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Problem Definition

We consider an online version of the classical problem of preemptive scheduling on
uniformly related machines.

We are given m machines with speeds s1 ≥ s2 ≥ . . . ≥ sm and a sequence of jobs,
each described by its processing time (length). The actual time needed to process a job
with length p on a machine with speed s is p/s. In the preemptive version, each job may
be divided into several pieces, which can be assigned to different machines in disjoint
time slots. (A job may be scheduled in several time slots on the same machine, and
there may be times when a partially processed job is not running at all.) The objective
is to find a schedule of all jobs in which the maximal completion time (makespan) is
minimized.

In the online problem, jobs arrive one-by-one and the algorithm needs to assign
each incoming job to some time slots on some machines, without any knowledge of the
jobs that arrive later. This problem, also known as list scheduling, was first studied by
Graham [8] for identical machines (i.e., s1 = . . . = sm = 1), without preemption. In
the preemptive version, upon arrival of a job its complete assignment at all times must
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be given and the algorithm is not allowed to change this assignment later. In other
words, the online nature of the problem is in the order of the input sequence and it is
not related to possible preemptions and the time in the schedule.

Key Results

The main result is an optimal online algorithm RatioStretch for preemptive scheduling
on uniformly related machines [4]. RatioStretch achieves the best possible competi-
tive ratio not only in the general case, but also for any number of machines and any
particular combination of machine speeds. Although RatioStretch is deterministic, its
competitive ratio matches the best competitive ratio of any randomized algorithm. This
proves that randomization does not help for this variant of preemptive scheduling.

For any fixed set of speeds the competitive ratio of the algorithm RatioStretch
can be computed by solving a linear program. However, its worst case value over all
speed combinations is not known. Nevertheless, using the fact that there exists an e-
competitive randomized algorithm [5], it is possible to conclude that RatioStretch also
achieves the ratio of at most e ≈ 2.718. The best lower bound shows that RatioStretch
(and thus any algorithm) is not better than 2.112-competitive, by providing an explicit
numerical instance on 200 machines [3].

Key Techniques

The idea of the algorithm RatioStretch is fairly natural. Suppose that the algorithm
is given a ratio R which we are trying to achieve. For each arriving job, RatioStretch
computes the optimal makespan for jobs that have arrived so far and runs the incoming
job as slow as possible so that it finishes at R times the computed optimal makespan.
There are many ways of creating such a schedule given the flexibility of preemptions.
RatioStretch chooses a particular one based on the notion of a virtual machine from [5].
Given a schedule, the ith virtual machine at each time corresponds to the ith fastest
real machine that is idle. (In particular, before the first job, the virtual machines are the
real machines.) This assignment of the real machines to the virtual machines can vary
at different times in the schedule. Due to preemption, a virtual machine can be thought
of and used as a single machine with changing speed. The key idea of RatioStretch is
to schedule each job on two adjacent virtual machines.

If RatioStretch fails on some input for a given R, it is possible to use the lower
bound technique from [7] and show that there is no R-competitive algorithm. This
implies that if the algorithm knows the optimal competitive ratio R, it never fails and
thus it is R-competitive.

It remains to find the optimal competitive ratio R. Since the lower bound tech-
nique from [7] results in a linear condition, one can show that R can be computed by
a linear program for each combination of speeds.

Semi-Online Scheduling

The algorithm RatioStretch can be extended to semi-online scenarios [6]. This term
encompasses situations where some partial information about the input is given to the
scheduler in advance. Already Graham [9] studied a semi-online variant of scheduling
on identical machines: He proved that if the jobs are presented in non-increasing order
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of their processing times, the approximation ratio of list scheduling decreases from
2 to 4/3. Since then numerous semi-online models of scheduling have been studied;
typical examples include (sequences of) jobs with decreasing processing times, jobs
with bounded processing times, sequences with known total processing time of jobs
and so on. Most of these models can be viewed as online algorithms on a restricted set
of input sequences.

RatioStretch can be generalized so that it is optimal for any chosen semi-online
restriction. This means not only the cases listed above—the restriction can be given
as an arbitrary set of sequences that are allowed as inputs. Again, for any semi-online
restriction, RatioStretch achieves the best possible approximation ratio for any number
of machines and any particular combination of machine speeds; it is deterministic, but
its approximation ratio matches the best possible approximation ratio of any random-
ized algorithm. This result also provides a clear separation between the design of the
algorithm and the analysis of the optimal approximation ratio. While the algorithm is
always the same, the analysis of the optimal ratio depends on the studied restrictions.

For typical semi-online restrictions, the optimal ratio can again be computed by
linear programs (with machine speeds as parameters). Then we can study the relations
between the optimal approximation ratios for different semi-online restrictions and give
some bounds for a large number of machines by analysis of these linear programs. One
interesting result is that the overall ratio with known sum of processing times is the
same as in the purely online case—even though for a small fixed number of machines
knowing the sum provides a significant advantage.

Some basic restrictions form an inclusion chain: The inputs where the first job
has the maximal processing time (which is equivalent to known maximal processing
time) include the inputs with non-increasing processing times, which in turn include
the inputs with all jobs of equal processing time. The restriction to non-increasing pro-
cessing times gives the same approximation ratio as when all jobs have equal processing
times, even for any particular combination of speeds. The overall approximation ratio
of these two equivalent problems is at most 1.52. For known maximal processing time
of a job there exists a computer-generated hard instance with approximation ratio 1.88
with 120 machines. Thus restricting the jobs to be non-increasing helps the algorithm
much more than just knowing the maximal processing time of a job. This is very dif-
ferent from identical machines, where knowing the maximal processing time is equally
powerful as knowing that all the jobs are equal, see [10].

Small Number of Machines

For two, three and sometimes four machines it is possible to give an exact formula for
the competitive ratio for any speed combination [2, 3]. This is a fairly routine task
which can be simplified (but not completely automated) using standard mathematical
software. Once the solution is known, verification amounts to checking the given primal
and dual solutions for the linear program.

Open Problems

The main remaining open problem is to develop techniques for determining or bounding
the overall competitive ratio of the optimal algorithm RatioStretch. In particular, it
would be interesting to obtain a tight bound in the online case.

It is also open if similar techniques can be used for the non-preemptive problem.
In this case, the currently best algorithms were obtained by a doubling approach. This
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means that a competitive algorithm is designed for the case when the optimum is
approximately known in advance, and then, without this knowledge, it is used in phases
with geometrically increasing guesses of the optimum. Such an approach probably
cannot lead to an optimal algorithm for this type of scheduling problems. The best
lower and upper bounds for non-preemptive scheduling on uniformly related machines
are 2.438 and 5.828 for deterministic algorithms, see [1], and 2 and 4.311 for randomized
algorithms, see [7, 1]. Thus it is still open whether randomized algorithms are better
than deterministic.
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