
Three Results on Frequency Assignment

in Linear Cellular Networks

Marek Chrobak∗ Jǐŕı Sgall†

Abstract

In the frequency assignment problem we are given a graph representing a wireless network
and a sequence of requests, where each request is associated with a vertex. Each request has
two more attributes: its arrival and departure times, and it is considered active from the time
of arrival to the time of departure. We want to assign frequencies to all requests so that at each
time step any two active requests associated with the same or adjacent vertices use different
frequencies. The objective is to minimize the number of frequencies used.

We focus exclusively on the special case of the problem when the underlying graph is a linear
network (path). For this case, we consider both the offline and online versions of the problem,
and we present three results. First, in the incremental online case, where the requests arrive
over time, but never depart, we give an algorithm with an optimal (asymptotic) competitive
ratio 4

3 . Second, in the general online case, where the requests arrive and depart over time, we
improve the current lower bound on the (asymptotic) competitive ratio to 11

7 . Third, we prove
that the offline version of this problem is NP-complete.

1 Introduction

The frequency assignment problem. In a wireless network, the coverage area is divided
into cells, with each cell covered by a transmitter. Each user within a given cell is assigned a
unique frequency for communicating with the transmitter. In order to avoid interferences, it is also
necessary to ensure that any pair of adjoining cells uses different sets of frequencies. The set of
available frequencies is a limited resource; thus the frequency assignment policy needs to attempt
to minimize the total number of assigned frequencies.

In the static setting, where the set of users in each cell is fixed, we can model this problem as
a variation of graph coloring, in which the network is represented by an undirected graph G whose
vertices represent the cells and edges connect adjacent cells. We are given an integer demand
wv ≥ 0 (the number of users in cell v) for each vertex v. We wish to assign a set Cv of wv colors
to each vertex v, such that Cu ∩ Cv = ∅ for all adjacent vertices u, v. The objective is to find such
a color assignment that minimizes the total number of colors used.

It is natural to consider graphs G with a regular structure. For example, in the literature it is
commonly assumed that the cells are regular hexagons in the plane, in which case G is a triangular

∗Department of Computer Science, University of California, Riverside, CA 92521, USA. Research supported by
NSF Grant CCF-0729071.

†Dept. of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25,
CZ-11800 Praha 1, Czech Republic. Email: sgall@kam.mff.cuni.cz. Partially supported by Inst. for Theor. Comp.
Sci., Prague (project 1M0545 of MŠMT ČR) and grant IAA100190902 of GA AV ČR.

1

grid graph (see, for example, [6, 9, 2, 4], or the surveys in [8, 1]). As shown by McDiarmid and
Reed [6] the static frequency assignment problem for such graphs is NP-hard. They also gave a
polynomial-time 4

3 -approximation algorithm for this version. Another 4
3 -approximation algorithm

was designed independently by Narayanan and Shende [9].

Dynamic setting. Of course, in practice, the set of users in each cell is dynamic, as the users
arrive and leave over time. Thus it is natural to study the frequency assignment in the dynamic
setting. Here, each frequency request (user) has three attributes: a vertex v where the request
is issued, the arrival time and the departure time. The request is active between its arrival and
departure times. We need to assign frequencies to all requests in such a way that at each time step,
frequencies assigned to active requests at the same or adjacent vertices are different. The objective
is to minimize the total number of frequencies used.

Online algorithms. For the dynamic setting described above, online algorithms are of particular
significance, since in realistic applications users’ arrivals and departures are unknown and unpre-
dictable. In the online scenario, the arrival and departure events come over time, and the online
algorithm has to react immediately; once a frequency is assigned to a request, it cannot be changed.

For an online frequency assignment algorithm A, let A(I) be the number of frequencies used by
A on an instance I, and let opt(I) be the minimum number of frequencies required for I. We define
A to be R-competitive, if there exists a constant B independent of I such that A(I) ≤ R ·opt(I)+B.
When B = 0, we say that the ratio R is absolute; otherwise, if we need to distinguish the cases, we
say that the ratio R is asymptotic. In this paper, we study the asymptotic competitive ratio.

