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Abstract

We study frequency allocation in wireless networks. A wireless network is modeled by an undirected graph,
with vertices corresponding to cells. In each vertex we have a certain number of requests, and each of
those requests must be assigned a different frequency. Edges represent conflicts between cells, meaning that
frequencies in adjacent vertices must be different as well. The objective is to minimize the total number of
used frequencies.

The offline version of the problem is known to be NP-hard. In the incremental version, requests for
frequencies arrive over time and the algorithm is required to assign a frequency to a request as soon as it
arrives. Competitive incremental algorithms have been studied for several classes of graphs. For paths, the
optimal (asymptotic) ratio is known to be 4/3, while for hexagonal-cell graphs it is between 1.5 and 1.9126.
For ξ-colorable graphs, the ratio of (ξ + 1)/2 can be achieved.

In this paper, we prove nearly tight bounds on the asymptotic competitive ratio for bipartite graphs,
showing that it is between 1.428 and 1.433. This improves the previous lower bound of 4/3 and upper bound
of 1.5. Our proofs are based on reducing the incremental problem to a purely combinatorial (equivalent)
problem of constructing set families with certain intersection properties.

Keywords: online algorithms, frequency allocation, graph algorithms

1. Introduction

Static frequency allocation. In the frequency allocation problem, we are given a wireless network and a
collection of requests for frequencies. The network is modeled by a (possibly infinite) undirected graph G,
whose vertices correspond to the network’s cells. Each request is associated with a vertex, and requests in
the same vertex must be assigned different frequencies. Edges represent conflicts between cells, meaning
that frequencies in adjacent vertices must be different as well. The objective is to minimize the total number
of used frequencies. We will refer to this model as static, as it corresponds to the scenario where the set of
requests in each vertex does not change over time.

A more rigorous formulation of this static frequency allocation problem is as follows: Denote by `v the
load (or demand) at a vertex v of G, that is the number of frequency requests at v. A frequency allocation
is a function that assigns a set Lv of frequencies (represented, say, by positive integers) to each vertex v and
satisfies the following two conditions: (i) |Lv| = `v for each vertex v, and (ii) Lv ∩ Lw = ∅ for each edge {v,w}.
The total number of frequencies used is |

⋃
v∈G Lv|, and this is the quantity we wish to minimize. We will use

notation opt(G, ¯̀) to denote the minimum number of frequencies for a graph G and a demand vector ¯̀.
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If one request is issued per node, then opt(G, ¯̀) is equal to the chromatic number of G, which immediately
implies that the frequency allocation problem is NP-hard. In fact, McDiarmid and Reed [1] have shown that
the problem remains NP-hard for the graph representing the network whose cells are regular hexagons in
the plane, which is a commonly studied abstraction of wireless networks. (See, for example, the surveys
in [2, 3].) Polynomial-time 4

3 -approximation algorithms for this case appeared in [1] and [4].

Incremental frequency allocation. In the incremental version of frequency allocation, requests arrive over
time and an incremental algorithm must assign frequencies to requests as soon as they arrive. An incremental
algorithm A is called asymptotically R-competitive if, for any graph G and load vector ¯̀, the total number
of frequencies used by A is at most R · opt(G, ¯̀) + λ, where λ is a constant independent of ¯̀. We allow λ
to depend on the class of graphs under consideration, in which case we say that A is R-competitive for
this class. We refer to R as the asymptotic competitive ratio of A. As in this paper we focus only on the
asymptotic ratio, we will skip the word “asymptotic” (unless ambiguity can arise), and simply use terms
“R-competitive” and “competitive ratio” instead. Following the terminology in the literature (see [5, 6]), we
will say that the competitive ratio is absolute when the additive constant λ is equal 0.

Naturally, research in this area is concerned with designing algorithms with small competitive ratios for
various classes of graphs, as well as proving lower bounds. For hexagonal-cell graphs, Chan et al. [5, 6] found
an incremental algorithm with competitive ratio 1.9216 and proved that no ratio better than 1.5 is possible.
A lower bound of 4/3 for paths was given in [7], and later Chrobak and Sgall [8] gave an incremental
algorithm with the same ratio. Paths are in fact the only non-trivial graphs for which tight asymptotic
ratios are known. As pointed out earlier, there is a strong connection between frequency allocation and
graph coloring, so one would expect that the competitive ratio can be bounded in terms of the chromatic
number. Indeed, for ξ-colorable graphs Chan et al. [5, 6] gave an incremental algorithm with competitive
ratio of (ξ + 1)/2. (This ratio is in fact absolute.) On the other hand, the best known lower bounds on the
competitive ratio, 1.5 in the asymptotic and 2 in the absolute case [5, 6], hold for hexagonal-cell graphs (for
which ξ = 3), but no stronger bounds are known for graphs of higher chromatic number.

