Flows and spanning trees — sum

Let T" be a spanning tree of G. Now for every
edget € E(G)\ E(T) and every a € T" we let
¢t be the (unique) flow in G such that

y N\
RPUI
( ®prqle) =0fore#tande € E(G)\ E(T)
... elementary flow with respect to T. g@j
— o Fp(G) = the vector space of all flows < /7
e (we need T to be a ficld). N

e For any fixed spanning tree T the elemen-
tary flows {¢y1:t € E(G)\ E(T)} form
a basis of Fp(G).

K?;;——
e Any mapping ¢ : E(G) \ E(T) —_L can

L —————
be uniquely extended to a I'-flow on G.

e No control over the edges of T', thus we
can’t use this easily to construct a NZ flow. 77—




Flows and spanning trees — product

Theorem 17. Any 4-edge connected graph
admits a Z%-NZF.

—
Proof. If GG is 4-edge connected, then there are
two disjoint spanning trees, T and T (proof
later)

| (7.
Let f; be the Zo-flow on G that equals 1 on %e o /?ﬂ L% yreUt w / Gl Z /7)

all edges not in 7T;. (Such flow exists — see

above.)

Now put f = (f1, f2). This is indeed a Z%—
flow, and if f(e) = 0 = (0,0) for some edge e /
then e lies in both 7' and 75, a contradiction. 6/4 T’ Q 4 (/;2’ A A /f }?/ ~ - 4
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Theorem 18 (Jaeger). Any bridgeless graph g A K 7

admits a Z3-NZF.
Proof] Suppose first that G is 3-edge connected

. (
e ’ -
we will use spanning frees similarly as in the Q
construction of a NZ 4-flow.

We le@e the (multi)graph obtained from

GG by adding to each edge a new one, parallel \ / A / r
—) -
to it. - /) [ /525/? “ é/ J - (j/

oy
G’ is 6-edge connected . .. —
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So the theorem holds for all 3-edge-connected
graphs. To prove it for all bridgeless graphs,
suppose there is a counterexample and choose
one with minimal number of edges, let it be
denoted G. ...




Flows and tensions:
a linear-algebra point of view

Let G = (V, E) be a digraph. The incidence
matriz of G is B = (By.e)yev,ecp defined by
By e =+1ifestartsat v, By = —1if e ends

at v, and By . = 0 otherwise.

o@ set of mappings / vector space

o for every f € I'E the product/B f }has the
v-coordinate equal to f*(v) — f(v).

o flows = ker B ‘
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Tensions _
Let t : E — I' be a mapping. We say that

_—

lis a tensian-WWer

t(e)

holds for cvcr_'}; circuit C Wit@an C™ be-
ing the edges oriented forward and backward

respectively, along C'.

e “does not depend on orientation” .

e For any F' C F, tis a tension in G when-
ever { is a tension in G p.

— —

e an casy way to get tensions: potential dif-

ference.

e For p : V — T we define its difference dp :
E — T by letting (dp)(u,v) = p(v) — p(u).

® 0p is a tension for every p.
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e M W
. SZ' Spier 4 > T//@j/ d

o (1.0) = Yoep Se)ole) . LY > 0 f Z

e 10t in general an inner product! (Why?)

5 . o [T
e Still, many notions from linear algebra gen- ( ‘3[2/ ‘ﬂ > _9 / Cee fw r /
eralize easily. In particular, ¢ is orthogonal M ép (4/?
&

to all clements of a vector space, whenever >( :
) F
-

5

it is orthogonal to all elements of a gener-

ating set.

e Equation (1) < (t,¢) = 0 for a particu- Xl: fj €/> ) /‘}{(y > =9 f [_'._. Z
larly simple flow ¢: one that is zero outside - A :;

of a circuit C and has values &1 on C.

e We already know that circuits generate F
the space of all I'-flows on G. (Why?)

e Thus, t is an element of F L _Z_‘
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Theorem 19. Let F, T be the vector spaces
(or modules) of all flows and all tensions,
respectively, defined ] h G. Then

Ft=T
Moreover, F = ker B and T is the row

space of B, the icidence matriz of G.

Consequently

for every tension ¢ there is a potential p |

such th@ ‘

—

Indeed, dp can be expressed as BTp. And,
| obviously, BTpis a general form of a linear

. combination of rows of B.
|
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Flows and tensions for a planar graph

e (7: a plane digraph (planar digraph with a
fixed drawing in the plane).

e dual graph G* is a digraph with vertices
being the faces of G and with edges corre-
sponding to edges of GG: the edge e* con-
nects the face on the left of e to the face on

G o b Siph

the right of e.
o (G*)* =7
Theorem 20. The following is equivalent
for a plane graph G:
1.G has a NZ k-flow —
2.G* has a NZ lsi%nséon e

3. G has a proper face-coloring by k colors.
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Further abstraction possible
o A mapping f : E(G) — E(H) is I'-flow

continuous iff for every I'-flow on H, po f

is a ['-flow on G.

e A mapping f : E(G) — E(H)is'-tension
continuous iff for every I'-tension on H,

@ o f is a I'-tension on G.
e Motivation: can help to solve flow-related
problems:
Theorem 21.1f g : V(G) — V(H) is a.Z
graph homomorphism that the induced map- |
ping on edges ;(u v) = (g(u), g(v))) is F |

tension Contmﬂous for every F
) /)z/ /y /7 ‘éa)e
f = §ﬂ = (y/o 9
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An equivalent formulation of NZ flows
Theorem 22 (Hoffman’s Circulation Theo-
rem). Let G be a digraph, let 0 < a < b be
integers. Then the following are equivalent.

1. There is a Z—ﬂow J on G such that a <
fle) <bf0?“€ach edge e of G.

2. There 18 a I R-flow f on G such that a <
fle) <bfo7"each edge e of G.

3. f’or each U C V(G) we have § < |§ E % < o / (fﬂ/")/

PT‘C;'Of (1) = (2) is trivial. (2) = (3): take /
any set U. As “the net flow over eaoh cut s -
we have
W/zzf > s EDIE L (5
2 7/e€6+ eco— QGJ/%) @‘ ((,5// A

L
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(3) = (1): We call a Z-flow reasonable if
0 < f(e) < bforeach edge e. Find reasonable
flow that is optimal in the following sense:

oem :=min{f(e) : e € E(G)} is as large as
possible;

e among flows with the same m we choose the
one with as few edges attaining f(e) = m
as possible.

We claim that the optimal reasonable flow does
in fact satisfy f(e) > a for every edge, which
would prove (1). For contradiction, suppose
there is an edge ey = uguvy for which f(eg) =
m < a.

Good edges e:

e f(e) < b and we use e forward,

e f(e) > m+ 1 and we use e backward.
Either a ugvg-path of good edges OR a cut

certifying it. ... ]

NEXT STEE



Fractional flows
Definition 23. Let G be a digraph, [ a Zy-
flow, p,q € N. We say that f is nowhere-
zero fractional p/g-flow, if
for all edges e € E(G).
e A variant of the circulation lemma for real
a, b also true (use just (2) and (3)).

o [t follows that A-flow implies existence of

k' flow for all & > k.
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