In the incremental version of this problem, it is assumed that requests, once issued, last forever.
This version corresponds to the static version of the offline problem, and it has been intensely
studied. Chan et al. [2] derive some bounds on the asymptotic competitive ratio for hexagonal-cell
graphs, proving that the optimal ratio is between 1.5 and 1.9126. For the absolute ratio, they give
a tight bound of 2. More generally, for ξ-colorable graphs, they show an upper bound of (ξ + 1)/2.

Again, special classes of graphs can be studied. One natural and simple case, and the focus of
our study, is that of a linear network (path), where the vertices are represented by integer points on
the real line and two vertices are adjacent if they are at distance 1. For this case, it is known that
the asymptotic competitive ratio is between 4

3 ≈ 1.333 and 1
2(5 −

√
5) ≈ 1.382, while the optimal

absolute ratio is equal to 1.5, see [3].

In the general version of the online problem departures are allowed, as in the dynamic version
of the offline problem. For the problem on the path, Chan et al. [3] proved that the asymptotic
competitive ratio is between 14

9 ≈ 1.556 and 5
3 ≈ 1.667, while the absolute competitive ratio is 1.5.

Both upper bounds are achieved by a simple greedy strategy which always assigns the smallest
frequency that can be used at that time.

Our contribution. We first consider the incremental case of the online problem on the path. We
give an online algorithm with the asymptotic competitive ratio equal 4

3 , thus matching the lower
bound and improving the upper bound of 1.382, both given in [3]. The idea of our algorithm is to
spread the requests at each vertex evenly between four mutually overlapping sets of vertices, such
that within each set we can allocate frequencies optimally with respect to this set. As each vertex
belongs to three sets, the ratio 4

3 will follow. The algorithm is very simple and 1-local, in the sense

2

that the choice of each allocated frequency depends only on the frequencies used currently at the
given vertex and its neighbors [4].

Next, we consider the general online case, where departures are allowed. For this case we prove
a lower bound of 11

7 ≈ 1.571, improving the currently best bound of 14
9 ≈ 1.556 in [3]. Table 1

summarizes the known bounds for online algorithms for the path.

Case incremental with departures
Ratio absolute asymptotic absolute asymptotic
lower bound 1.5 4/3 ≈ 1.333 5/3 ≈ 1.667 11/7 ≈ 1.571
upper bound 1.5 4/3 ≈ 1.333 5/3 ≈ 1.667 5/3 ≈ 1.667

Table 1: Competitive ratios for the case of a path. Bounds from this paper are in boldface; all
other bounds are from [3].

In the incremental case (on the path), it is easy to determine the value of the optimum: It is
simply equal to the maximum number of frequencies on two adjacent vertices. This turns out to
be false when departures are allowed. Our third result is that computing this optimum is NP-hard.
This proof uses a reduction from 3-coloring of planar graphs, and it shows that even deciding if
three frequencies are sufficient is hard. Thus also achieving a better absolute approximation ratio
than 4

3 is NP-hard. This result complements the NP-hardness result in [6] and the offline upper
bounds in [6, 9]. It also indicates that establishing the optimal competitive ratio for this case is
likely to be more challenging, since it implies that there is probably no simple way to keep track of
the optimum solution.

Broader context. The linear topology is of course of only limited practical significance. In fact,
even the common model of hexagonal cells is only a convenient approximation; in reality the cells
have rather complex geometrical shapes (see [7], for example). Nevertheless, further progress on
more complex topologies is not likely without a complete understanding of frequency allocation in
linear networks.

It is also worth pointing out at this point that the frequency allocation model we study is only
one of many; in fact the frequency allocation problem in various scenarios has been studied since
1960’s. We refer the reader to the surveys by Murthy et al. [8] and Aardal et al. [1] and book by
Mishra [7] for information on other variants of frequency allocation.