We remark that computing the optimal offline solution for the incremental instance is equivalent to
computing the optimal solution to the static instance where the request set consists of all requests in the
incremental request sequence.

Our contribution. We prove nearly tight bounds on the optimal competitive ratio of incremental algorithms
for bipartite graphs (that is, for ξ = 2), showing that it is between 10/7 ≈ 1.428 and (18 −

√
5)/11 ≈ 1.433.

This improves the lower and upper bounds for this version of frequency allocation. The best previously
known lower bound was 4/3, which holds in fact even for paths [7, 8]. The best upper bound of 1.5 was
shown in [5, 6] and it holds even in the absolute case.

Our proofs are based on reducing the incremental problem to a purely combinatorial (equivalent) problem
of constructing set families, which we call F-systems, with certain intersection properties. A rather surprising
consequence of this reduction is that the optimal competitive ratio can be achieved by an algorithm that
is topology-independent; it assigns a frequency to each vertex v based only on the current optimum value,
the number of requests to v, and the partition to which v belongs; that is, independently of the frequencies
already assigned to the neighbors of v.

To achieve a competitive ratio below 2 for bipartite graphs, we need to use frequencies that are shared
between the two partitions of the graph. The challenge is then to assign these shared frequencies to the
requests in different partitions so as to avoid collisions—in essence, to break the symmetry. In our con-
struction, we develop a symmetry-breaking method based on the concepts of “collisions with the past” and
“collisions with the future”, which allows us to derive frequency sets in a systematic fashion.

Our work is motivated mostly by theoretical interest, as there is no reason why realistic wireless networks
would form a bipartite graph. There is an intuitive connection between the chromatic number of a graph and
optimal frequency allocation, and exploring the exact nature of this connection is worthwhile and challenging.
Our results constitute a significant progress for the case of two colors, and we believe that some ideas from
this paper—the concept of F-systems and our symmetry-breaking method, for example—can be extended
to frequency assignment problems on graphs with larger chromatic number.

Other related work. Determining optimal absolute ratios is usually easier than for asymptotic ratios and
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it has been accomplished for various classes of graphs, including paths [7], general bipartite graphs [5, 6],
hexagonal-cell graphs and general 3-colorable graphs [5, 6]. The asymptotic ratio model, however, is more
relevant to practical scenarios where the number of frequencies is typically very large, so the additive constant
can be neglected.

In the dynamic version of frequency allocation each request has an arrival and departure time. At each
time, any two requests that have already arrived but not departed and are in the same or adjacent nodes
must be assigned different frequencies. As before, we wish to minimize the total number of used frequencies.
As shown by Chrobak and Sgall [8], this dynamic version is NP-hard even for the special case when the
input graph is a path.

It is natural to study the online version of this problem, where we introduce the notion of “time” that
progresses in discrete steps, and at each time step some requests may arrive and some previously arrived
requests may depart. This corresponds to real-life wireless networks where customers enter and leave a
network’s cells over time, in an unpredictable fashion. An online algorithm needs to assign frequencies to
requests as soon as they arrive. The competitive ratio is defined analogously to the incremental case. (The
incremental version can be thought of as a special case in which all departure times are infinite.) This model
has been well studied in the context of job scheduling, where it is sometimes referred to as time-online. Very
little is known about this online dynamic case. Even for paths the optimal ratio is not known; it is only
known that it is between 14

9 ≈ 1.571 [8] and 5
3 ≈ 1.667 [7].

2. Preliminaries

For concreteness, we will assume that frequencies are identified by positive integers, although it does
not really matter. Recall that we use the number of frequencies as the performance measure. In some
literature [7, 9, 6], authors used the maximum-numbered frequency instead. It is not hard to show (see [8])
that these two approaches are equivalent1.

