Flows and spanning trees – sum

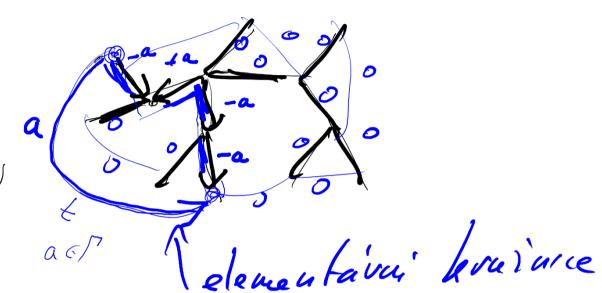
Let T be a spanning tree of G. Now for every edge $t \in E(G) \setminus E(T)$ and every $a \in \Gamma$ we let $\varphi_{t,a}$ be the (unique) flow in G such that

- $ullet arphi_{t,a}(t) = ullet oldsymbol{a}$
- $\varphi_{t,a}(e) = 0$ for $e \neq t$ and $e \in E(G) \setminus E(T)$

 \dots elementary flow with respect to T.

- (we need Γ to be a field).
- For any fixed spanning tree T the <u>elementary flows</u> $\{\varphi_{t,\underline{1}}: t \in E(G) \setminus E(T)\}$ form a basis of $\mathcal{F}_{\Gamma}(G)$.
- Any mapping $\varphi : E(G) \setminus E(T) \to \Gamma$ can be uniquely extended to a Γ -flow on G.
- ullet No control over the edges of T, thus we can't use this easily to construct a NZ flow.

(Recall)



of get (6) podprester cerèce, W(6) rovastar (Kirch. Zick.)

9/2/1 /2,1 CM 22/2

Lok sladela;

21

Flows and spanning trees – product

Theorem 17. Any 4-edge connected graph admits a \mathbb{Z}_2^2 -NZF.

Proof. If G is 4-edge connected, then there are two disjoint spanning trees, T_1 and T_2 (proof later).

Let f_i be the \mathbb{Z}_2 -flow on G that equals 1 on all edges not in T_i . (Such flow exists — see above.)

Now put $f = (f_1, f_2)$. This is indeed a \mathbb{Z}_2^2 -flow, and if f(e) = 0 = (0, 0) for some edge e then e lies in both T_1 and T_2 , a contradiction.

22

Theorem 18 (Jaeger). Any bridgeless graph admits a \mathbb{Z}_2^3 -NZF.

Proof Suppose first that G is 3-edge connected, we will use spanning trees similarly as in the construction of a NZ 4-flow.

We let G' be the (multi)graph obtained from G by adding to each edge a new one, parallel to it.

G' is 6-edge connected . . .

7, molly-hol go: 9. (e) + ext(7.)

9: (P, P, P) - Z-hol v 6

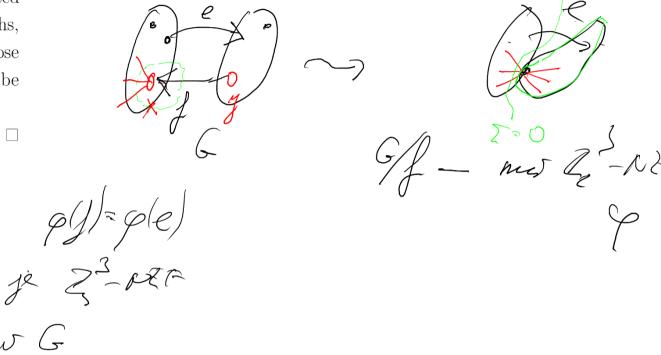
9(e) - (0,0,0) => e et (7.) H. => 5

37, T2, T3 kostog v 6, hv. dry.

37, T2, T3 -11- v 6

ECT, Spectrone(B) = 6

So the theorem holds for all 3-edge-connected graphs. To prove it for all bridgeless graphs, suppose there is a counterexample and choose one with minimal number of edges, let it be denoted G. . . .

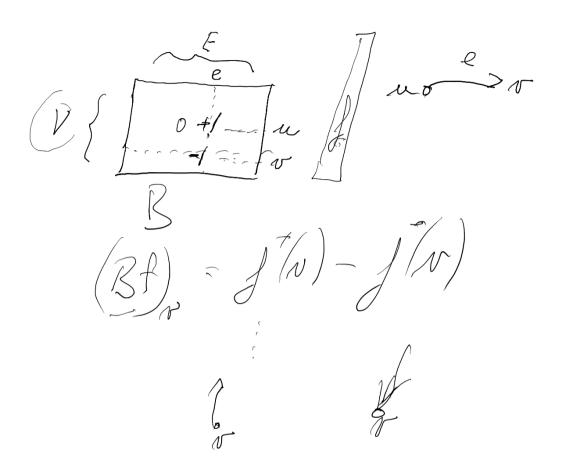


Flows and tensions:

a linear-algebra point of view

Let G = (V, E) be a digraph. The *incidence* matrix of G is $B = (B_{v,e})_{v \in V, e \in E}$ defined by $B_{v,e} = +1$ if e starts at v, $B_{v,e} = -1$ if e ends at v, and $B_{v,e} = 0$ otherwise.

