vertex of W has
a label outside J . (Vertices outside W may or may not have labels of J .)

We again involve dynamic programming and store a table Tabl in each node Xl of the
expression tree. Each element x ∈ Tabl is an integer vector of length 2|I| −1 and describes a
possible coloring c of Gl. The entries of x are indexed by nonempty subsets J ⊆ I and the
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Figure 23: Product tree formed for the union node.
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v2
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∅
u:
U :

F−1

G′
int
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{v2}∅ ∅ {v2} {v2}
int int int int int int intext ext ext ext extv2 v2 v2 v2 v2

Figure 24: Partial reduced evaluation tree for the union node obtained from the ree from
Fig. 23. Bold edges indicate the branches without external values. When we forget labels
of elements (e.g. make all elements internal) we get the reduced evaluation tree of Fig. 20.
In our example the two trees are indeed isomorphic.

value of xJ is the number of color classes of c which are labeled by J . Note that multiple
colorings may correspond to the same vector x.

Observe that the table size is bounded by
(

2k+ch−1
ch

)
, where k = |I|, since the sum of

coordinates of each vector of Tabl is at most ch (and the number above is the number of
combinations to distribute at most ch ones into 2k − 1 slots).

The algorithm for evaluating Tabl proceeds as follows: At relabel nodes ρr we have
to update the entries for the color classes which contain vertices labeled by i and convert
them to those which have r(i) instead of i in the index set J .

The most complex is the computation of the table Tabl for a join node Xl = ⊕S.
Assume that a color class of Gl with vertices labeled by J splits into two classes of Gm

and of Gm′ with label sets K and K ′ (at least one of these two classes is nonempty). Then
the variable aK,K′ describes how many times such a situation appears. Each solution of
the system of inequalities describes how color classes of Gm and of Gm′ can be matched
together to form a feasible coloring of Gl, and vice versa. Observe that the last condition
tests whether the vector x describes a coloring with at most ch colors.

The time complexity is asymptotically determined by solving the system of inequalities
which is done for exactly n − 1 union nodes. We have to test each of

(
2k+ch−1

ch

)
possible

solutions x. The feasibility of the system can be tested by brute evaluation of all possible
assignments for variables aK,K′ in time O

((
4k+ch−1

ch

))
, since the total number of variables

aK,K′ is 4k − 1.
The overall time complexity is O

((
4k+ch−1

ch

)
4kn

)
.
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ch-Colorability
Input: An expression tree E of a graph G of fixed NLC-width k = |I|.
Output: Decision whether χ(G) ≤ ch, for a fixed ch.
begin

mark all nodes as unfinished
for all leaves Xl = i(v) store in Tabl the unique vector x:

x{i} = 1 and xJ = 0 for all J ̸= {i} and mark Xl as finished
while exists an unfinished node Xi with all children finished do

begin
case Xl of

— relabel node ρr with child Xm

then for every y ∈ Tabm store in Tabl the vector x:
xJ = ∑

J ′:r(J ′)=J yJ ′

— union node ⊕S with children Xm, Xm′

then for each choice of aK,K′ where K,K ′ ⊆ I,K ̸= ∅ ∨K ′ ̸= ∅:
such that ∑

K,K′ aK,K′ ≤ ch and aK,K′ = 0 whenever (K ×K ′) ∩ S ̸= ∅:
∀K ̸= ∅, K ⊆ I : yK := ∑

K′⊆I aK,K′

∀K ′ ̸= ∅, K ′ ⊆ I : y′
K′ := ∑

K⊆I aK,K′

∀J ̸= ∅, J ⊆ I : xJ := ∑
K∪K′=J aK,K′

if y ∈ Tabm and y′ ∈ Tabm′ then store x in Tabl

esac
mark Xl as finished

end;
answer ”YES” if Tabroot ̸= ∅ and ”NO” otherwise.

end.

