Splitting lemma

Lemma 32 (Splitting lemma, Fleischner/Mader).
Let G be a connected bridgeless graph, v

a verter with degv > 4, and ey, ey, €9

three of its incident edges. Suppose that

Glueg,eq,e0) 18 connected. (This in particu-
tarfiolds whenever G is 2-connected. ) Then
“_—-—‘-——-

at least one of Gl ¢ (i@ﬂlﬁi’ is bridge-
less connected.

Proof. Let the edge e; connect v with v;. Let
G' = G—{ep, e1, €2} and consider decomposi-
tion of G’ into edge 2-connected blocks. Next

contract each block to a vertex, what we get is

a forest, say, F'. Let u and u; be the vertices
of F' corresponding to v and v; (i = 0,1,2).
As (G is connected and bridgeless, the same is
true for F'+{uu; : i =0,1,2}. (In particular,

the only leaves of F' are among u, ug, uy, us.)






Also splitting, say, ep, e; away from v corre-
sponds to adding £+ {uus, uguy} — for such
graphs we need to check edge 2-connectivity.
We have just two possibilities:

I is disconnected. As G|

nected and G bridgeless, the component con-

vieg.eq,eo] 18 CON-

taining u contains also (exactly) one u;. More-
over, this component is a path connecting u
with ;. The other important vertices (say
uj, up, where {i, j, k} = {0,1,2}) arc in the
other component, this component is a u; —
uj, path. In this case, splitting away e;, e;
or e;, e} preserves 2-connectivity. Easily, on
of these includes the desired cases (as 0 €
{i,7,k}). See the first case in Figure ?7?.

F' is connected. Let T be the minimal
subtree containing wug, uy, uo. Let w € T be
such that F'is T plus a w — w path. There
is (at least one) ¢ such that w is in a u; —
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u; and in a u; — uy, path (again, {7, j,k} =
10,1,2}). Again, splitting away e;, e; or e;, ey,
preserves 2-connectivity, and at least one of
these is what we search for. See the second

case in Figure 77. O



Shortest cycle cover problem

We briefly remark a related problem: the
shortest cycle cover problem. Given a bridge-
less graph G we care about a collection of
cycles that covers every edge of G at least
once. We denote by sce(G) the minimal to-

tal length of such collection. _Jaeger’s 8-flow

gives easily a 4-cover by 7 cycles; it follows
that scc(G) < 4m. This can be certainly
improved; the best known general result is
see(G) < %m (Jamshy and Tarsi). (Better

results are known for some classes of graphs,

in particulap cubic graphs.) It is conjec-
tured tha and this would, if

true, imply the CDC conjecture.




Berge-Fulkerson conjecture

Conjecture 3 (Berge, Fulkerson). If G is
a bridgeless cubic graph, then there exist 6
perfect matchings My, ..., Mg of G with the
property that every edge of G is contained

i exactly two of My, ..., Mg.

Notes:

v

e true for the Petersen graph s

e truc in 3-edge-colorable graphs

e corollary: five matchings that cover all edges

e open: constant number of matchings that

cover d@ ges
N
4










Matching polytope and applications
We will look at various sets of edges geo-

metrically. That is, we consider REQG) 45 4

euclidean vector space (which it is) and study

various polytopes in it. For a set M C E(G),

we define ¢y — the characteristic vector of €5

M by cple)=1ife € M, and cpr(e) =0 — —
- - ef

otherwise. qr M

Definition 33. The matching polytope of a = C A & O & F——a O

(multi)graph G is defined by

MP(G) = conv{cys : M is a matching in G} . C}( /‘ 00-—0

—

It is not hard to see that all points ¢, (for a

——

too, so the zero vector is a vertex of every

matching polytope.
For many application it is desirable to ob-

tain description of the matching polytope as
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an intersection of half%pacoq An applica‘[ion

e

jecture will follow shortly, for an (orlglndl) ap-
plication in combinatorial optimization con-
sider the task to find a_maximal matching in a

graph with weighted edges. This is the same

as solving a linear program over the matching
polytope, and we can do this using ellipsoid
method. (We only need to provide an efficient
representation of the matching polytope, for
details see XXX.)
* For each f e ]\/IP(G’) and v € V(G) w
have Z 5w ) < 1 (wesum over all edgeb
1n01dmertex), as this inequality
holds for all vectors ¢)y. This, however does
not describe M P(G) completely (Exercise!).