For a bipartite graph G = (A, B, E), it is easy to characterize the optimum value. As observed in [7, 8],
in this case the optimum number of frequencies is

opt(G, ¯̀) = max
{u,v}∈E

{`u + `v}. (1)

For completeness, we include a simple proof: Trivially, opt(G, ¯̀) ≥ `u + `v for each edge {u, v}. On the other
hand, denoting by ω the right-hand side of (1), we can assign frequencies to nodes as follows: for u ∈ A,
assign to u frequencies 1, 2, . . . , `u, and for u ∈ B assign to u frequencies ω− `u + 1, ω− `u + 2, . . . , ω. This way
each vertex u is assigned `u frequencies and no two adjacent nodes share the same frequency.

Throughout the paper, we will use the convention that if c ∈ {A, B}, then c′ denotes the partition other
than c, that is {c, c′} = {A, B}.

3. An Example

We now examine a simple example that illustrates why an online algorithm may be forced to use more
frequencies than an offline optimum. The graph G is a path of length 4, with vertices v1, v2, v3, v4, in this
order (see Figure 1). Let’s say that in the first six steps we issue three requests to v1 and three requests to
v4.

If we use 5 or more frequencies then the request sequence can end here, and the ratio will be 5/3, since
in the optimal solution the requests on v1 and on v4 can be assigned the same frequencies.

The other case is that we use no more than 4 frequencies so far. This implies that v1 and v4 share at
least 2 frequencies. Suppose that then the request sequence continues with three requests to v2 and three
requests to v3. All these six requests must be assigned different frequencies, and these frequencies must also
be different from those two shared by v1 and v4. As a result, we are forced to use 8 frequencies in total.

1The proof in [8], however, involves a transformation of the algorithm that makes it not topology independent.
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Figure 1: An example of frequency allocation for a path of length 4, after three requests to v1 and three requests to v2.
Frequencies 1, 2, 3 are assigned to v1 and frequencies 1, 3, 4 are assigned to v4.

The optimum solution needs only 6 frequencies, three frequencies assigned to v1 and v3, and three other
frequencies to v2 and v4. Thus in this case the ratio is 4/3.

The above argument shows that the competitive ratio cannot be better than 4/3, but it applies only to
the absolute competitive ratio, because the optimal solution uses a constant number of frequencies in the
above strategy. In fact, this bound can be improved to 1.5 if we use only one request per vertex instead of
three. If we use k requests on each vertex instead, for some large k, this strategy will give a 4/3 lower bound
on the asymptotic ratio.

4. Competitive F-Systems

In this section we show that finding an R-competitive incremental algorithm for bipartite graphs can be
reduced to an equivalent problem of constructing certain families of sets that we call F-systems.

Suppose that for any c ∈ {A, B} and any integers t, k such that 0 < k ≤ t, we are given a set Fc
t,k of positive

integers (frequencies). Denote by F =
{
Fc

t,k
}

the family of those sets. Then F is called an F-system if

(F1) |Fc
t,k | ≥ k for all c, t, k, and

(F2) FA
t,k ∩ FB

t′,k′ = ∅ for all k, k′, t, t′ such that k + k′ ≤ max(t, t′).

An F-system is called R-competitive if for all t we have∣∣∣∣ ⋃
κ≤τ≤t

(FA
τ,κ ∪ FB

τ,κ)
∣∣∣∣ ≤ R · t + λ, (2)

where λ is a constant independent of t. The competitive ratio of F is the smallest R for which F is R-
competitive.

Lemma 4.1. For any R ≥ 1, there is an R-competitive incremental algorithm for frequency allocation in
bipartite graphs if and only if there is an R-competitive F-system.

Proof. (⇒) Let A be an R-competitive incremental algorithm. To prove this implication, we define a “uni-
versal” infinite bipartite graph H = (A, B, E) and we will issue requests to this graph. For c ∈ {A, B}, the
vertices in c have the form (t, k)c, where k ≤ t. Two vertices (t, k)A and (t′, k′)B are connected by an edge if
k + k′ ≤ max(t, t′).