2 Preliminaries

We identify vertices of the path with integers, v = . . . ,−2,−1, 0, 1, Frequencies are denoted by
positive integers. At each step, a request can be issued at some vertex v. We then need to assign a
frequency to this request that is different from all frequencies already assigned to the active requests
at vertices v − 1, v and v + 1. The objective is to minimize the number of frequencies used at the
same time.

For each vertex v, let Lv be the (dynamic) set of frequencies assigned to v by the algorithm and
`v = |Lv|. Thus `v is simply the number of active requests at v at a given time. A frequency f is
called admissible for v if f /∈ Lv−1 ∪ Lv ∪ Lv+1.

3

To estimate the performance of an algorithm, we measure the number of frequencies used. This
is equivalent to measuring the maximum used frequency, as is done in some literature [3, 4, 4].
Clearly, the number of frequencies cannot exceed the maximum frequency. On the other hand, any
algorithm can be modified to use only consecutive integers. This is trivial in the incremental case,
as we can simply renumber the frequencies in the order in which they appear. Similarly, in the
general case, if the online algorithm is about to use a frequency f not used by any active request
at this time, we change it to use the lowest unused frequency f ′, and fix the mapping f 7→ f ′ for
as long as there are some active requests with frequency f .

The optimum. As observed in [3], in the static case the optimum number of frequencies is

ω = max
v

{`v + `v+1}. (1)

Indeed, the “≥” bound is trivial. To see that the “≤” bound holds, we can assign frequencies
to vertices as follows: If v is even, assign to it frequencies 1, 2, . . . , `v, and if v is odd, assign to
it frequencies ω, ω − 1, . . . , ω − `v + 1. Then no two adjacent vertices will be assigned the same
frequency.

Clearly, the optimum number of frequencies in the online incremental case is the same as the
optimum for the static instance consisting of all requests from the online instance. Thus the formula
(1) applies to the online incremental case as well, where `v is understood to be the number of all
requests to v.

3 An Upper Bound for the Incremental Online Case

Algorithm FourBuckets. We partition all available frequencies 1, 2, 3, . . . into four disjoint infinite
buckets denoted Bσ, for σ = 0, 1, 2, 3. The frequencies in bucket Bσ are denoted 1σ, 2σ, . . ., and
are assumed to be ordered in this way, with 1σ being the lowest one. How the partition into
buckets is defined is not important. For example, one such partition can be achieved by defining
xσ = σ + 4x − 3, for each integer x ≥ 1. For any vertex v and σ ∈ {0, 1, 2, 3}, we say that σ is
associated with v if σ 6≡ v (mod 4). Thus each vertex has three out of four buckets associated with
it.

Suppose that a request is issued at a vertex v. Choose any σ ∈ {0, 1, 2, 3} associated with v
that minimizes |Lv ∩ Bσ|, and assign to this request the lowest frequency fσ from Bσ admissible
at v.

Analysis. The general idea is this: By the assignment of buckets to vertices, each bucket is
associated with groups of exactly three consecutive vertices on the path. In each bucket, the
algorithm is equivalent to the greedy algorithm, which is optimal for paths of three vertices. At
each vertex, the algorithm spreads the requests evenly among the three buckets associated with
this vertex, so each bucket gets about one third of all requests at each vertex. This implies that the
number of frequencies used by the algorithm in each bucket is about 1

3 of the optimum. Multiplying
by the number of buckets, we conclude that the competitive ratio is 4

3 .
Now we give a formal argument. Let Lσ,v = |Lv ∩Bσ| be the set of frequencies in Bσ assigned

to requests at a vertex v, and `σ,v = |Lσ,v| be the cardinality of Lσ,v. For any subset X ⊆ Bσ,
we use notation maxσ(X) for the maximum integer h such that hσ ∈ X; for the empty set we put

4

maxσ(∅) = 0. The following lemma subsumes the proof that the greedy algorithm is optimal for
paths of three vertices.

Lemma 1. For each σ and v, maxσ(Lσ,v) ≤ `σ,v + max {`σ,v−1, `σ,v+1}.