Next, we observe that for each vertex set X

of odd size, each matching uses at most

%Dﬂ— 1)/2 edges induced by X. Consequﬁnt"l}rfi )
.. /
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for each such X we have inequality

Z fe) |X|—1

Hﬂ&,ﬁ_’ifr—

satisfied for each f = ¢y and so for each f €
MP(G). This is already enough to describe
the matchi r

[1(8) =3, o f(e)

Theorem 34 (Edmonds). For every graph
G we have,M P(G) /= < Loir,

—

{f eRPE: f(6(v) <1v0 € V(@)
FE@GX) < B

VX C E(G) oj odd size} .

Theorem 35. Let PMP(G) be the poly-
tope of perfect matchings that is PMP =

conv{cys : M is a perfect matching in G}.
-
e



Then PMP(G) =
{(f e REG) . £(5() =1 Vv e V(Q)

fO(X)) =1
LVX C F(Q) of odd size} .




r-graphs
We say a graph G is an r-graph, if G is r-
_regular, and for every odd set of vertices X
the size of the edge-cut 6(X) is at least r. For

example, a 3-graph is the sae as a bridgeless
e —
cubic graph (Exercise!).

Application 1 Every r-graph has a uni-
form cover by perfect matchings. That is,
there i1s a list of perfect matchings such that
cach edge is in the same number of them.

(Easily, this number must be 1/7.)

Proof. Let G be the graph and let é (e) =1/ TJ

for each edge of G. We will show that [ is
in the perfect matching polytope PM P(G).
Obviously the sum around each vertex equals
1. Now for each odd set X the size of §(.X) is

at least r, which gives the other condition [







Corollaries of Application 1
1) Every bridgeless cubic graph has a uni-

form cover by perfect matchings.

2) Every bridgeless cubic graph has a perfect

matching. (This of course has easier proofs.)

It also has a perfect matching using any given
~2b @50 Has & PEHICCL HAatCLils

ﬂﬁ‘ (This, too, can be provm applica-
tion Ome, but it’s always good
to have another proof technique.)

3) Every bridgeless cubic graph has a perfect
matching that contains no odd cut of size 3.

Indeed, every matching that is a part of the

uniform cover works. Consequently, every such

graph has a 9-factor that does not contain a

triangle.




5-edge-connected factor

A more complicated result of Kaiser and Skrekovski

says that every graph contains a 2-factor that
intersects every 3-cut and every 4-cut. As a
corollary we get the following result that is of-
ten useful for dealing with properties of flows
and cycles in graphs.
Theorem 36 (Kaiser, Skrekovski). Let G be
a 3-edge-connected graph. Then G contains
a cycle C' such that the graph G/C' (where
each component of C' is contracted to a ver-
ter) is 5-edge-connected.

(The proof is essentially a cut-uncrossing ar-

gument. )
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Application 2 M . /3/3/ _/L(Z {QQCJ — EAU‘U}

Theorem 37 (Kaiser, Kral, Norine). Every

e eey
bridgeless cubic graph G has perfect match- 10 (2) _ / —
ings My, My such that [MUMy| > 3|E(G)|. AN 2 cdM

O Proof. First use Application 1, namely the third

5
V)
J'—-_
orollary: Let M 1 fect matching tha I \
corollary: Let M be a perfect matching that _ #{f@}\“f A%’

_contains no odd cut of size 3. Define f(e) =
1/5 for e € M and f(e) = 2/5 elsewhere.

@ We check that f is in PMPg. The sum ,Q‘ J &J) = /
(——’—"‘____\——!

around each vertex is 1. If X i1s an odd- /'/:-?

size vertex set, then |§(X)| is odd, therefore /Z u%/) ><

cither 3, or at least 5. In the latter case,

/
Zeed(X)f(e) > 5. % = 1, which we need. [J‘/){)/ — /\/2 M
In the former case, we know by the choice of \ o

w
M that exactly one of the edges in §(X) is in ) /
M, therefore 2665()() fle) = %—Q— % —|—% = 1. ;

@ As f is in the perfect matching polytope,
f

is a convex combination of ¢y, for some
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perfect matchings M;. Put S = E(G) \ M.
By definition of f, we have f(.S) = %|S |, hence
9 m——
cpr,(S) = £1S] for some M; involved in the
convex combination for f. Now [M U M;| =

-

1,2 2 3 o
[E(G)]-(3+35-5) =3[EG)] [
= B o=

The above may be generalized as follows.