The requests are issued in phases numbered t = 1, 2, . . .. In phase t, for each node (t, k)c, we issue k
requests to this node. Let Fc

t,k be the set of frequencies that A assigns to (t, k)c. After phase t, by the
definition of H and by (1), the optimum number of frequencies is t, so A uses at most Rt + λ frequencies, for
some λ, implying (2) and proving that F =

{
Fc

t,k
}

is an R-competitive F-system.
(⇐) Let F be an R-competitive F-system. We use F to define an incremental algorithm A that works as

follows. Let G = (A, B, E) be the given bipartite graph. Consider one step of the computation in which a new
request arrives at a vertex u ∈ c, where c ∈ {A, B}. Denote by t the current optimum number of frequencies
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Figure 2: Frequency sets in the 1.5-competitive algorithm, represented by shaded regions. In this figure, we fix the value of
t and show the frequency sets for k ≤ t. The horizontal axis represents k and the vertical axis represents frequencies. Fc

t,k is
represented by a thick line segment on the vertical line corresponding to load k.

(including the one assigned to the new request), that is t = max{v,w}∈E(`v + `w). Choose any frequency f ∈ Fc
t,k,

for k = `u, that is not yet used on u and assign f to this request. Such f exists, because by property (F1)
we have |Fc

t,k | ≥ k and the number of frequencies assigned so far to u is k − 1.
Trivially, all frequencies assigned by A to one node are different. We claim that adjacent nodes will be

assigned different frequencies as well. Consider again a step where a frequency f is assigned to a kth request
to a vertex u, when the optimum value is t, as described above. So k = `u. Without loss of generality, assume
u ∈ A. For an edge {u, v} ∈ E, let k′ = `v be the current load at v. If g is a frequency assigned by A to v,
then, by the definition of A, we have g ∈ FB

t′,k′′ for some t′ ≤ t and k′′ ≤ min(t′, k′). Thus k + k′′ ≤ k + k′ ≤ t,
by the definition of t. Using (F2), we now get that FA

t,k ∩ FB
t′,k′′ = ∅, and therefore f , g.

Finally, when the optimum is t, then any frequency used by A is from some set Fc
τ,κ for κ ≤ τ ≤ t.

Therefore A is R-competitive, by the property (2) of F .

5. An Upper Bound

We now design an R0-competitive incremental algorithm, for R0 = (18−
√

5)/11 ≈ 1.433. Using Lemma 4.1,
it is sufficient to construct an R0-competitive F-system.

Intuitions. Our construction below may appear rather mysterious, so we begin by gradually introducing its
main ideas. We will distinguish between two types of frequencies: private and shared. A-private frequencies
will be used only in sets FA

t,k, B-private frequencies will be used only in sets FB
t,k, while shared frequencies

can be used in some sets from both partitions A and B.
The competitive ratio of 2 can be easily achieved using only private frequencies. For each c ∈ {A, B}, let

Pc be an infinite pool of c-private frequencies, with PA and PB disjoint. We simply let Fc
t,k consist of the first

k frequencies from Pc. Conditions (F1) and (F2) are trivially true. For any given t, the set on the left-hand
side of (2) contains 2t frequencies, so (2) holds for R = 2, with λ = 0.

To improve the ratio to 1.5, we introduce an infinite pool S (disjoint with PA ∪PB) of shared frequencies.
To avoid violations of (F2), we need to use these frequencies judiciously. Roughly, each Fc

t,k will contain the
first t/2 c-private frequencies, and if k > t/2 then it will also contain k− t/2 last shared frequencies numbered
at most t/2, namely those from t/2 − (k − t/2) + 1 = t − k + 1 to t/2. (See Figure 2.) It is easy to verify that
both (F1) and (2) are satisfied with R = 1.5. The intuition behind (F2) is this: FB

t′,k′ uses shared frequencies
only when k′ > t′/2. By symmetry, we can assume that t′ ≤ t. Then we have k′ ≤ t − k, which implies that
t′/2 ≤ t − k, so all shared frequencies in FB

t′,k′ are smaller than those in FA
t,k.

To make the above idea more precise, for any real number x ≥ 0 let

S x = the first bxc frequencies in S ,

Pc
x = the first bxc frequencies in Pc, for c ∈ {A, B}.
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c-shared frequencies

symmetric-shared 
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Figure 3: Frequency sets in the R0-competitive algorithm. We show only the shared frequencies, represented as in Figure 2.