This linear-time decision algorithm for fixed number of colors ch can be used for the case
when ch is a part of the input, or with a litle modification to the optimization algorithm.
Observe that the tables Tabi may contain at most (n+ 1)2k distinct entries, since we may
restrict ourselves to the case when ch ≤ n. For fixed k this yields a polynomial bound on
the sizes of the tables as well as on the time complexity. Note that the assumption that
ch is fixed is essential to express a ch-coloring in MSO1, so we get beyond the algorithmic
meta-theorem for graphs of bounded cliquewidth that is discussed in the next section.

We have already argued that the existence of a Hamiltonian cycle can be expressed by
MSO2 but not MSO1 formula. Hence this problem is not covered by Theorem 6.1.

We now give a hint that this problem is solvable in polynomial time on graphs of
bounded NLC-width [41]. The key ingredient is the description how a Hamiltonian cycle
of G intersects the subgraph of G corresponding to a node Xl of the expression tree.
The intersection is a collection of paths. Internal nodes of these paths do not affect further
compositions of the parts of the cycle together. Hence it suffices to record only information
about the ends of the paths in the intersection. In addition, vertices of the same labels are
treated equally in the further composition of the graph, so it suffices to record only pairs
of labels of the ends of the paths.
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Exercise 56: Provide details of the algorithm for Hamiltonian cycle in graphs of bounded
NLC-width, in particular how nodes of the expression tree are processed.
Exercise 57: For fixed d, design an algorithm that decides the existence of a d-regular
subgraph in a graph of bounded NLC-width.

6.2 Algorithmic metatheorem for bounded NLC-width
Theorem 6.1 (Courcelle, Makowsky and Rotics [11]). Let G be a class of graphs of NLC-
width bounded by k. Then every MSO1 formula Φ can be evaluated on every graph G ∈ G in
time 2..

.2
O(q(q+log k))

}
q+1|VG|, where q is the number of quantifiers of the formula Φ, provided

that the expression tree of G of width at most k is given.

Idea of the proof. We may use the same method as for the proof of Theorem 5.2. We
gradually build reduced evaluation tree F−

i for each node Xi of the expression tree E.
Each configuration associated to a leaf node consists of

• a graph G′ on at most qv vertices; this is a subgraph of Gi corresponding to the
the graph formed by the expression tree rooted Xl, in particular these vertices are
labeled,

• a partial surjective mapping between the individual variables and vertices of G′,

• a mapping between the set variables and subsets of VG′ .

The partial assignment is represented in F by use of external labels. Note that in
contrast with the former proof there are no internal labels.

We consider two configuration isomorphic if the the graph homomorphisms respects
also all three associated mappings: vertex labels and both variable assignments.

Since the the number of distinct configurations is bounded by 2(qv
2 )(qv +1)qv(2qv)qskqv =

2O(qv(q+log k)), the size of the reduced tree is bounded by 2..
.2

O(qv(q+log k))
}

q+1.
It remains to argue how the reduced evaluation tree F−

l is formed from such trees
associated with the children of Xl.

If Xl = i(v) is a leaf then Fl = F−
l is constructed directly. Observe that it is a full

binary tree — for each individual variable there are two choices (v or ext) as well as for
set variables ({v} or ∅).

If Xl = ρr(Xm) then we apply the relabeling on each configuration on a leaf of F−
m and

reduce the resulting tree immediately.
If Xl = ⊕S(Xm, Xm′) then we first construct an analogous product of trees F−

m and
F−

m′ . This product is reduced afterwards.
In the product two cases may appear for individual variables: the assignment of a

particular vertex may be combined with the external choice, or two external choices may
be combined together. For the set variables we simply perform the union of the associated
sets.
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Observe that the graph associated to any resulting configuration can be split in two
graphs: one corresponding to the configuration of F−

m , the other of F−
m′ . The edges between

these two parts are detemined by the relation S and the vertex labels.

6.3 Bounded neighborhood diversity
Definition. The neighborhood partition is the equivalence relation, where two vertices u
and v are in the same class if N(u) \ v = N(v) \ u

An equivalece class of a neghborhood partition is called a neighborhood class.
The neighborhood diversity nd(G) is the number of classes of the coarsest neighborhood

partition.

