Definition 1. Let G be a digraph, I' a group.

A mapping f: E(G) — ' ts called a flow
(or, more explicitly, a U-flow), if for every
vertex v € V(G) the Kirchhoff law is valid:

CZ fley=">" fle).
e=(v,u)

fH(v) = the left-hand side of the above
equation, the amount of flow that leaves v,
f~(v) = the right-hand side of the above
equation, the amount of flow that enters v.




Reversing orientations

We need directed edges for the definition of
flows. However, we will in fact study undi-
rected graphs. To understand why, let us de-
fine a simple notation. Let G be a digraph,
f amapping E(G) — ' and £ C E(G) any
set of edges. We let G denote the digraph
obtained from G a.fter‘-l:-e_orienting all edges in

F. We define a mapping fr as follows:

—_—

—f(e) ife€eF

frle) =

f(e) otherwise

Observation 7. Let f be a I'-flow on a di-
graph G, let F C E(G). Thenﬁ is a I'-
flow on G'p. Moreover, if f is NZ then fp
15 also NZ.

We can consider all pairs (G, fr) to be dif-
ferent representations of “the same flow” and
we pick the most convenient one.
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Easy properties of flows
The following easy observation connects Zis-
flows with cycles (# circuits).
Observation 8 (Zo-flow). Let G be a graph
and f any Zo-flow on G. Then the support
of f (that is, the set of edges with nonzero
“value of f)is a cycle.
In particular a graph has a NZ Zo-flow iff
it 1s a cycle. r—
Theorem 9 (Zs-flow of cubic graphs). Let

G be a cubic (i.e., 3-reqular) graph. Then
G admits a NZ Zs-flow iff G is bipartite.

Proof. If G is bipartite, we direct all edges
from one part to the other and assign 1 to
each edge, clearly this is the desired flow. On
the other hand, ... ]

O~ (s l/



Definition 12. Let G be a digraph, f a Z-
flow on G. -
f is a k-flow if [f(e)] < k (Ve).
fisa nowhere-zero k-flow if 0 < |f(e)
(Ve). -

< k

k-NZF := nowhere-zero k-flow
['-NZF := nowhere-zero I'-flow

—_———

Note: Many authors use k-flow to mean NZ
k-flow.

Theorem 13 (Tutte). A graph has a k]
NZF iff it has Zi,-NZF.

Motivated by this result we will sometimes

use k-flow to mean I-flow for any I' of size k.

—_— —
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NZ flows in planar graphs

A general way to construct NZ flows origi-
nates from colorings and planar duality. We
now present just a sample to show one of the
early motivations for the study of NZ flows.

Let G be a planar digraph, consider a proper

coloring of faces of G' by elements of some

group I' — so that faces sharing an edge get
— T ——

distinct colors. Now for an edge e let_f(e) be
the difference of the left face’s value and the

right face’s value, It's easy to check that f is
a NZ T-flow. )
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e [t works for graphs drawn on arbitrary ori-

entable surface.

—ﬁ=—"———";

e For planar graphs all NZ flows arise in this
way,

o thus (G) = x(G™). (Proof later.)

== —

® o(G) < 4 whenever G is planar.

e OTOH (Pt) = 5 (where Pt is the Petersen
graph).

e [t is open, whether ¢(G) > 5 is possible.




More basic properties g % - /%// %é)
Theorem 15 (Jaeger). The follow:
(Jaeger) e following are [e : %/ [e/ ’/O}

equivalent for any graph G = Zﬂ:,’( — See /g/p é ~

1.G has a Z5-NZF
2. E(G) is a union of two cycles —) 2~ Ceh
(G) 1 au cycles [L Zf__)‘_

Proof. Let f be a NZ Z3flow on G, observe

it only useM), (1,1). ... — ( O
R B # ;//47//@/“‘?% el

In the other direction: let E(G) = £y U E

and each Ej is a cycle. We take a Zo-flo fg/ / P/ >,
that is 1 precisely on E;. Putting f = (f1, fz) % 2 /€
e

we get the desired flow.