Proof. Without loss of generality, we can assume that σ = 0 and v ∈ {0, 1, 2, 3}.
For v = 0, since σ is not associated with v, we have L0,0 = ∅, so max0(L0,0) = 0, and the lemma

holds trivially.
Suppose v = 1, and let h = max0(L0,1). By the algorithm, each frequency 10, . . . , h0 is either in

L0,1 or L0,2, as otherwise the algorithm would not use h0. Of course, no frequency is in both sets.
So h ≤ `0,1 + `0,2.

The case v = 3 is symmetric to the previous one.
Finally, consider the case v = 2, and let h = max0(L0,2). Let g = max0(L0,1 ∪ L0,3); by

symmetry, we can assume g = max0(L0,1). Like in the previous case, each frequency 10, . . . , g0 is
in either L0,1 or L0,2, but not in both. Thus, for h ≤ g, this implies that h ≤ `0,1 + `0,2. So assume
h > g. When h0 is assigned, each frequency g0 + 1, . . . , h0 is in L0,1 ∪ L0,2 ∪ L0,3, as otherwise we
would not use h0. However, by the definition of g, none of these frequencies is in L0,1 ∪ L0,3, thus
all of them are in L0,2. Therefore h ≤ `0,1 + `0,2 again.

Theorem 2. Algorithm FourBuckets is asymptotically 4
3 -competitive for the incremental frequency

assignment on a path.

Proof. Consider any vertex v and any σ. By the algorithm, if σ is not associated with v then
`σ,v = 0. On the other hand, if σ and σ′ are associated with v then `σ,v ≤ `σ′,v + 1. This implies
that for each σ associated with v we have `σ,v ≤ d`v/3e ≤ 1

3(`v + 2). Therefore, using Lemma 1,
we get

maxσ(Lσ,v) ≤ `σ,v + max {`σ,v−1, `σ,v+1}
≤ 1

3(`v + 2) + 1
3 max {`v−1 + 2, `v+1 + 2}

≤ 1
3 [`v + max {`v−1, `v+1}+ 4]

≤ 1
3(ω + 4).

Thus |Bσ| = maxv maxσ(Lσ,v) ≤ 1
3(ω + 4) as well, and we can conclude that the total number of

frequencies used in all four buckets is at most 4
3(ω + 4).

The additive constant in the analysis above has not been optimized and it can be improved by
considering cases depending on the residue of `v modulo 4. We leave this as an exercise for the
reader.

4 A Lower Bound for the General Online Case

To obtain an improved lower bound, we modify the idea from [3, Section 4.2], which we first describe
informally.

Suppose that we start with k requests on vertices 0 and 2 each. Next, if the total number of
frequencies does not exceed 3

2k, we can remove 1
2k appropriate requests from each of these vertices

so that the online algorithm uses k distinct frequencies in total for the remaining requests. Then

5

we issue 1
2k requests on vertex 1. The online algorithm will use 3

2k frequencies, while the optimum
is k. This gives us a lower bound of 3

2 .
The first observation, explored in [3], is that if initially the two k-tuples of requests use slightly

distinct sets of frequencies, then the idea above can be refined to give a better lower bound; this is
described below in Procedure FinishOff.

Furthermore, if we start with two k-tuples of requests on vertices 0 and 2, we can use the key
ingredient from [3] (see Procedure Expand below) to create two k-tuples of requests at distance
2 apart that are served by two sets of frequencies that differ more than the initial two sets. To
this end, issue k requests on vertex 5. If many new frequencies are used, we are done. Otherwise,
we can remove some requests from 0 and 2 and then add k requests at 1 so that they use many
frequencies distinct from these at 5. Now, remove all requests from 0 and 2. The last trick is to
issue k requests at 3, and these must use at least half as many distinct frequencies either from the
requests at 1 or from the requests at 5. Remove all requests either from 5 or 1, whichever vertex
has more frequencies in common with vertex 3. As it turns out, we end up with two vertices, each
having k active request, whose frequency sets differ by more than the two initial frequency sets on
vertices 0 and 2.

