Exercise session 10 - Prob. \& Stat. 2 - Dec 5, 2023

The Bernoulli process

1. (Sum of a geometric number of independent geometric random variables.)

Let $Y=X_{1}+\cdots+X_{N}$, where the random variables X_{i} are geometric with parameter p and N is geometric with parameter q. Assume that the random variables N, X_{1}, X_{2}, \ldots are independent. Show that Y is geometric with parameter $p q$. Hint: Interpret the various random variables in terms of a split Bernoulli process.

2. * (The bits in a uniform random variable form a Bernoulli process.)

Let X_{1}, X_{2}, \ldots be a sequence of binary random variables taking values in the set $\{0,1\}$. Let Y be a continuous random variable that takes values in the set $[0,1]$. We relate X and Y by assuming that Y is the real number whose binary representation is $0 . X_{1} X_{2} X_{3} \ldots$

More concretely

$$
Y=\sum_{i \geq 1} 2^{-i} X_{i}
$$

(a) Suppose that the X_{i} form a Bernoulli process with parameter $p=1 / 2$. Show that Y is uniformly distributed. [Hint: Consider the probability of the event $(i-1) / 2^{k}<Y<i / 2^{k}$, where i and k are positive integers.]
(b) Suppose that Y is uniformly distributed. Show that the X_{1}, X_{2}, \ldots form a Bernoulli process with parameter $p=1 / 2$.

The Poisson process

Recall the definition of the Poisson process by means of exponential waiting times. And also the theorem speaking about distribution of N_{t}, more precisely $N_{t_{k+1}}-N_{t_{k}} \sim \operatorname{Pois}\left(\lambda\left(t_{k+1}-t_{k}\right)\right)$. You will also use the following two results about merging and splitting of Poisson processes.

- Given a Poisson process with intensity $\lambda>0$ and $p \in(0,1)$. We create a new Poisson process by keeping each arrival with probability p. More precisely: Having defined times T_{k} as we have in the lecture, at time T_{k} we toss a coin (with probability p) to decide if something actually happened at time T_{k}. Then we define new sequences $L_{k}^{\prime}, T_{k}^{\prime} N_{t}^{\prime}$ based on the new arrival times.
Then the new process is a Poisson process with intensity λp.
- Similarly: having two Poisson processes, with intensity λ_{1} and λ_{2}, their merge is a Poisson process with intensity $\lambda_{1}+\lambda_{2}$.

3. Customers depart from a bookstore according to a Poisson process with rate λ per hour. Each customer buys a book with probability p, independent of everything else.
(a) Find the distribution of the time until the first sale of a book.
(b) Find the probability that no books are sold during a particular hour.
(c) Find the expected number of customers who buy a book during a particular hour.
4. An athletic facility has 5 tennis courts. Pairs of players arrive at the courts and use a court for an exponentially distributed time with mean 40 minutes. Suppose a pair of players arrives and finds all courts busy and k other pairs waiting in queue.
(a) What is the expected time till they get a court?
(b) What is the probability that they get to play within 2 hours - assume $k=0$.
5. By considering Poisson process, derive that for independent random variables $X_{i} \sim \operatorname{Pois}\left(\lambda_{i}\right)$ we have

$$
X_{1}+\cdots+X_{n} \sim \operatorname{Pois}\left(\lambda_{1}+\cdots+\lambda_{n}\right)
$$

6. * Consider a Poisson process. Given that a single arrival occurred in given interval $[0, t]$, show that the distribution of the arrival time is uniform over $[0, t]$.

Experiments

7. Choose one of the following ways to generate a Bernoulli process: generate a sequence of independent Bernoulli trials X_{1}, X_{2}, \ldots and compute the waiting times L_{t} and number of arrivals N_{t}. OR generate a sequence of independent geometric RVs L_{1}, L_{2}, \ldots and from this deduce T_{t}, L_{t} and N_{t}. Verify that the computed variables have the distribution it should have (by computing its variance and mean, or by plotting the distribution of the sampled one and of a separately generated samples from the correct distribution).
8. Generate a Poisson process: generate a sequence of independent exponential RVs L_{1}, L_{2}, \ldots and from this deduce $N(t)$. Verify that it has Poisson distribution - as above, by sampling the variable many times, estimating the mean and variance and possibly by plotting the distribution. Or you may use KolmogorovSmirnov test (scipy.stats.kstest).