- $\bullet \widehat{\Gamma^E}$ set of mappings / vector space
- for every $f \in \Gamma^E$ the product Bf has the v-coordinate equal to $f^+(v) f^-(v)$.
- flows = $\ker B$



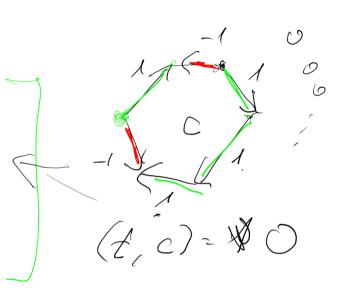
Tensions

Let $t: E \to \Gamma$ be a mapping. We say that t is a tension whenever

$$\sum_{e \in C^+} t(e) \neq \sum_{e \in C^-} t(e) \tag{1}$$

holds for every circuit C with C^+ and C^- being the edges oriented forward and backward, respectively, along C.

- "does not depend on orientation"
- For any $F \subseteq E$, t is a tension in G whenever t_F is a tension in G_F .
- an easy way to get tensions: *potential difference*.
- For $p:V\to \Gamma$ we define its difference $\delta p:E\to \Gamma$ by letting $(\delta p)(u,v)=p(v)-p(u).$
- δp is a tension for every p.



0

tolo: elekto.

tolo:

- $\bullet \langle f, g \rangle := \sum_{e \in E} f(e) g(e).$
- not in general an inner product! (Why?)
- Still, many notions from linear algebra generalize easily. In particular, t is orthogonal to all elements of a vector space, whenever it is orthogonal to all elements of a generating set.
- Equation (1) $\iff \langle t, c \rangle = 0$ for a particularly simple flow c: one that is zero outside of a circuit C and has values ± 1 on C.
- \bullet We already know that circuits generate \mathcal{F} the space of all Γ -flows on G. (Why?)
- Thus, t is an element of \mathcal{F}^{\perp} .

nert def. v typupe sh-somin (fig): [les-ges $\chi^{\perp} = \{y \in S : (x,y) = 0\} \Gamma = Z$

Theorem 19. Let \mathcal{F} , \mathcal{T} be the vector spaces (or modules) of all flows and all tensions, respectively, defined on a digraph G. Then

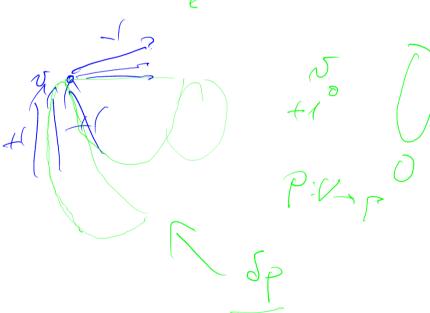
$$\mathcal{F}^{\perp} = \mathcal{T}$$
 and $\mathcal{T}^{\perp} = \mathcal{F}$.

Moreover, $\mathcal{F} = \ker B$ and \mathcal{T} is the row space of B, the icidence matrix of G.

Consequently

for every tension t there is a potential p such that $t = \delta p$.

Indeed, δp can be expressed as $B^T p$. And, obviously, $B^T p$ is a general form of a linear combination of rows of B.



$$P(A) = kor B = F$$

$$\int 2 R(B) - (kor B)$$

$$f = G = F$$

$$romost$$

$$f = R(B)$$

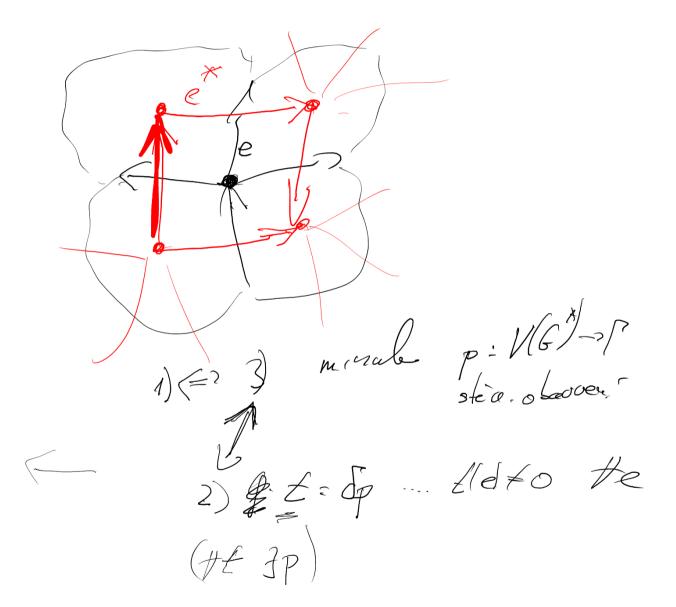
Flows and tensions for a planar graph

- G: a plane digraph (planar digraph with a fixed drawing in the plane).
- dual graph G^* is a digraph with vertices being the faces of G and with edges corresponding to edges of G: the edge e^* connects the face on the left of e to the face on the right of e.