An alternative proof: consider (integer) 2-
flows g; on E;. Then g = 2g1 + g2 is a NZ
A-flow. O

Theorem 16 (Tutte). Let k > 2 be an in-

oger. A aroplh has o BN o 7 é;? I = e ’3’/{/(
o (41)e 1. ()2 (L4 5 £ 5




1 / L ~lréF :7//4@0/4 - zﬁ/bgfz /
Proof. The forward implication is obvious. For

the other one, let_,g_ube aZE;NZF in a graph 7 _ D ) /:" O ﬁ/z)_
G. For any mapping [ : E(G) — Z we let ///tr) }/ és / Jz)‘ ZJ Z j / Jo Oézj
- - oY &) j

f(@) be the net flow out of a vertex v, that

N S

i (V) = D eestin) [ = Deesw) FlE) ?4/

Reeall that—fi5 w flow i f{v)}—="0 for ev- " Z ~ A < a7 A
ery vertex v. We won't achieve this directly, /

however, but by certain optimization. ~ 4

1. f(e) = g(e) (mod k) for cach edge e, <

2.|f(e)] < k for each edge e, and %”7 4/ <—\\
A

3. subject to the above, Z’UEV(G) |f(v)| is as j
—

small as possible. z
A~ o

(If the sum in part 3. is zero, then f is a flow

Let f : E(G) = Z be such that \%{
=

and we are done.)
By possibly reorienting the edges of G we
may assume that f(e) > 0 for each edge e.
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o f(v)=0 (mod k) Y 2/MJQ
o VT ={v: f(v)>0} fﬁ/
oVVi={v:f ( —0} * &[il/‘d\

Vo={v: flv) <0} ~—- g},[g/j
° HMW&: are done.

e Otherwise, observe that both V' and V™~
arc nonempty and pick a € VT, b

e Fither there is a directed a—b path or there
is a set A containing a but not b such that

no directed edge leaves A.

e The second possibility immediately yields a

{ontradiction' T

|

Y- ¥
/‘ veA e€o
==

1 >D
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e S0 there is a directed a — b path P with
aeVt beV™

o We define a mapping f' by letting f'(e)

fle) =k for e € E(P), and f'(e) = f(e)
otherwise




e The existence of a k-NZF and Z;-NZF are

equivalent,
e but the numbers of them not (in general)

e However, the number of k-NZF’s of a given

graph is also a polynomial in k.

e (Proof using Ehrhart method).
E——
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Flows and spanning trees — sum
Let T" be a spanning tree of G. Now for every
edget € E(G)\ E(T) and every a € T" we let
¢t be the (unique) flow in G such that
/

[ epa(t) = @ - \
( ®prqle) =0fore#tande € E(G)\ E(T)
... elementary flow with respect to T. E@j
— e Fr(G) := the vector space of all flows C /7
e (we need T to be a ficld). WT

e For any fixed spanning tree T the elemen-
tary flows {¢y1:t € E(G)\ E(T)} form
a basis of Fp(G).

K@;}-—
e Any mapping ¢ : E(G) \ E(T) —_L can

L —————
be uniquely extended to a I'-flow on G.

e No control over the edges of T', thus we
can’t use this easily to construct a NZ flow. 77—




Flows and spanning trees — product

Theorem 17. Any 4-edge connected graph
admits a Z%-NZF.

S
Proof. If GG is 4-edge connected, then there are
two disjoint spanning trees, 17 and T (proof
later).

Let f; be the Zo-flow on G that equals 1 on

(Such flow exists — see

all edges not in 7j.
above.)

Now put f = (f1, f2). This is indeed a Z%—
flow, and if f(e) = 0 = (0,0) for some edge e
then e lies in both 7' and 75, a contradiction.

]

g A) e
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Theorem 18 (Jaeger). Any bridgeless graph
admits a Z3-NZF. ~_

/ N
Proof. Suppose first that G is 3-edge connected, P ﬂN g /k\

we will use spanning trees similarly as in the
construction of a NZ 4-flow.

We let G” be the (multi)graph obtained from
G by adding to ecach edge a new one, parallel
to it.

G’ is 6-edge connected . . .
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So the theorem holds for all 3-edge-connected
graphs. To prove it for all bridgeless graphs,
suppose there is a counterexample and choose
one with minimal number of edges, let it be
denoted G. ...

]
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Small flows — for bridgeless graphs
e 1-flow: impossible
e 2-flow: exists precisely in cycles
e 3-flow: for cubic graphs exists precisely in
) bipartite graphs
M should exist in every 4-edge-connected ™

S—

graph by a conjecture of Tutte, 1966.

It exists in every 6-edge-connected graph. & (% - C o 6’ '~ 5’{(/ 2 S ,:Z Ole %‘4

It suffices to prove it for 5-edge-connected &
, graph.

for a cubic graph is the same as 3-

edge-colorability. By a conjecture of Tutte,
every bridgeless graph that does not have
Petersen graph as a minor admits a 4-flow.

" Proved for cubic graphs by Robinson, Sey-
mour and Thormas (unpublished) by reduc-

ing to four-color theorem.

e 4-edge-connected graph has @low |/
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e Conj. [Tutte 1954Xists in everyr J

bridgeles(graph

-
| 6-flow exists in every graph [Seymour 1981]

(e 8-flow exists in every graph [Jaeger]
e 1 particular ¢(G) < 6 for cach bridgeless»

eraph G.
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