For a graph G define m;(G) to be the maxi-
—_——
mum fraction of edges that can be covered by
a union of ¢ perfect matchings — that is
| MU - U M|

m;(G) = max{
|E(G)]
So we found that mo(G) > 3/5 for every 3-

graph (G, and this bound is attained for the
Petersen graph. [KKN] did further find that
M for a 3-graph G. If Berge-
Fulkerson conjecture is true, we have mg(G) =
1.

Exercises: 1. Prove that a 3-graph is the

same as a bridgeless cubic graph. 2. Find up-
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per and lower bounds for m3(G) when G is a
cubic bridgeless graph. (Note that ms(G) >
27/35 is the best known so-far.)

3. Find some bounds on m;(G) for a general
7, and use this to estimate number of perfect

matchings needed to cover all edges of a graph

G.



Now we give the postponed proof of Theo-

rem 35.

Proof. Let Pg be the polytope defined by the
inequalities (?77). Easily PM P C Pg, as all
vertices of the perfect matching polytope (i.e.,
all ¢py for a perfect matching M) satisfy the
inequalities (??). For the other inclusion, we
proceed by contradiction: we take the graph G
with smallest |V (G)|+|E(G)|, and one vertex
f of Pg such that f & PMPg.

We have 0 < f(e) < 1 for each edge
e of G. If f(e) = 0 for some edge e, we
let G = G — e and f' to be the restric-
tion of f to E(G'). Tt is easy to check that
f'e Py, and as (' is smaller than G, we have
Prr = PMPgy and f’is a convex combina-
tion of characteristic vectors of perfect match-

ings of G/. When we take these matchings



as perfect matchings of G (by extending the
characteristic vector by a 0 in the coordinate
indexed by e), we get f € PM P, a contra-
diction.

On the other hand, if f(e) = 1 for some
edge e = wv, then we put G/ = G — u — v.
Again, we let f' = f| E(q) and we check that
f' € Por = PMPgy. By extending all the
perfect matchings that occur in the convex
combination for f/ by the edge e we get per-
fect matchings whose convex combination is
f, again a contradiction.

G has no vertices of degree < 1. ¢
certainly does not have isolated vertices (by
inequality (?7)), and if v is a vertex incident
only with an edge e, then f(e) = 1, which we
already disproved. Consequently, |E(G)| >
V(@)

Case 1. |E(G)| = |V(G)| G is 2-regular,



thus a disjoint union of circuits. None of these
is odd (otherwise we let X be the set of ver-
tices of an odd circuit and get a contradiction
with inequality (?7)). For even circuits it is
easy to ... (Exercise!).

Case 2. |E(G)| > |[V(G)| As f is a ver-
tex of a polytope in RFG) at least |E(G)]
of the inequalities are satisfied with an equal-
ity. (Exercise!) Thus, one of them must be (*)
ZeeJ(X) f(e) =1 for some X C V(G), such
that 1 < |X| < |[V(G)| and |X]| is odd. As
| X| is odd, every perfect matching of G' con-
tains an edge of 6(X). This together with (*)
implies that each of the sought-for matchings
involved in the representation of f contain ex-
actly one edge of §(X). This suggest that we
may want to treat X as a single vertex: if there
is a representation for f, then this change of
the graph will transform them in matchings.

3



To put this formally, we let G = G/X
— all vertices of X are identified to a single
vertex, we keep possible multiedges) — and
Gy = G/X (where X = V(G) \ X). Again,
let f; be the restriction of f to the edge-set of
G; (i =1,2). Itiseasy to check that f; € Pg.,
which implies (Exercise!) that there are per-
fect matchings (M; k.)fy:l of G; such that

N
1
fi=+ Z M, - (2)
h—1

Recall that each M; ;. contains exactly one
of the edges of §(X) (we abuse the notation
slightly, we identify the edges of §(X) in G,
and the corresponding edges of G, G). More-
over, if e is one of these edges, then the num-
ber of perfect matchings M; . of G for which
e € M; . is N fi(e) (just look at the e-th coor-
dinate of (2)). However, N fi(e) = N fo(e) =

T4



Nf(e) (recall f; was defined as a restriction
of f to E(G;)). Consequently, we may pair
up the matchings of G; and of G9 to agree
on the edges of §(X), indeed we may assume
that My j, and My contain the same edge
from the cut Z. We put My, = My . U My 1.
It is easy to check that f is the average of ¢ My

which finishes the proof. ]

Theorem 38 (Seymour). Every bridgeless
graph G has a 6-NZF.

Proof. Equivalently, we will show it has NZ
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