In [3], the 14
9 ≈ 1.556 lower bound is obtained by running first Procedure Expand followed by

Procedure FinishOff. We improve the bound by iterating Procedure FinishOff. A somewhat
careful argument is needed to show that the overall optimum is still k. Optimizing the parameters,
we get the lower bound of 11

7 ≈ 1.571.

Theorem 3. No deterministic online algorithm for general online frequency assignment on a path
with 8 vertices has competitive ratio smaller than 11

7 ≈ 1.571.

Proof. Let R = 11
7 be our target competitive ratio. Let ρ > 0 be small and k be a sufficiently large

positive integer. We give an adversary strategy which, for a given online algorithm A, generates a
sequence on which A uses at least (R− ρ)k frequencies while the optimum is k. By taking ρ small
and k large, we obtain the desired lower bound.

We first describe the overall adversary strategy and the two procedures FinishOff and Expand.
Then we verify that the optimum is k.

At the beginning, the adversary simply issues k requests at vertex 0 and k requests at vertex 2.
The rest of the adversary strategy is divided into phases. The invariant at the beginning of each
phase is that there are two vertices v and v +2 with |Lv| = |Lv+2| = k, and that there are no other
active requests. In each phase, the adversary proceeds as follows. Let s and δ be such that the
online algorithm now uses |Lv ∪Lv+2| = s = (1 + δ)k frequencies. If δ ≥ 1

7 − ρ, then the adversary
completes the sequence by executing Procedure FinishOff. Otherwise, it uses Procedure Expand;
this either completes a sequence or ends in a configuration with k requests on each of two vertices
u and u + 2, for some u, in which case we continue with the next phase.

Procedure FinishOff: Let U be the dk − 1
2se lowest frequencies in Lv ∩Lv+2 and let U ′ be the

dk − 1
2se highest frequencies in Lv ∩ Lv+2. The adversary removes the requests using frequencies

U from v and the requests using frequencies U ′ from v + 2. Next, he makes dk − 1
2se requests on

v +1. These requests will have to be assigned frequencies other than those left at v and v +2. The
remaining frequencies at v and v + 2 are distinct, with b1

2sc frequencies at each vertex. Thus the
current total number of frequencies used is at least k + b1

2sc ≥ 1
2(3+ δ)k−1. Note that if δ ≥ 1

7 −ρ
then the number of frequencies is at least (11

7 − 1
2ρ)k − 1 ≥ (R− ρ)k, for a sufficiently large k.

6

Procedure Expand: Since the path has eight vertices, it must contain either vertex v + 5 or
v − 3. Without loss of generality we suppose that it contains v + 5; the other case is symmetric.

Issue k requests on v+5. If |Lv∪Lv+2∪Lv+5| ≥ Rk, we stop the input sequence. In the remaining
case we have |Lv ∪ Lv+2 ∪ Lv+5| ≤ Rk. This implies two things. First, denoting r = (2 + δ −R)k,
we get

|(Lv ∪ Lv+2) ∩ Lv+5| = |(Lv ∪ Lv+2)|+ |Lv+5| − |Lv ∪ Lv+2 ∪ Lv+5|
≥ (1 + δ)k + k −Rk = r.

Second, for each u ∈ {v, v + 2}, we obtain

|Lu ∩ Lv+5| = |Lu|+ |Lv+5| − |Lu ∪ Lv+5|
≥ |Lu|+ |Lv+5| − |Lv ∪ Lv+2 ∪ Lv+5|
≥ (2−R)k ≥ 1

2r,

where the last inequality uses the fact that δ < 1
7 whenever we use Expand. Therefore there are

sets U ⊆ Lv ∩ Lv+5 and U ′ ⊆ Lv+2 ∩ Lv+5 such that U ∩ U ′ = ∅ and |U | = |U ′| = b1
2rc. Remove

from v all the requests that do not use frequencies in U and from v + 2 all the requests that do
not use frequencies in U ′. Then issue k − b1