• $(G^*)^* = ?$ G s • lod - Sphame

Theorem 20. The following is equivalent for a plane graph G:

- 1. G has a NZ k-flow
- 2. G^* has a NZ k-tension
- 3. G has a proper face-coloring by k colors.



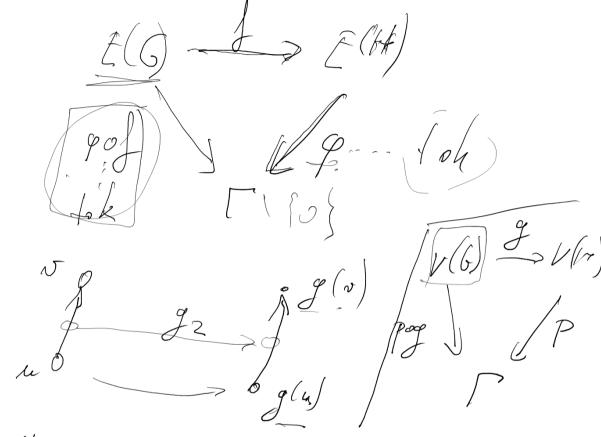
SE or G menes de bort ob.

G. G. Mad At Al vo lob.

Further abstraction possible

- A mapping $f: E(G) \to E(H)$ is Γ -flow continuous iff for every Γ -flow on H, $\varphi \circ f$ is a Γ -flow on G.
- A mapping $f: E(G) \to E(H)$ is Γ -tension continuous iff for every Γ -tension on H, $\varphi \circ f$ is a Γ -tension on G.
- Motivation: can help to solve flow-related problems:

Theorem 21. If $g:V(G)\to V(H)$ is a graph homomorphism that the induced mapping on edges $(u,v) \mapsto (g(u),g(v))$ is Γ tension continuous for every Γ



De: g... F-leade nu H

$$\varphi = \delta P P', V(1) = P'$$

staci veit: $g_2(y) = \varphi$

slovericke pro poichled do Hoceologie toky --- prof prostere gklie
feare --- prof prestere kohvanc

An equivalent formulation of NZ flows

Theorem 22 (Hoffman's Circulation Theorem). Let G be a digraph, let $0 < a \le b$ be integers. Then the following are equivalent.

- 1. There is a \mathbb{Z} -flow f on G such that $a \leq f(e) \leq b$ for each edge e of G.
- 2. There is a \mathbb{R} -flow f on G such that $a \leq f(e) \leq b$ for each edge e of G.
- 3. For each $U \subset V(G)$ we have $\frac{a}{b} \leq \frac{|\delta^+(U)|}{|\delta^-(U)|} \leq \frac{b}{a}$.

Proof. (1) \Rightarrow (2) is trivial. (2) \Rightarrow (3): take any set U. As "the net flow over each cut is

zero", we have
$$\int_{a}^{b} \frac{f(a)}{a} \int_{c}^{c} \sum_{e \in \delta^{+}(U)} f(e) = \sum_{e \in \delta^{-}(U)} f(e).$$

(3) \Rightarrow (1): We call a \mathbb{Z} -flow reasonable if $0 \leq f(e) \leq b$ for each edge e. Find reasonable flow that is optimal in the following sense:

- $m := \min\{f(e) : e \in E(G)\}\$ is as large as possible;
- among flows with the same m we choose the one with as few edges attaining f(e) = m as possible.

We claim that the optimal reasonable flow does in fact satisfy $f(e) \geq a$ for every edge, which would prove (1). For contradiction, suppose there is an edge $e_0 = u_0v_0$ for which $f(e_0) =$ m < a.

Good edges e:

- f(e) < b and we use e forward,
- f(e) > m + 1 and we use e backward.

Either a u_0v_0 -path of good edges OR a cut certifying it. . . . \Box

34

NEXT TUZE

Fractional flows

Definition 23. Let G be a digraph, f a \mathbb{Z}_q flow, $p, q \in \mathbb{N}$. We say that f is nowherezero fractional p/q-flow, if

$$f(e) \in \{p, p + 1, \dots, q - p\}$$

for all edges $e \in E(G)$.

- A variant of the circulation lemma for real a, b also true (use just (2) and (3)).
- It follows that k-flow implies existence of k'-flow for all k' > k.

MAT MAC