


Splitting lemma

Lemma 32 (Splitting lemma, Fleischner/Mader).
Let G be a connected bridgeless graph, v

i

a verter with degv > 4, and ey, ey, €9
1

three of its incident edges. Suppose that

Glueg,eq,e0) 18 connected. (This in particu-

ar holds whenever G is 2-connected.) Then
-‘_—-—‘-——n—

at least one of Gl ¢ Ci@_%ﬁi’ is bridge-
less connected.

Proof. Let the edge e; connect v with v;. Let
G' = G—{ep, e1, €2} and consider decomposi-

tion of G’ into edge 2-connected blocks. Next

contract each block to a vertex, what we get is
a forest, say, F'. Let u and u; be the vertices
of F' corresponding to v and v; (i = 0,1,2).
As (G is connected and bridgeless, the same is
true for F'+{uu; : i =0,1,2}. (In particular,

the only leaves of F are among u, ug, 41, u9.)



Also splitting, say, ep, e; away from v corre-
sponds to adding £+ {uus, uguy} — for such
graphs we need to check edge 2-connectivity.
'e have just two possibilities:
F'is disconnected. As G|

nected and G bridgeless, the component con-

v:e),eq,e9) is con-
taining u contains also (exactly) one u;. More-
over, this component is a path connecting u
with ;. The other important vertices (say
uj, up, where {i, j, k} = {0,1,2}) arc in the
other component, this component is a u; —
uj, path. In this case, splitting away e;, e;
or e;, e} preserves 2-connectivity. Easily, on
of these includes the desired cases (as 0 €
{i,7,k}). See the first case in Figure ?7?.

F is connected. Let T be the minimal
subtree containing wug, vy, us. Let w € T be
such that F'is T plus a w — w path. There
is (at least one) ¢ such that w is in a u; —
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u; and in a u; — uy, path (again, {i,7,k} =
/ z AN (—\/ﬂ_‘

10,1,2}). Again, splitting away e;, e; or e;, ey, 0 "/
preserves 2-connectivity, and at least one of -

these is what we search for. See the second

case in Figure 77. O U
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Matching polytope and applications
We will look at various sets of edges geo-

metrically. That is, we consider REQG) 45 4

euclidean vector space (which it is) and study

various polytopes in it. For a set M C E(G),

we define ¢y — the characteristic vector of €5

M by cple)=1ife € M, and cpr(e) =0 — —
- - ef

otherwise. qr M

Definition 33. The matching polytope of a = C A & O & F——a O

(multi)graph G is defined by

MP(G) = conv{cys : M is a matching in G} . C}( /‘ 00-—0

—

It is not hard to see that all points ¢, (for a

——

too, so the zero vector is a vertex of every

matching polytope.
For many application it is desirable to ob-

tain description of the matching polytope as
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an intersection of half%pacoq An applica‘[ion

e

jecture will follow shortly, for an (orlglndl) ap-
plication in combinatorial optimization con-
sider the task to find a_maximal matching in a

graph with weighted edges. This is the same

as solving a linear program over the matching
polytope, and we can do this using ellipsoid
method. (We only need to provide an efficient
representation of the matching polytope, for
details see XXX.)
* For each f e ]\/IP(G’) and v € V(G) w
have Z 5w ) < 1 (wesum over all edgeb
1n01dmertex), as this inequality
holds for all vectors ¢)y. This, however does
not describe M P(G) completely (Exercise!).

Next, we observe that for each vertex set X

of odd size, each matching uses at most

%Dﬂ— 1)/2 edges induced by X. Consequﬁnt"l}rfi )
.. /

62

T

Vro[ S G S SN gw[c\oll /Qﬂﬂcj

/,w,t,(/u; 0&7 ; o 6’/]’//0(@)

n ﬁ/c.,ou\/%/u\ MVZZ»

%7// e
&% m{ﬁ ’