We now let F =
{
Fc

t,k
}
, where for c ∈ {A, B} and k ≤ t we have

Fc
t,k = Pc

t/2+1 ∪ (S t/2 \ S t−k).

We claim that F is a 1.5-competitive F-system. We verify (F1) first. If k ≤ t/2, then |Fc
t,k | ≥ |P

c
t/2+1| ≥ k. If

k > t/2, then t − k ≤ t/2, so S t−k ⊆ S t/2 and thus |Fc
t,k | ≥ bt/2 + 1c + (bt/2c − bt − kc) = k + 2bt/2c + 1 − t ≥ k. So

(F1) holds.
To verify (F2), pick any two pairs k ≤ t and k′ ≤ t′ with k + k′ ≤ max(t, t′). Without loss of generality,

assume t′ ≤ t. If k′ ≤ t′/2, then t′−k′ ≥ t′/2, so FB
t′,k′ ⊆ PB, and (F2) is trivial. If k′ > t′/2, then t′/2 ≤ k′ ≤ t−k,

so FB
t′,k′ ⊆ PB ∪ S t′/2 ⊆ PB ∪ S t−k, which implies (F2) as well.

Finally, for c ∈ {A, B} and κ ≤ τ ≤ t, we have Fc
τ,κ ⊆ PA

t/2+1 ∪ PB
t/2+1 ∪ S t/2, so (2) holds with R = 1.5 and

λ = 2, implying that F is 1.5-competitive.

More intuition. It is useful to think of our constructions, informally, in terms of collisions. We designate some
shared frequencies as forbidden in Fc

t,k, because they might be used in some sets Fc′
t′,k′ with k + k′ ≤ max(t, t′).

Depending on whether t′ ≤ t or t′ > t, we refer to those forbidden frequencies as “collisions with the past” and
“collisions with the future”, respectively. Figure 2 illustrates this idea for our last construction. For t′ ≤ t and
k′ > t′/2, each Fc′

t′,k′ uses shared frequencies numbered at most t′/2 ≤ k′ ≤ t− k. (We ignore additive constants
here.) Thus all shared frequencies that collide with the past are in the region below the line f = t − k, which
complements the shaded region assigned to Fc

t,k.

An R0-competitive F-system. To achieve a ratio below 1.5 we need to use shared frequencies even when
k < t/2. For such k near t/2, sets FA

t,k and FB
t,k will conflict and each will contain shared frequencies, so,

unlike before, we need to assign their shared frequencies in a different order—in other words, we need to
break symmetry. To achieve this, we introduce A-shared and B-shared frequencies. In sets Fc

t,k, for fixed

c, t and increasing k, we first use c-private frequencies, then, starting at k = t/φ2 ≈ 0.382t we also use
c-shared frequencies, then, starting at k = t/2 we add symmetric-shared frequencies, and finally, when k
reaches t/φ ≈ 0.618t we “borrow” c′-shared frequencies to include in this set. (See Figure 3.) We remark
that symmetric-shared frequencies are still needed to reduce the ratio to R0 ≈ 1.433; with only private and
c-shared frequencies we could only achieve ratio ≈ 1.447.

Now, once the symmetry is broken, we can assign frequencies to Fc
t,k more efficiently. The key to this is

to consider “collisions with the future”, with sets Fc′
t′,k′ for t′ > t.

Let’s take one more look at the construction for ratio 1.5. For t′ > t, Fc
t,k conflicts with Fc′

t′,k′ only if
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k + k′ ≤ t′. The shared frequencies in this Fc′
t′,k′ are numbered at least t′ − k′ ≥ k, while Fc

t,k uses shared
frequencies only when k ≥ t/2. So the frequencies representing collisions with the future for Fc

t,k are outside
the range 1, . . . , t/2 of shared frequencies that can be used in Fc

t,k. (They are above the upper rectangle in
Figure 2.) In this sense, this construction does not use collisions with the future.

Suppose that now we do include some collisions with the future in the range of shared frequencies. The
crucial observation is this: if a frequency was used already in Fc

t′′,k for some t′′ < t, then using it in Fc
t,k

cannot create any new collisions in the future. If the shared frequency sets for all t are represented by the
same shape, this means that for every γ, either all points on the line f = γk create collisions in the future
or none do. Thus the natural choice is to avoid frequencies in the the half-plane above the line f = γk, for
an appropriate γ. These collisions with the future, for a given Fc

t,k, are collisions with the past for Fc′
t′,k′ with

t′ > t and k′ ≤ t′ − k. So, in the opposite partition, these collisions are represented by the half-plane below
the line f = γ(t′ − k′) (using the same γ). The optimization of the parameters for all three types of shared
frequencies leads to our new algorithm.