Observe that a graph G has neighborhood diversity bounded by k if its vertces can be
labeled by set I = {1, . . . , k}, such that is some pair of vertices are adjacent, then all pairs
with the same labels are adjacent as well.

A graph of bounded neighborhood diversity can be described upto an isomorphisms
by the sizes of each class of the neighborhood partition as a mapping I → N and by a
symmetric binary relation S on the set I.
Exercise 58: Relate the neighborhood diversity to the NLC-width.

Graphs of bounded neighborhood diversity are closed on taking distance powers. The
t-th distance power Gt of G is obtained from G by adding further edges between distinct
vertices that are in G at distance at most t.

Observation 6.2. For any t and any graph it holds that nd(Gt) ≤ nd(G).

As a corollary we obtain that the ch-coloring algorithm for graphs of bounded NLC-
width can be adapted straightforwardly to an ch-coloring algorithm for distance powers of
graphs of bounded neighborhood diversity.

This result can be indeed strenghtened. Todinca and Suchan showed that the NLC-
width can be bounded when taking distance powers [38]. In the same paper they also
provided as hoc coloring algorithm with better performance than the coloring algorithm
using the obtained bound on nlcw(Gt).

We now present an algorithmic metatheorem by Lampis who showed that MSO1 graph
properties can be decided on graphs of bounded neighborhood diversity in constant time,
where the constant is only doubly exponentional in the quantifier depth. Compare with
the tower function of the Theorem 5.2, specified in Observation 5.6.

Theorem 6.3 (Lampis [19]). Let G be a graph of bounded neighborhood diversity and Φ
be a MSO1 formula with qv individual and qs set variables. Then, given a neighborhood
partition of G with nd(G) classes, there exists an algorithm which can decide whether
G |= Φ in time 2O(2qs qvnd(G)+qv log qv).

The essential argument is that to G |= Φ if and only if its subgraph G′ |= Φ, where the
size each neighborhood class is at most 2qsqv.
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Proof. Consider that Φ is evaluated on on G. We construct the evaluation tree, F for
G. We call nodes of the evaluation tree configurations. At a level i, each configuration of
corresponds to the assignment Z = (Z1, . . . , Zi) of variables z1, . . . , zi.

Without loss of generality we may consider only nonisomorphic configurations. By
isomorphic configurations we mean those assignements Z for which G has an isomorphism
that set-wise fixes each Zk ∈ Z and also each neighborhood class. Hence we may view
Z as a refinement of the neighborhood partition, formally as a relation ∼Z on VG where
u ∼Z v if and only if (N(u) \ v = N(v) \ u) ∧ (∀Z ∈ Z : u ∈ Z ⇐⇒ v ∈ Z). Observe that
the nonisomorphic configurations Z can be described by the sizes of equivalence classes of
∼Z .

The equivalence classes of ∼Z are of two categories. Either it contains a vertex v chosen
for some individual variable zk, i.e. Zk = {u}. In this case u solely forms an equivalence
class of ∼Z . Alternatively, the class contains only vertices that have not been chosen by
any individual variables. Let’s call these free classes.

With a slight abuse of notation let Φ(Z) be the subformula of Φ where variables
z1, . . . , zi have fixed values Z = (Z1, . . . , Zi). We iteratively reduce the decision tree F
into F−, s.t. for each configuration (G,Z) of F we find a subgraph G′ of G and a reduced
configuration (G′,Z ′) satisfying that G |= Φ(Z) ⇐⇒ G′ |= Φ(Z ′).

If (G,Z) is a leaf of F , let Z ′ be the restriction of Z to the vertices chosen by individual
variables. In other words, ∼Z′ consists of the non-free classes of ∼Z . Let G′ be the
subgraph of G induced the vertices of ⋃ Z ′. As the vertices of the free classes of ∼Z does
not participate in any of the predicates of Φ, they do not affect validity of Φ(Z) (which
already became quantifier free). Hence G |= Φ(Z) ⇐⇒ G′ |= Φ(Z ′). We put the resulting
configuration (G′,Z ′) an independent vertex in the forest F−.