2rc requests on v + 1. These requests will have to be
allocated frequencies that are not in U ∪ U ′, while those in U ∪ U ′ ⊆ Lv+5 are still used at v + 5.
Thus at this point we have |Lv+1 − Lv+5| ≥ b1

2rc. Then delete all the remaining requests from v
and v + 2 and issue b1

2rc more requests on v + 1. As a result, we have |Lv+1| = |Lv+5| = k and
|Lv+1 ∪ Lv+5| = k + z, for z ≥ b1

2rc.
Next, the adversary makes k requests on v+3. Then we have max{|Lv+1∪Lv+3|, |Lv+3∪Lv+5|} ≥

k + 1
2z, so, without loss of generality, we can assume that |Lv+1 ∪ Lv+3| ≥ k + 1

2z. Finally, the
adversary removes all requests from Lv+5. Note that at this time we have |Lv+1| = |Lv+3| = k,
|Lv+1 ∪ Lv+3| ≥ k + 1

2z ≥ (3
2 + 1

4δ − 1
4R)k − 1, and that no vertex other than v + 1, v + 3 has any

active requests. This completes the description of Procedure Expand.
To finish the description of the adversary strategy, we need to show that it will terminate after

finitely many phases. Suppose that we have a phase that is not a final one. Thus this phase starts
with δ = 1

7 − ρ − ε for some ε > 0 and uses Expand. At the end, the number of used frequencies
is at least

(3
2 + 1

4(1
7 − ρ− ε)− 1

4R)k − 1 = (1 + 1
7 −

1
4(ρ + ε))k − 1

≥ (1 + δ′)k,

for δ′ = δ + 1
2ρ and sufficiently large k (independent of ε). Thus, for any ρ > 0 and a sufficiently

large k, after a fixed number of phases, δ increases above 1
7 − ρ, at which point the adversary uses

FinishOff and completes the sequence.
The description of the strategy shows that at the end algorithm A uses at least (R − ρ)k

frequencies.

To finish the proof, it remains to show that the optimum number of frequencies is k. Given
the instance produced by the adversary strategy, we will maintain an offline solution (that is, a
dynamic frequency assignment). In addition to using only given k frequencies, this offline frequency
assignment will maintain the following invariant:

7

(∗) Let U and U ′ be the sets of frequencies (used by A) from the description of the procedure
FinishOff or Expand in the current phase. Consider the corresponding sets of requests, i.e.,
the requests at v using frequencies U and the requests at v + 2 using frequencies U ′. Then
these two sets of requests use the same set of frequencies.

At the beginning of the first phase, after the first 2k requests, we can guarantee the invariant
while using only k frequencies total, since we can assign the frequencies arbitrarily. Next, we check
that for both FinishOff and Expand we can serve the sequence with k frequencies and maintain
the invariant.

In FinishOff, after removing the requests corresponding to U and U ′, the same frequencies
are used at v and v + 2, by invariant (∗). So we have enough admissible frequencies for the new
requests at v + 1 (among the k original frequencies). This is the last phase, so there is no invariant
to be maintained.

In Expand, first we assign the requests at v +5 the same k frequencies as at v and v +2. If the
sequence does not stop now, then, by invariant (∗), after removing the requests not corresponding
to U and U ′, the same frequencies are used at v and v+2. So we have enough admissible frequencies
for the first batch of requests at v +1. Next we remove the remaining requests at v and v +2, thus
we have admissible frequencies for the remaining requests at v + 1. Finally, for the k requests at
v +3, we may assign the k frequencies arbitrarily. In particular, we can guarantee the invariant for
the next phase.

Thus the optimum uses only k frequencies and the competitive ratio is at least R = 11
7 , com-

pleting the proof of the lower bound.

We remark that the value R = 11
7 , as well as the choice of the breakpoint δ = 1

7 , is optimal for
the strategy described in the proof.