The pools of c-shared and symmetric-shared frequencies are denoted S c and Q, respectively. As before,
for any real x ≥ 0 we define

S c
x = the first bxc frequencies in S c, for c ∈ {A, B},

Qx = the first bxc frequencies in Q.

Let φ = (
√

5 + 1)/2 be the golden ratio. We have R0 = (φ + 5)/(φ + 3). Our construction uses three other
constants

α =
2

φ + 3
≈ 0.433, β =

1
φ + 3

≈ 0.217, and ρ =
φ − 1
φ + 3

≈ 0.134.

We have the following useful identities: α = R0 − 1, β = α/2, ρ = β/φ, and 2α + 2β + ρ = R0.
We define F =

{
Fc

t,k
}
, where for any t ≥ k ≥ 0 we let

Fc
t,k = Pc

αt+4 ∪ (S c
β·min(t,φk) \ S c

β(t−k)) ∪ (S c′
βk \ S c′

φβ(t−k))
∪(Qρ·min(t,φk) \ Qφρ(t−k)). (3)

We now show that F is an R0-competitive F-system. We start with (2). For κ ≤ τ ≤ t and c ∈ {A, B} we
have

Fc
τ,κ ⊆ Pc

ατ+4 ∪ S c
βτ ∪ S c′

βκ ∪ Qρτ ⊆ Pc
αt+4 ∪ S c

βt ∪ S c′
βt ∪ Qρt

⊆ PA
αt+4 ∪ PB

αt+4 ∪ S A
βt ∪ S B

βt ∪ Qρt.

This last set has cardinality at most (2α + 2β + ρ)t + 8 = R0t + 8, so (2) holds.
Next, we show (F2). By symmetry, we can assume that t′ ≤ t in (F2), so k′ ≤ t − k. Then

FB
t′,k′ ⊆ PB ∪ S B

φβk′ ∪ S A
βk′ ∪ Qφρk′ ⊆ PB ∪ S B

φβ(t−k) ∪ S A
β(t−k) ∪ Qφρ(t−k),

and this set is disjoint with FA
t,k by (3). Thus FA

t,k ∩ FB
t′,k′ = ∅, as needed.

Finally, we prove (F1), namely that |Fc
t,k | ≥ k. We distinguish two cases.

Case 1: k > t/φ. This implies that min(t, φk) = t, so in (3) we have S c
β·min(t,φk) = S c

βt and Qρ·min(t,φk) = Qρt. Thus

|Fc
t,k | ≥ [αt + 3] + [βt − β(t − k) − 1] + [βk − φβ(t − k) − 1] + [ρt − φρ(t − k) − 1]
= (α − φβ − (φ − 1)ρ)t + (2β + φβ + φρ)k = k,

using the substitutions α = 2β and ρ = β/φ. Note that this case is asymptotically tight as the algorithm uses
all three types of shared frequencies (and the corresponding terms are non-negative).
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Case 2: k ≤ t/φ. The case condition implies that φk ≤ t, so S c
β·min(t,φk) = S c

φβk, Qρ·min(t,φk) = Qφρk, and

S c′
βk \ S c′

φβ(t−k) = ∅. Therefore

|Fc
t,k | ≥ [αt + 3] + [φβk − β(t − k) − 1] + [φρk − φρ(t − k) − 1]
= (α − β − φρ)t + ((φ + 1)β + 2φρ)k + 1 = k + 1,

using α = 2β and ρ = β/φ again. Note that this case is (asymptotically) tight only for k > t/2 when c-
shared and symmetric-shared frequencies are used. For k ≤ t/2, the term corresponding to symmetric-shared
frequencies is negative.

Summarizing, we conclude that F is indeed an R0-competitive F-system. Therefore, using Lemma 4.1,
we get our upper bound:

Theorem 5.1. There is an R0-competitive incremental algorithm for frequency allocation on bipartite graphs,
where R0 = (18 −

√
5)/11 ≈ 1.433.