Consider a configuration (G,Z), where Z = (Z1, . . . , Zi−1). By induction assume that
(G,Z) is in F the parent of configurations (G,Z, Z1

i ), . . . , (G,Z, Zt
i ) where for each Zj

i , j ∈
{1, . . . , t} there exists a reduced configuration

(
Gj ′

,Zj ′
, Zj

i

′) where:

• Gj ′ is a subgraph of G,

• each set of the set system Zj ′ ∪ {Zj
i

′} is the restriction of the corresponding set from
Z ∪ {Z1

i } to VGj ′ , and

• the reduced configuration satisfies G |= Φ(Z, Zj
i ) ⇐⇒ Gj ′ |= Φ

(
Zj ′

, Zj
i

′).

We construct (G ′,Z ′) where each class C of ∼Z′ has size max{|Cj|, j ∈ {1, . . . , t}},
where Cj is the class corresponding to C in the partition ∼Zj ′ . As each Zj

k

′ ∈ Zj ′ is a
restriction of Zk ∈ Z to a subgraph Gj ′ of G, the sizes of classes of ∼Zj ′ are bounded
by the sizes of corresponding classes of ∼Z . Hence the resulting partition ∼Z′ has classes
bounded by the same upper bounds. Therefore Z ′ induces a subgraph G′ of G.

We make the resulting configuration (G′,Z ′) the common parent of configurations
(G,Z, Z1

i ), . . . , (G,Z, Zt
i ) in the forest F−. (For the purposes of further evaluation we

may keep only nonisomorphic children in F−.)
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Now, for any assignment Zi to zi, consider the configuration
(
Gj ′

,Zj ′
, Zj

i

′) correspond-
ing to (G,Z, Zi). By induction G |= Φ(Z, Zi) ⇐⇒ Gj ′ |= Φ

(
Zj ′

, Zj
i

′), By the con-
struction of G′ it holds that Gj ′ ⊆ G′ ⊆ G, and in particular Zj

k

′ = Z ′
k ∩ VGj ′ for all

k ∈ {1, . . . , i − 1}. Hence, we extend Z ′ by Zj
i

′ to conclude G |= Φ(Z, Zi) ⇐⇒ G′ |=
Φ

(
Z ′, Zj

i

′).
Since G′ ⊆ G, then for any choice of Z ′

i in G′ we get the configuration (G,Z, Z ′
i) and the

corresponding one (Gj ′
,Zj ′

, Zj
i

′). Since Zj
i

′ = Z ′
i ∩ VGj ′ we get that G′ |= Φ(Z ′, Zi

′) ⇐⇒
Gj ′ |= Φ

(
Zj ′

, Zj
i

′) ⇐⇒ G |= Φ(Z, Z ′
i).

The last two paragraphs show that G |= Φ(Z) ⇐⇒ G′ |= Φ(Z ′) — each children
of (G,Z) corresponds to an equivalently evaluated children of (G′,Z ′) and vice versa.
Consequently, F− can be evaluated instead of F to decide whether G |= Φ.

It remains to calculate the sizes of the graphs in the configurations of F−. As each
class of ∼Z containing an individual variable is of size one, we focus on free classes only.

We claim: If the formula Φ(Z) contains qi
v individual and qi

s set quantifiers, then for
each reduced configuration (G′,Z ′) each free class of ∼Z′ contains at most 2qi

sqi
v vertices.

The statement is true on leaves of F−, where qq
v = 0 and all free classes are empty in

each such G′.
Consider a free class C of ∼Z′ . For any Z ′

i, the class C is the union of two classes
C ∩ Z ′

i and C \ Z ′
i of ∼Z′∪{Z′

i}. When zi is a set veriable, then |C| = |C ∩ Z ′
i| + |C \ Z ′

i| ≤
2 · 2qi+1

s qi+1
v = 2qi

sqi
v as qi

v = qi+1
v and qi

s = qi+1
s − 1. When zi is an individual variable, then

C ∩ Z ′
i has at most one vertex. Analogously, |C| ≤ |C \ Z ′

i| + 1 ≤ 2qi+1
s qi+1

v + 1 ≤ 2qi
sqi

v as
qi

v = qi+1
v − 1 and qi

s = qi+1
s ≥ 0.

