An equivalent formulation of NZ flows

Theorem 22 (Hoffman’s Circulation Theo-
rem). Let G be a digraph, let 0 < a < b be

wntegers. Then the following are equivalent.
1. There is a Zi-flow f on G such that a <
fle) < b for each edge e of G. DUES

2. There is a R-flow [ on G such that a <
fle) < b for each edge e of G.

3. For each U C V(G) we have § <
b ~

a’ V /
Proof. (1) = (2) is trivial. (2) = (3): take

any set U. As “the net flow over each cut is

6 ()|
6~ ()|

<

zero”, we have

> fe= ) fle).

ecot(U) ecd—(U)
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(3) = (1): We call a Z-flow reasonable if /) 10 /ﬂ Zdﬁé 4 j :; /; é Véﬁ (C%/a(' /J‘Q Zj

0 < f(e) < bforeach edge e. Find reasonable
flow that is optimal in the following sense:
= min{f(e) : e € F(G)} is as large as

- r_h‘_‘——‘_—_\
possible;

e among flows with the same m we choose the

one with as few edges attaining f(e) = m
——e e ——

as possible.

We claim that the optimal reasonable flow does
in fact satisfy f(e) > a for every edge, which
would prove (1). For contradiction, suppose
there is an edge ey = uguvy for which f(eg) =

m < a. W Ta&{?

Good edges e: [
of_(ﬂf b and we use e forward, FL/{”U - BM&B a //p@/ g {

'f (e) > m + 1 and we use e backward.

ElthLI a%path of good edges OR a cut 7{‘4(( gﬁgy § o /@/4 Z%%\L&

certi&jng it. ... ]
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Circular flows

Definition 23. Let G be a digraph, f a R- /j
flow, re! Q. We say that f is nowhere-zero
circular r-flow, if

e) € [y —1]

;ﬂ
for all edges e € E(G).
Definition 24. Let G be a digraph, f a Zq—
flow, p,q € N. We say that f is nowhere-

—

zero circular p/ g-flow, if
) € {i % 1,. ?a Z}
for all edges c€ EG

e Definition 23 and 24 are equivalent (for r =
P/q)-

e A variant of the circulation lemma for real
a, b also true (use just (2) and (3)).

o [t follows that k-flow implies existence of

k' flow for all &' > k.
/
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Snarks

3 ¢ ( /3//2’@/ 8 )

A graph is called a snark, if it is SZ/ -3

e cubic, \f—/// -2 —

obridgelessand 7" T ,—gé
- — Hlos) !

e not 3-edge-colorable. /

quivalently, it has no 4-NZF. / //L&&{ S cloy 4

Some authors require a higher édge—connectivity
(we may insist on the graph to be cyclically 6-

edge-connected), but we won’t do it here. ' ,
Snarks are canonical counterexamples. / j




Snarks with a 2-cut

Start with graphs G and H each with a spec-
ified edge. To form the graph G=H we cut
the specified edges in G and H gr;gl glue the
“half-edges” to connect G and H.

G=H is a snark/ <= G or H 1s a snark.

-

L=

— ”\1

Equivalently: when we “add anything to an /

edge of a snark”, we get again a snark and all s ( o
snarks with a 2-cut are obtained this way.

—_—

-2 Any edge 3-coloring of G=H gives the same
color to the two edges of the 2-cut. Conse- -] =7 7
quently, we may use the coloring of G=H to

get colorings of G and of H. OTOH . ..



with one specified vertex. We split these spec- { C

Snarks with a 3-cut 6\ p ; / /
Now we start with cubic graphs G, H each / /‘f
-/

ified vertices in three vertices of degree 1, and ‘ }

identify the three pendant of G with those of

H. (There are 3! ways to do so.) We use

G'=H to denote the resulting graph.

(G=H is asnark <= (G or H is a snark.

Equivalently: when we “add anything to a
vertex of a snark”, we get again a snark, and

all snarks with a 3-cut are obtained this way.




Exercise

We define two useful operations on cubic graphs.

A A-Y transformation is a contraction of a tri-
angle to a single vertex, a Y-A transformation
is the inverse operation. (Observe that these
operation preserve the 3-regularity.) For a cu-
bic graph G, prove that G is a_snark ‘i?lc_f\G'
obtained by a series of Y-A and A-Y transfor-
mations from G is a snark.

Note: The simplicityqof the above two con-

structions, in particular the fact that only one

of the smaller graphs needs to be a snark, to-

gether with possibility to reduce the “big con-

jectures” to cyclically 4-edge-connected graphs,

explain why some authors choose to demand

that the snarks are free of 2-cuts and non-

. . (Jb——
trivial 3-cuts.
c,—r:::?/
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Snarks with a 4-cut — Isaacs’ dot prod-
uct

Let G, H be graphs, ab, cd edges of G, e an
edge of H, let x, y be the other two neighbours
of one end of e, u, v the other two neighbours
of the other end. To form the Isaacs’ dot
product G- H of G and H we delete edges ab

and cd from G, e with its end-vertices from

H, and add edges ax, by, cu, dv.

Theorem 25 (Isaacs, 1975). If G and H
are snarks then so is G - H. If both G and
H are cyclically 4-edge-connected and if the
vertices a, b, ¢, d are all different, then G- H

15 also cyclically 4-edge-connected.

Proof. Suppose we have an edge 3-coloring f
_

of G - H. We distinguish two cases.
(1) flax) = f(by) (2) flax) # f(by)
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Flower snarks



Let n be odd. To describe a graph J,,, we
start with three copies of C),, we denote its
vertices by i1, 49, 13 for ¢ = 1,...,n. Re-
place edges ngls and n3ls by nols and nslo.
Finally, for each ¢ we add a new vertex 2 and
join it by an edge to 21, 9, 23. On Figure 77 we
can see Jy (this particular graph is sometimes
called the flower snark). and J3 — is just a
Y-A transformation of Pt (equivalently, it is
Pt=K},).

Theorem 26 (Isaacs, 1975). If n is odd then
Jn is a snark. Ifn > 7 then J,, is cyclically

6-edge-connected.
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Proof. Suppose J;, can be edge-colored using
three colors. Let B; denote the subgraph in-
duced by vertices i, 11, 19,23 and the incident
edges (see Fig. ?77). We divide the edges of
this subgraph into three triples, Left, Right,
and Top. (Of course the Right edges of B; are
the Left edges of B;,1.) Clearly not all edges
of of L can be of the same color, as then it is
not possible to color 7'. Thus there are two
possibilitics.

(1) Edges of L use one color twice.
Say, they use colors 1, 1, and 2 in some order.
It is easy to check that then edges of R use
colors 2, 3, and 3, in some order. In the next
block we will use 1, 1, 2 on the right, and so
on. As n is odd, we get a contradiction.

(2) Edges of L use all three colors.
Again, it is simple to explore the two possi-
bilities how to extend the coloring on R: both
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are obtained from the coloring of L by a cyclic
shift (i.e., a permutation formed by one 3-
cycle). In between the blocks By, and By we
introduced a transposition by the construc-
tion of the graph. Thus if there is an edge
3-coloring, then we can write an identity as a
composition of 3-cycles and one transposition,
which is a contradiction.

TODO: cyclic connectivity?
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