—F . (,M)
N/



Theorem 35. Let PMP(G) be the poly-
tope of perfect matchings that is PMP =

conv{cys : M is a perfect matching in G} er

- f y
_ 4,
Then PMP(G) = /’7’/ M 4},{
{f e REG) . f(5(v)=1 W e V(Q)

f3(X) > 1 B o = 4

>
X C E(G) of odd size} .
C
ﬁ’” o
2z

N

<C

A



- o= (7 eREO . fow)=1vweV -
Now we give the postponed proof of Theo- c- {feR7T: fov)=1YweV(G)
rem 35. f0(X)) > 1 VX C E(G) of odd size} .
Proof. Let Pg be the polytope defined by the LA
Qeuu

=2
inequalities [ ). Easily PMP¢; C Pg, as all /? Nfa > /2_
vertices of the perfect matching polytope (i.e.,

A
all ¢py for a perfect matching M) satisfy the % G K F /Yﬁz_ ;g 72
inequalities (A7), For the other inclusion, we ﬁ ﬁ % /D
proceed by contradiction: we take the graph G j() = @ 70 §/ ?i?/é P /& G
with smallest |V (G)|+|E(G)|, and one vertex = 7 o
f of P such that f ¢ PMPg,. @/T o Pre)=©
We have 0 < f(e) < 1 for each edge ) y
e of G. If f(e) = 0 for some edge e, we/ ,e ~ jD/Z:('GQ P @@,g_« /Z;/\(-@,
let G = G — e and f' to be the restric- ,
tion of f to E(G’). Tt is easy to check that -~ -P = j o - C ST P
’ e

~

f'e Pey, and as (' is smaller than G, we have - 0 4
. . 7«

Prr = PMPgy and f’is a convex combina- &

tion of characteristic vectors of pertect match- /< - (/% /9’0 o A

ings of G/. When we take these matchings
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as perfect matchings of G (by extending the

characteristic vector by a 0 in the coordinate

_h___—_———————'__\—h-_\___‘_ﬂ

indexed by e), we get f € PM P, a contra-
oS =P E

diction.
On the other hand, if f(e) = 1;for some

edge e = uv, then we put G = G —u — v.
Again, we let f/ = fE(G;)MHat
f' € Py = PMPeu. By extending all the
pef_ftﬁmdﬁt_@mg_i_tihftt_ occur in the convex p/ c P /o /@ /7 @ g A

combination for f’ by the edge e we get per- o ¢ @ ( UC\ QUJ ) ~ / LA ¢

fect matchings whose convex combination is

TTTT—— [/

— —

]f , Again 5713_7(}91_17t_1jadiction.7 /
G has no vertices of degree < 1. G 10 ( J@)) - ‘[Q /4)‘-@}4-7/\@(,,.)
certainly does not have isolated vertices (b (0ux P c / /?/p :@ ) // //
imequality (229), and if v is a vertex incident B /@/ i / @, O

only with an edge e, then f(e) = 1, which we

already disproved. Consequently, |E(G)| >
VG|

“Case 1. E(G)| = |V(G)| G is 2-regular,




thus a disjoint union of circuits. None of these
is odd (otherwise we let X be the set of ver-
tices of an odd circuit and get a contradiction
with inequality (?7)). For even circuits it is
easy to ... (Exercise!).

Case 2. |E(G)| > |[V(G)| As f is a ver-
tex of a polytope in RFG) at least |E(G)]
of the inequalities are satisfied with an equal-
ity. (Exercise!) Thus, one of them must be (*)
ZeeJ(X) f(e) =1 for some X C V(G), such
that 1 < |X| < |[V(G)| and |X]| is odd. As
| X| is odd, every perfect matching of G' con-
tains an edge of 6(X). This together with (*)
implies that each of the sought-for matchings
involved in the representation of f contain ex-
actly one edge of §(X). This suggest that we
may want to treat X as a single vertex: if there
is a representation for f, then this change of

the graph will transform them in matchings.

¢ £ 4

FG s {f e REC f(5(0) =1 Vo e V(G)

f0(X)) > 1 VX C E(G) of odd size} .