The root of the tree F− is the configuration (G′, ∅). As all classes of ∼∅ are free, and
since ∼∅ coincides with the neighborhood partition of G, we get that |VG′| ≤ 2qsqvnd(G).

If G′ has n vertices then the straightforward brute-force algorithm evaluates whether
G′ |= Φ in time O((2n)qsnqv |Φ|). The combination of the two bounds concludes the proof.

6.4 Bounded vertex cover
An even tighter measure of a graph than the pathwidth or neighborhood diversity is the
notion of vertex cover:

Definition. A vertex cover of a graph is a set of vertices W ⊆ VG such that every edge is
incident with at least one vertex of W . The minimum size of a vertex cover is denoted by
vc(G)

Exercise 59: Relate the size of the minimum vertex cover to the pathwidth and to the
neighborhood diversity.

From the computational complexity point of view it makes sense to study on the class
of graphs of bounded vertex cover those problems that are known to be difficult on graphs
of bounded treewidth or pathwidth.
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An example of such problem is L(2, 1)-Labeling of a graph. Here the task is to decide
whether vertices of a given graph G can be labeled by integers from a given interval, such
that labels of adjacent vertices differ by at least two, while vertices with a common neighbor
should have labels that differ by at least one. The L(2, 1)-Labeling problem is known to
be NP-complete on series-parallel graphs [14].

We show that an analogous problem of L(1, 1)-Labeling, equivalent to the problem
of coloring the second power of a graph, can be solved in polynomial time for graphs of
bounded vertex cover [15]. We will comment later how this approach can be extended
to L(2, 1)-labeling. Observe also that the algorithm has better running time than the
coloring algorithm for powers of graphs of bounded neighborhood diversity mentioned in
th eprevious section.

The instance is formed both from the graph G as well as from the bound on the number
of colors ch. When ch is fixed, then the problem can be expressed by MSO1, and hence
could be decided in linear time on graphs of bounded treewidth.

Assume that a graphG has a vertex coverW = {v1, . . . , vk}. We partition the remaining
vertices into sets I{1}, I{2}, . . . , I{k}, I{1,2}, . . . , I{1,...,k}, such that the sets are given as IJ :=
{u : (u, vi) ∈ EG ⇔ i ∈ J}. Without loss of generality we assume that G is connected,
hence every vertex outside W belongs to a unique set IJ .

Observe that in any coloring of G2, vertices of the same set IJ must be given different
colors. On the other hand, the colors inside any set IJ can be permuted arbitrarily, since
all vertices in IJ have the same neighborhood in W .

We say that a color C ⊆ VG appears on K ⊆ P({1, . . . , k}) \ ∅ the sets IJ contain a
vertex colored by C if and only if J ∈ K.

Observe that no color can be used on a K containing two index sets J, J ′ with an
nonempty intersection, since vertices from IJ and IJ ′ are at distance two in G.

The core task of the algorithm will be to determine values of variables xK that describe
the desired coloring in the following way: xK is the number of color classes that appear on
K.
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G2-Colorability
Input: A graph G with vertex cover W of fixed size k, an integer ch.
Output: Decision whether χ(G2) ≤ ch.
begin

if ck ≤ k then use MSO1
determine all sets IJ , J ∈ P({1, . . . , k}) \ ∅
for every partial k-coloring c of G2 where whole W is colored do

begin
for every K ⊆ P({1, . . . , k}) \ ∅ determine aK

to be the number of color classes of c used on K
solve the following system of inequalities in integer variables xK∑

K xK ≤ ch
∀K : xK ≥ aK

∀J ∈ P({1, . . . , k}) \ ∅ : ∑
K:J∈K xK = |IJ |

∀K s.t. ∃J, J ′ ∈ K : J ∩ J ′ ̸= ∅ : xK = 0.
if the system has a solution then answer ”YES” and exit

end
answer ”NO”

end.