5 NP-Completeness

As we have seen, computing the optimum in the incremental version is easy. Now we show that
this is not the case once we allow dynamic requests.

Let FAPP stand for the decision version of the frequency allocation problem for the path: “Given
a sequence of requests and an integer k, determine whether these requests can be served with at
most k frequencies”.

Theorem 4. The problem FAPP is NP-complete, even for any fixed k ≥ 3.

Proof. We reduce the 3-coloring problem for planar graphs (3CPG) to FAPP. Suppose that G is a
planar graph. We construct a sequence I of requests such that I can be served with 3 frequencies
if and only if G has a 3-coloring.

Using the result of [5], we can embed G in a plane so that (i) each vertex is represented by a
vertical line segment, and (ii) each edge (u, v) is represented by a horizontal line segment whose
endpoints connect the vertical segments representing u and v, without intersecting any other vertical
segments. (See Figure 1.) This embedding can also be obtained from visibility representations of
planar graphs (see, for example, [10, 11]). We align all segments so that coordinates of all their
endpoints are integral and multiples of 6.

Now we construct an instance I of FAPP. The x-axis of the plane will correspond to the path
and the y-axis will represent time. It is convenient to think of requests in I as vertical intervals in

8

a b

c

d f

e

a b
c

d f

e

Figure 1: A graph and its embedding.

the plane. We will denote each such interval by (x, y′, y′′), where x′ is its x-coordinate and y′, y′′

the bottom and top y-coordinates. As a request, it is a request at vertex x (of the path) arriving
at time y′ and departing at time y′′.

For each vertex in G represented by a vertical segment (x, y′, y′′), the instance contains the
request (x, y′, y′′). For each edge represented by a segment from (x′, y) to (x′′, y), where x′′ > x′,
we build a gadget consisting of a number of requests. Note that x′′ − x′ is even and at least 6, by
our assumptions. We add two requests (x′+1, y+4, y+5), one request (x′+2, y+2, y+5), and two
requests (x′+2, y, y+3). Furthermore we will add requests (x′+i, y, y+1) for any i, 2 < i < x′′−x′;
we add one such request if i is odd and two such requests if i is even. By the construction and
alignment of the segments, the requests from different edge gadgets do not interfere. (See Figure 2.)

y

y+2

y+3

y+4

y+5

y+1

x'

Figure 2: An edge gadget.

The edge gadget guarantees that the assignment of frequencies to (the requests corresponding
to) its endpoints can be extended to an assignment of frequencies to the request in the edge gadget
using only three frequencies in total if and only if the two vertex colors are distinct. Consider again
an edge represented by a segment from (x′, y) to (x′′, y), for x′′ > x′. Suppose that the request

9

containing point (x′, y) (i.e., the first endpoint of an edge) is assigned frequency f . We show that
if only three frequencies f, f ′, f ′′ are used, the assignment is essentially unique. The two requests
(x′ + 1, y + 4, y + 5) must use f ′ and f ′′. Now the request (x′ + 2, y + 3, y + 5) must use f , and the
two requests (x′ +2, y, y +3) must use f ′ and f ′′. We continue by induction to show that for i odd,
(x′ + i, y, y +1) uses f and, for i even, the two requests (x′ + i, y, y +1) use f ′ and f ′′. This implies
that (x′′ − 1, y, y + 1) uses f . Overall, the assignment is valid if and only if the request containing
(x′′, y) is not colored by f .

This implies that G is 3-colorable if and only if the instance I of FAPP has a frequency allocation
with only 3 frequencies.

The extension to k ≥ 4 is easy. We use the same construction as for k = 3, with some additional
requests. We will produce an instance I ′ of FAPP that contains all requests from the previously
described instance I. To describe the new requests, let x̄ and ȳ be, respectively, the largest x- and
y-coordinate used in I (with the minimum coordinates assumed to be 0). For all x = 0, . . . , x̄, if x
is even, we add three requests (x, ȳ +1, ȳ +2), and if x is odd we add k−3 requests (x, 0, ȳ +2). As
a result, in every allocation of k frequencies to I ′, all requests (x, 0, ȳ + 2) will use the same set of
k−3 frequencies, say 4, 5, . . . , k. Consequently, the requests in I will be assigned frequencies 1, 2, 3.
By the same argument as before, we obtain that G is 3-colorable if and only if I ′ has a frequency
allocation with only k frequencies.