6. A Lower Bound

In this section we show that if R < 10/7, then there is no R-competitive incremental algorithm for
frequency allocation in bipartite graphs. By Lemma 4.1, it is sufficient to show that there is no R-competitive
F-system.

The general intuition behind the proof is that we try to reason about the sets Zt = FA
t,γt ∩ FB

t,γt for a
suitable constant γ. These sets should correspond to the symmetric-shared frequencies from our algorithm,
for γ such that no c′-shared frequencies are used in the c-partition. If Zt is too small, then both partitions
use mostly different frequencies and this yields a lower bound on the competitive ratio. If Zt is too large,
then for a larger t and suitable k, the frequencies cannot be used for either partition, and hopefully this
allows to improve the lower bound. We are not able to do exactly this. Instead, for a variant of Zt, we show
a recurrence essentially saying that if the set is too large, then for some larger t, it must be proportionally
even larger, leading to a contradiction.

We now proceed with the proof. For c ∈ {A, B}, let Fc
t =

⋃
κ≤τ≤t Fc

τ,κ. Towards contradiction, suppose
that an F-system F is R-competitive for some R < 10/7. Then F satisfies the definition of competitiveness
(2) for some positive integer λ, that is |FA

t ∪ FB
t | ≤ Rt + λ. Choose a sufficiently large integer θ for which

R < 10/7 − 1/θ.
We first identify shared frequencies in F . The set of level-t shared frequencies is defined as S t = FA

t ∩ FB
t .

Lemma 6.1. For any t, we have |S t | ≥ (2 − R)t − λ.

Proof. This is quite straightforward. By (F1) we have |Fc
t | ≥ t for each c, so |S t | = |FA

t | + |F
B
t | − |F

A
t ∪ FB

t | ≥

2t − (Rt + λ) = (2 − R)t − λ.

Now, let S 2t,t = S 2t ∩ (FA
2t,t ∪ FB

2t,t) be the level-2t shared frequencies that are used in FA
2t,t or FB

2t,t. Each

such frequency can only be in one of these sets because FA
2t,t ∩ FB

2t,t = ∅.

Lemma 6.2. For any t, we have |S 2t,t | ≥ (6 − 4R)t − 2λ.

Proof. By definition, FA
2t,t ∪ FB

2t,t ∪ S 2t ⊆ FA
2t ∪ FB

2t, and thus (2) implies

2Rt + λ ≥ |FA
2t,t ∪ FB

2t,t ∪ S 2t |

= |FA
2t,t ∪ FB

2t,t | + |S 2t | − |(FA
2t,t ∪ FB

2t,t) ∩ S 2t |

= |FA
2t,t | + |F

B
2t,t | + |S 2t | − |S 2t,t | ,

where the equations follow from the inclusion-exclusion principle, disjointness of FA
2t,t and FB

2t,t, and the
definition of S 2t,t. Transforming this inequality, we get

|S 2t,t | ≥ |FA
2t,t | + |F

B
2t,t | + |S 2t | − (2Rt + λ) ≥ (6 − 4R)t − 2λ ,

as claimed, by property (F1) and Lemma 6.1.
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Figure 4: Illustration of Lemma 6.3.

For any even t define Z3t/2,t = FA
3t/2,t∩FB

3t/2,t. In the rest of the lower-bound proof we will set up a recurrence
relation for the cardinality of sets S t ∪ Z3t/2,t. The next step is the following lemma.

Lemma 6.3. For any even t, we have |S 2t \ Z3t,2t | ≥ |S t ∪ Z3t/2,t | + |S 2t,t |.

Proof. From the definition, the sets S t∪Z3t/2,t and S 2t,t are disjoint and contained in S 2t−Z3t,2t (see Figure 4.)
This immediately implies the lemma.

Lemma 6.4. For any even t, we have |Z3t,2t | ≥ |S t ∪ Z3t/2,t | − (3R − 4)t − λ.