The correctness of the algorithm follows from two facts: If G2 allows an coloring c′,
then we can permute colors s.t. the first k colors are used on W . Then for c being the
first k colors of c′ the system of inequalities has a feasible solution with xK describing how
many color classes of c′ are used on K.

In the opposite way, the remaining ch − k color classes are uniquely described by the
solution of the system of inequalities. For every K we take xK −aK new color classes, each
containing a unique vertex from each set IJ where J ∈ K. This provides a valid coloring
of G2. The first inequality yields that the total number of colors is at most ch, the second
that it is a valid extension of c, the third that all vertices are colored, and the last condition
is necessary and sufficient to get a valid coloring of G2.

The time complexity is determined by three factors. Firstly, the partition into sets
IJ needs kn time, then the number of colorings c which is O(nk+1) Secondly, as the time
needed to solve the system of inequalities with p integer variables is O(p2.5p+o(p)L), where
L is the number of bits needed to encode the input. The first result in this direction
was shown by Lenstra in 1983 and later improved several times [22, 1]. As we have 22k−1

variables, the time needed to resolve the system of inequalities is O(kn+ 222k+1
log n).

The above algorithm can be extended to L(p, 1)-labelings for p ≥ 2 due to the following
claim: It possible to assume without loss of generality that labels used on the set W can be
shifted to the first 2pk or the last 2pk labels. Hence, we shall try all such labelings of the
set W , and test its possible extension to sets IJ by an analogous system of inequalities.

58



Statements:

command

command

statement

if condition

end-if

then

else statement

statement

loop

statement

end-loop

exit

end-program

program

statement

Figure 25: Program constructs and control flow diagrams.

7 Other applications of treewidth

7.1 Treewidth of flow control graphs and register allocation
As a practical application of the notion of treewidth we reproduce here a result on flow
control graphs and register allocation [40].

Consider a simple programming language with if – then – else – end-if and loop –
exit – end-loop constructs.

Roughly speaking, the control flow graph models the possible order of processing state-
ments, i.e. those statements which might be processed contiguously are joined by a (di-
rected) edge. For our purposes we assume that the program constructs and segments of
the corresponding control flow graph are defined by the diagrams depicted in Fig. 25.

It is not hard to see that without the keyword exit the control flow graph of any
program in our language is a series-parallel graph, hence of treewidth 2. The keyword
exit deserves further explanation: It may appear within any statement inside the loop –
end-loop cycle in a position of a command. In fact more exits may appear there, but each
passes the computation to the closest subsequent end-loop, as indicated in the figure.
Exercise 60: Prove that if on the program the keyword exit appears at most once, then
the treewidth of the control flow graph is at most three.

In fact a stronger statement holds.

Proposition 7.1. The treewidth of the control flow graph for any program written in our
simple language is bounded by 3.

Exercise 61: Prove Proposition 7.1.
For widely used structured programming languages, the following result was obtained

in [40]:
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Figure 26: From control flow graph to tree decomposition.

Theorem 7.2. The treewidth of control flow graphs is bounded by 2 for goto-free Algol
and Pascal, by 4 for Modula-2 and by 5 for goto-free C programs.

The importance of these control flow graphs and their treewidth is closely related to the
register allocation problem. Observe that every variable that might appear in our program
will be used within connected part of the the control flow graph. Each variable has to
be assigned a register, and no two variables may share the same register. Hence we may
define the intersection graph with variables as vertices. Two vertices form an edge, if they
are in use at the same time, i.e., if the two parts of the control flow graphs corresponding
to use of these two variables intersect. Then, the minimum number of registers needed
for execution of the program is equal to the chromatic number of the intersection graph.
Straightforwardly, any proper vertex coloring corresponds to a feasible register assignment
to variables.

Observe that the fact that the control flow graph has bounded treewidth does not imply
the same for the intersection graph. However, unlike general graph coloring problem that
is hard to approximate (and decide for a fixed number of colors), under this assumption
there were designed fast approximate algorithms for arbitrary number of registers [40] or
linear-time exact (decision) algorithms for fixed number of registers [7].
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