= O _
X fgx)%
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Case 2. |E(G)| > |[V(G)| As f is a ver-
tex of a polytope in REG) at least |E(G)]
of the inequalities are satisfied with an equal-
ity. (Exercise!) Thus, one of them must be (*)
26650{) f(e) = 1for some X C V(G), such
that 1 < | X| < |[V(G)| and |X]| is odd. As
| X | is odd, every perfect matching of G' con-
tains an edge of 6(X). This together with (*)
implies that each of the sought-for matchings
involved in the representation of f contain ex-

actly one edge of §(X). This suggest that we

may want to treat X as a single vertex: if there .

is a representation for f, then this change of
the graph will transform them in matchings.
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To put this formally, we let G = G/X
— all vertices of X are identified to a single
vertex, we keep possible multiedges) — and
= G/X (where X = V(G)\ X). Again,
let f; be the restriction of f to the edge-set of
G; (i =1,2). Itiseasy to check that f; € Pg.,
which implies (Exercise!) that there are per-
fect matchings (M; k) k | of G; such that

1
fi= ¥ Z CM -
R

Recall that each M; j. contains exactly one

@

—

of the edges of §(X) (we abuse the notation
X) in G,
and the corresponding edges of G, G). More-

slightly, we identify the edges of §(

over, if e is one of these edges, then the num-
M; j. of G for which
c€ M@k is N fi(e) (just look at the e-th coor-
dinate of (2)). However, N fi(e) = N fo(e) =

—~— ~

T4

ber of perfect matchings







N f(e) (recall f; was defineas a restriction
‘q_ﬁ .
of fto E(G;)). Consequéntly, we may pair
up the matchings of and of Go to agree
on the edges of 6(X
that My ;. and

Z indeed we may assume
. contain the same edge

from the cut

. We put Mk = Ml,k U MQ,k'
It is easy to check that f is the average of ¢ My

which finishes the proof. ]

Theorem 38 (Seymour). Every bridgeless
graph G has a 6-NZF.

Proof. Equivalently, we will show it has NZ



Ly x Zs-flow. First, we can assume that G is
3-edge-connected (with the same proof as in
the case of 8NZF). We will find a spanning
cycle C' and carefully chosen edges between
various components of C'. The plan is to use a
Zio-flow f with support E(C') and a Zs-flow
g that is NZ outside of E(C).

We will recursively define subgraphs (H;);>
of G, cycles (Cy);>1 and sets of edges (Fj)>1.
To start, let Hy be any vertex of G. If H; is
defined, we consider a decomposition of G/ =
G—V (H;) into 2-edge-connected components—
blocks. (If V(G) = V(H;), we stop and put
n = 1.) The structure of this decomposition is
such that after contracting each of the blocks,
we obtain a forest. We take any leaf of this
forest at let L be a block of G’ corresponding
to it.



We observe that [6(L)| < 1 (by the choice
of L), while |0g(L)] > 3 (as G is 3-edge-
connected). This implies there are at least
two edges connecting L with H;, we let Fj,q
be the set of some two of them, and z, y
be the ends of those edges in L. As L is
2-cdge-connected, there are two edge-disjoint
x — y paths, and their union is a connected
cycle, let it be denoted Cjq. (If z = vy,
we may choose Cj1q to be empty.) We put
Hi\1 = H; + C;y1 + Fj1 (We do not add
spanned edges. )

Welet C' =U!" |C;, F=U! | F;, H=Hy.
All edges of G are of three types: E(C), F,
and the rest, denoted by R. As claimed above,
(' is a spanning cycle, so it is easy to take a
Zip-flow with support E(C'). We now define a
Zis-flow that is non-zero on RU F

We observe (by induction on ¢) that all graphs
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H; are connected, so we take a spanning tree
T C H and let g, be a Za-flow that equals 1
on E(G)\ E(T). Next, we define g,,—1, ..., 9o
so that each g, is a Zs-flow that is nonzero on
Rand on Fj with j > k. If g; 4 is already de-
fined, we consider a cycle D; containing both
edges of Fj, 1, some x — y path in C;,1 and
any path in H; that connects the other ends of
the edges of Fj_ 1. Let ¢; be a Zs-flow that is
nonzero on D;. Consider flows g;11 + aqp; for
a = 0,1,2. At least one of them is nonzero
on both edges of Fj 1, while we didn’t change
edges of R neither of F. ;1. Consequently,
the mapping g = gg is nonzero on R U F' and
(f, g) is the desired Zn x Z:3-NZF on G. [

Notes: 1) Recall the standard proof of the
tact that graph of maximum degree at most k

is (k + 1)-colorable. The second phase of the



above proof is an analogue of this for k£ = 2.
Indeed, if the graph G/C' (each component of
C' is contracted to a vertex) is planar, then
we are using the fact that the dual (G/C)* is
2-degenerate. As we saw, the argument works
even for non-planar graphs. The nontrivial
part is, of course, to find the cycle C' such
that G/C' has this degenerate property.