Proof. As FA
3t,2t ∪ FB

3t,2t ∪ S t ∪ Z3t/2,t ⊆ FA
3t ∪ FB

3t, inequality (2) implies

3Rt + λ ≥ |FA
3t,2t ∪ FB

3t,2t ∪ S t ∪ Z3t/2,t |

= |FA
3t,2t ∪ FB

3t,2t | + |S t ∪ Z3t/2,t |

= |FA
3t,2t | + |F

B
3t,2t | − |F

A
3t,2t ∩ FB

3t,2t | + |S t ∪ Z3t/2,t |

= |FA
3t,2t | + |F

B
3t,2t | − |Z3t,2t | + |S t ∪ Z3t/2,t | ,

where the identities follow from the inclusion-exclusion principle, the fact that FA
3t,2t ∪ FB

3t,2t and S t ∪ Z3t/2,t
are disjoint, and the definition of Z3t,2t. Transforming this inequality, we get

|Z3t,2t | ≥ |FA
3t,2t | + |F

B
3t,2t | + |S t ∪ Z3t/2,t | − (3Rt + λ)

≥ |S t ∪ Z3t/2,t | − (3R − 4)t − λ ,

as claimed, by property (F1).

We are now ready to derive our recurrence. By adding the inequalities in Lemma 6.3 and Lemma 6.4,
taking into account that |S 2t \ Z3t,2t | + |Z3t,2t | = |S 2t ∪ Z3t,2t |, and then applying Lemma 6.2, for any even t we
get

|S 2t ∪ Z3t,2t | ≥ 2 · |S t ∪ Z3t/2,t | + |S 2t,t | − (3R − 4)t − λ
≥ 2 · |S t ∪ Z3t/2,t | + (10 − 7R)t − 3λ. (4)

For i = 0, 1, . . . , θ, define ti = 6θλ2i and γi = |S ti∪Z3ti/2,ti |/ti. (Note that each ti is even.) Since S ti∪Z3ti/2,ti ⊆ S 2ti ,
we have that γi ≤ |S 2ti |/ti ≤ 2R + 1/(6θ) < 3. Dividing recurrence (4) with t = ti by ti+1 = 2ti, we obtain

γi+1 ≥ γi + 5 − 7R/2 − 3λ/(2ti) ≥ γi + 7/(2θ) − 1/(4θ) ≥ γi + 3/θ,

for i = 0, 1, . . . , θ−1. But then we have γθ ≥ γ0+3 ≥ 3, which contradicts our earlier bound γi < 3, completing
the proof. Thus we have proved the following.
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Theorem 6.5. If A is an R-competitive incremental algorithm for frequency allocation on bipartite graphs,
then R ≥ 10/7 ≈ 1.428.

As a final remark we observe that our lower bound works even if the additive constant λ is allowed to
depend on the actual graph. More specifically, for every R < 10/7 we can construct a single finite graph G
so that no online algorithm is R-competitive on this graph. In our lower bound argument above, we can
restrict our attention to sets Fc

ti,ti , Fc
2ti,ti

and Fc
3ti/2,ti

, for i = 0, 1, . . . , θ and c = A, B. To construct G, we follow
the construction of the universal graph in the the proof of the “⇒” implication of Lemma 4.1, except that
we only use the nodes representing the sets from our lower bound proof, namely nodes (ti, ti)c, (2ti, ti)c, and
(3ti/2, ti)c. For a fixed θ, the graphs obtained for different values of λ are isomorphic, as all the indices ti
scale linearly with λ. In other words, only the loads on the vertices depend on λ, not the underlying graph.
So, instead of using different isomorphic graphs, we can use different sequences corresponding to different
values of λ on a single graph G.

7. Final Comments

We proved that the competitive ratio for incremental frequency allocation on bipartite graphs is between
1.428 and 1.433, improving the previous bounds of 1.33 and 1.5. Closing the remaining gap, small as it is,
remains an intriguing open problem. Besides completing the analysis of this case, the solution is likely to
give new insights into the general problem.

Two other obvious directions of study are to prove better bounds for the dynamic case and for k-partite
graphs. Our idea of distinguishing “collisions with the past” and “collisions with the future” should be useful
to derive upper bounds for these problems. The concept of F-systems extends naturally to k-partite graphs,
but with a caveat: For k ≥ 3 the maximum load on a k-clique is only a lower bound on the optimum (unlike
for k = 2, where the equality holds). Therefore in Lemma 4.1 only one direction holds. This lemma is still
sufficient to establish upper bounds on the competitive ratio, and it is possible that a lower bound can be
proved using graphs where the optimum number of frequencies is equal to the maximum load of a k-clique.
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