Exercise session § 7 – Prob. & Stat. 2 – Nov 14, 2023

Conditional expectation & Joint PDF

If $\mathbb{E}(X \mid Y = y) = f(y)$, then we define $\mathbb{E}(X \mid Y)$ as f(Y). We have

 $\mathbb{E}(\mathbb{E}(X \mid Y)) = \mathbb{E}(X) \qquad \text{(law of iterated expectation)}.$

Recall that if X and Y are continuous, then

$$\mathbb{E}(X \mid Y = y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} x \frac{f_{X,Y}(x,y)}{f_Y(y)} dx.$$

We also define var(X|Y) as g(Y), if var(X|Y = y) = g(y). We have

 $var(X) = \mathbb{E}(var(X \mid Y)) + var(\mathbb{E}(X \mid Y))$ (law of total variance).

1. Warm-up: (a) what is $\mathbb{E}(X \mid X)$?

(b) what is $\mathbb{E}(X \mid Y)$, when X and Y are independent?

2. A gambler repeatedly takes part in a game, where with probability p > 1/2 he wins the amount he betted and with probability 1 - p he loses it. A popular strategy, known as Kelly strategy, is to always bet 2p - 1 multiple of your current total. What is the expected fortune the gambler obtains after n rounds? (And why is it better then betting everything?)

3. Pat and Nat are dating, and all of their dates are scheduled to start at 9 p.m. Nat always arrives promptly at 9 p.m. Pat is highly disorganized and arrives at a time that is uniformly distributed between 8 p.m. and 10 p.m. Let X be the time in hours between 8 p.m. and the time when Pat arrives. If Pat arrives before 9 p.m., their date will last exactly 3 hours. If Pat arrives after 9 p.m., their date starts when Pat arrives and lasts for a time uniformly distributed between 0 and 3 - X. Nat gets irritated when Pat is late and will end relationship after the second date where Pat is late by more than 45 minutes. All random variables mentioned are independent.

- (a) What is the expected number of hours Nat waits for Pat to arrive?
- (b) What is the expected duration of any particular date?
- (c) What is the expected number of dates they will have before breaking up?

4. Show that for a discrete or continuous random variable X and any function g(Y) of another (discrete) random variable Y, we have

$$\mathbb{E}(Xg(Y)|Y) = g(Y)\mathbb{E}(X \mid Y).$$

5. * Let X and Y be independent random variables. Use the law of total variance to show that

$$var(XY) = \mathbb{E}(X)^2 var(Y) + \mathbb{E}(Y)^2 var(X) + var(X) var(Y).$$

6. * We toss *n* times a biased coin whose probability of heads, denoted by *q*, is the value of a random variable *Q* with given mean μ and positive variance σ^2 . Let X_1, \ldots, X_n be a Bernoulli random variable that models the outcome of the *i*th toss (i.e., $X_i = 1$ if the *i*th toss is a head). We assume that X_1, \ldots, X_n are conditionally independent, given Q = q. Let X be the number of heads obtained in the *n* tosses.

- (a) Use the law of iterated expectations to find $\mathbb{E}(X_i)$ and $\mathbb{E}(X)$.
- (b) Find $cov(X_i, X_j)$. Are X_1, \ldots, X_n independent?

(c) Use the law of total variance to find var(X). Verify your answer using the covariance result of part (b).

- 7. Let (X, Y) have a joint pdf that is uniform on a triangle with vertices (0,0), (0,1), (1,0).
 (a) Find the joint pdf.
 - (b) Find marginal PDF of Y.
 - (c) Find $f_{X|Y}$.
 - (d) Find $\mathbb{E}(X \mid Y = y)$. Use total expectation law to find $\mathbb{E}(X)$ in terms of $\mathbb{E}(Y)$.
 - (e) Find $\mathbb{E}(X)$, $\mathbb{E}(Y)$.
 - (f) Find $\mathbb{E}(X \mid Y)$.

8. Choosing a point uniformly on the sphere is equivalent to choosing the longitude λ uniformly from $[-\pi,\pi]$ and choosing the latitude φ from $[-\frac{\pi}{2},\frac{\pi}{2}]$ with density $\frac{1}{2}\cos\varphi$.

- (a) Think about why this is so.
- (b) What is $f(\lambda|\varphi=0)$?
- (c) What is $f(\varphi|\lambda = 0)$?
- (d) Is this strange or not? (Possibly yes, it is called Borel-Kolmogorov paradox.)