2) It’s tempting to try and use similar ideas
to get a 5-flow conjecture. For this, one may
say the above proof in an alternative way: we
find a 2-flow f and a 3-flow ¢ that are not both
equal to zero at the same edge. Then 2g + f
is a NZ 6-flow. Now one may try to find a
2.5-flow g instead that is a real-valued flow
such that 1 < g(e) < 1.5 for each edge e for
which f(e) = 0. This would indeed produce a
b-flow. Exercise: discuss why does the above

approach fail.



Exercises: 4. Describe PM P when G is
a disjoint union of even circuits.

5. Let P be a polytope {z € R : Az < b}
Let V' denote the vertices of P. Let x be a
point of P.

(a) x is a convex combination of at most
d + 1 elements of V.

(b) If A and b have rational entries then
x 18 a convex combination of some elements of
V' with rational coefficients.

(c) There is a list vq,..., v, of vertices
from V' (possibly with repetition), such that
r= (v + - +uvy)/n.

6. * Try to modify the proof of 6-NZF theorem
to work for 5-NZF (as indicated in the notes
below the proof). Describe what makes this
approach fail. (If you succeed in proving the
existence of 5-NZF let humanity know! — see
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the list of open problems .. .)

In the last section we saw Seymour’s proof
of the existence of NZ 6-flow. Tutte’s 5-flow
conjecture is still elusive, let us however look
at some simple observations. In the following,

(7 is a minimal counterexample to the conjec-

ture. Explicitly: G is a bridgeless graph that
awﬂow and among such graphs
G has the smallest |V (G)| + |E(G)|.

(1) G is 2-connected Suppose not; then
G = G U G9 where graphs G| and G5 share
just one vertex, and both are bridgeless. By
minimality of G, both G| and Gy admit a NZ
5-flow, thus G has it, too.

(2) G is cubic Suppose not, let v be a ver-
tex such that degwv # 3. If degv = 1, then
G has a bridgemradiction. If degv = 2,
then we can suppress this vertex (contract one
of its incident edges). The graph we obtain
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is smaller, so has a NZ 5-flow, which is eas-
ily extended back to GG. Finally, let degv >
4, let (as in the Fleischner’s lemma), e, e,
eo be three of the incident edges. As G is
2-connected, the lemma implies that one of
graphs G = Glp.cpe] (¢ = 1,2) is bridgeless.
After suppressing the newly created vertex of
degree 2, we get a graph G;: that has the same
number of vertices as G but one edge less —
thus it admits a NZ 5-flow f;. It is easy to ex-
tend it back to GG and then to G, which yields
contradiction.

(3) G is edge 3-connected Suppose not,
let A C V(G) be such that [6(A)| = 2, say
§(A) = {e,'}. Now G’ = G/e is smaller
then G, thus it admits a NZ b-flow f. We
extend it to G by letting f(e) = (') (the
sign is chosen according to the orientation of
e, €'). As we saw already in several occasions,
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this extension vields a flow.

(4) G is cyclically edge 4-connected
Note that a graph G is called cyclically edge
k-connected, if |6( A)| > k whenever A is a set
of vertices such that both A and A contain a
circuit. (Exercise: determine the cyclic edge
connectivity of the Petersen graph.)

Suppose G fails the above definition with
k = 3 that is there is A such that |§(A)| = 3.
Put Gi = G/A, G = G/A - both G and
(G5 are smaller than G, thus admit a NZ 5-
flow. Now it is possible to show [Sekine and
Zhang] that
 Iglx) - Fo,(x)

(Here KS = (3 is the graph with two vertices

Fo(x)

and three parallel edges.)
Using this with @ = 5 (CHECK) gives us
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that G has a NZ 5-flow, a contradiction.

(5) G is cyclically edge 6-connected
[Kochol 2004]

(6) G is has no circuit of length less
than 9 [Kochol 2000]
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