Exercise session 1 - Prob. \& Stat. 2 - Oct 3, 2023

Markov chains basics

Recall that a sequence $\left(X_{t}\right)_{t=0}^{\infty}$ of random variables with range S is a (discrete time, time-homogeneous) Markov chain if for every $t \geq 0$ and every $a_{0}, \ldots, a_{t}=$ $i, a_{t+1}=j \in S$ we have
$P\left(X_{t+1}=j \mid X_{t}=i \& X_{t-1}=a_{t-1} \& \ldots \& X_{0}=a_{0}\right)=P\left(X_{t+1}=j \mid X_{t}=i\right)=p_{i, j}$,
for some collection of transition probabilities $p_{i, j}$. The condition is only required when the conditional probabilities are defined, that is when $P\left(X_{t}=a_{t} \& \ldots \& X_{0}=\right.$ $\left.a_{0}\right)>0$.

1. A Markov chain with states $\{1,2,3\}$ has transition matrix

$$
\left(\begin{array}{ccc}
.4 & .4 & .2 \\
0 & .8 & .2 \\
.9 & 0 & .1
\end{array}\right)
$$

Draw its transition graph.
2. Consider the Markov chain from the previous problem.
(a) Find $P\left(X_{4}=3 \mid X_{3}=2\right)$.
(b) Find $P\left(X_{3}=1 \mid X_{2}=3\right)$.
(c) Suppose $P\left(X_{0}=1\right)=0.2$. Find $P\left(X_{0}=1 \& X_{1}=2\right)$.
(d) Suppose $P\left(X_{0}=1\right)=0.2$. Find $P\left(X_{0}=1 \& X_{1}=2 \& X_{2}=3\right)$.
(e) Suppose that $X_{0}=1$. What is $P\left(X_{3}=1\right)$?
3. Show that any sequence of independent identically distributed random variables taking values in a countable set S is a Markov chain. What if the variables are independent, but each may have a different distribution?
4. Let us modify the example with broken/working machine from the class: If the machine is broken, the probability that it will be repaired in another day is still 0.9 . However, if it is broken for the second day in a row, the probability that it will be repaired is only 0.5 . If the machine is broken for three days in a row, it is broken forever.
(a) Can you represent this with a Markov chain?
(b) Suppose the probability that a working machine breaks increases to 0.1 after a year (starting from the last successful repair). Is this a Markov chain?
5. A mouse moves along a tiled corridor with $2 m$ tiles, where $m>1$. From each tile $i \neq 1,2 m$ it moves to either tile $i-1$ or $i+1$ with equal probability. From tile 1 or tile $2 m$, it moves to tile 2 or $2 m-1$, respectively, with probability 1 . Each time the mouse moves to a tile $i \leq m$ or $i>m$, an electronic device outputs a signal L or R, respectively.
(a) Is the position of the mouse a Markov chain?
(b) Can the generated sequence of signals L and R be described as a Markov chain with states L and R ?
6. Consider the Markov chain that describes fly's movement (in the example from the lecture). Assume that the process starts at any of the four states, with equal probability. Let $Y_{n}=1$ whenever the Markov chain is at state 0 or 1 , and $Y_{n}=2$ whenever the Markov chain is at state 2 or 3 . Is the process Y_{n} a Markov chain?
7. A die is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the transition graph.
(a) The largest number M_{n} shown up to the n-th roll.
(b) The number N_{n} of sixes in n rolls.
(c) At time r, the time A_{r} after the most recent six.
(d) At time r, the time B_{r} before the next six.
8. Suppose $\left(X_{t}\right)$ is a Markov chain. Show that $\left(X_{2 t}\right)_{t=0}^{\infty}$ is also a Markov chain. What is its transition matrix?

A bit of theory

9. Below is a formal proof of the transition probabilities for several steps. In the computation below, where exactly are we using the fact we are dealing with a Markov chain? Can you explain each of the equations?

$$
\begin{align*}
P\left(X_{k+1}=j \mid X_{0}=i\right) & =\sum_{\ell=1}^{s} P\left(X_{k+1}=j \& X_{k}=\ell \mid X_{0}=i\right) \tag{1}\\
& =\sum_{\ell=1}^{s} P\left(X_{k+1}=j \mid X_{k}=\ell \& X_{0}=i\right) P\left(X_{k}=\ell \mid X_{0}=i\right) \tag{2}\\
& =\sum_{\ell=1}^{s} P\left(X_{k+1}=j \mid X_{k}=\ell\right) P\left(X_{k}=\ell \mid X_{0}=i\right) \tag{3}
\end{align*}
$$

10. (Unsuprising, but used all the time) Given a time-homogeneous Markov chain (X_{t}) and $i, j \in S$, we have

$$
P\left(X_{t}=j \mid X_{0}=i\right)=P\left(X_{k+t}=j \mid X_{k}=i\right)
$$

Why is it true?
11. Are the following statements equivalent?

1. $P\left(\exists t>0: X_{t}=j \mid X_{0}=i\right)>0$
2. $\exists t>0: P\left(X_{t}=j \mid X_{0}=i\right)>0$