We point out that Theorem 4 is not comparable to the NP-hardness result in [6], as our result
applies to the dynamic case and linear networks, while the result in [6] applies to the static case
for hexagonal cells. (The reductions are significantly different as well.)

6 Final Comments

The most outstanding open problem is to establish the optimal asymptotic competitive ratio for
the dynamic case (with expirations) on the path. The current gap is between 11

7 and 5
3 .

We would like to point out that the idea of Algorithm FourBuckets can be generalized as follows.
Suppose that G has p induced subgraphs G1, . . . , Gp with the following properties: (1) Each vertex
of G belongs to exactly q subgraphs Gi, (2) Each subgraph Gi does not contain a 4-path (that is,
each Gi is a collection of disjoint stars). Then G has a p/q-competitive algorithm. In fact, this can
be generalized further: if, instead of (2), we require that all Gi have an R-competitive algorithm,
then G will have a pR/q-competitive algorithm. As of now, however, we have not been able to
apply it to improve upper bounds for other types of graphs.

Acknowledgments.

We would like to thank Deshi Ye and Guochuan Zhang for introducing us to the frequency allocation
problem and stimulating discussions. We are also grateful to Dan Král and Jan Kratochv́ıl for
discussions on graph drawing and to the anonymous referees for comments that helped us improve
the presentation.

10

References

[1] K. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano. Models
and solution techniques for frequency assignment problems. 4OR: Quarterly Journal of the
Belgian, French and Italian Operations Research Societies, 1(4):261–317, 2003.

[2] J. W.-T. Chan, F. Y. L. Chin, D. Ye, and Y. Zhang. Online frequency allocation in cellular
networks. In Proc. 19th Symp. on Parallel Algorithms and Architectures (SPAA), pages 241–
249, 2007.

[3] J. W.-T. Chan, F. Y. L. Chin, D. Ye, Y. Zhang, and H. Zhu. Frequency allocation problem for
linear cellular networks. In Proc. 17th International Symp. on Algorithms and Computation
(ISAAC), pages 61–70, 2006.

[4] F. Y. L. Chin, Y. Zhang, and H. Zhu. A 1-local 13/9-competitive algorithm for multicoloring
hexagonal graphs. In Proc. 13th Annual International Computing and Combinatorics Conf.
(COCOON), pages 526–536, 2007.

[5] P. Duchet, Y. O. Hamidoune, M. Las Vergnas, and H. Meyniel. Representing a planar graph
by vertical lines joining different levels. Discrete Mathematics, 46:319–321, 1983.

[6] C. McDiarmid and B. Reed. Channel assignment and weighted colouring. Networks, 36:114–
117, 2000.

[7] A. R. Mishra. Fundamentals of Cellular Network Planning and Optimisation: 2G/2.5G/3G...
Evolution to 4G. John Wiley & Sons, 2004.

[8] R. A. Murphey, P. M. Pardalos, Mauricio, and M. G. Resende. Frequency assignment problems.
In Handbook of Combinatorial Optimization, pages 295–377. Kluwer Academic Publishers,
1999.

[9] L. Narayanan and S. M. Shende. Static frequency assignment in cellular networks. Algorith-
mica, 29(3):396–409, 2001.

[10] P. Rosenstiehl and R. Tarjan. Rectilinear planar layouts and bipolar orientations of planar
graphs. Discrete & Computational Geometry, 1:343–344, 1986.

[11] R. Tamassia and I. G. Tollis. A unified approach to visibility representation of planar graphs.
Discrete & Computational Geometry, 1:321–341, 1986.

11

