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(1) A bridgeless cubic graph admits a nowhere-zero 3-flow iff it is bipartite.
(2) A bridgeless cubic graph admits a nowhere-zero 4-flow iff it has a 2-factor M
such that all cycles of M have even lengths.

Let G = (V, E) be acubic bridgeless graph. A subset of edges F € E such that the
degree of any vertex v in the subgraph induced by F is 1 or 2 is called a (1, 2)-factor
of G. Given a (L. 2)-factor I’ of a graph G, we say that an edge is F-balanced if it
belongsto £ o oes not and its ends have the same degree in the subgraph induced
by F in G. Call a cycle of G F-even_if it has an even number of F-balanced edges.
AT, Z7tactor F 1s even if each cycle in G is F-everD Fig. 1 Example of an F-even
cycle. Solid edges are in F.
Dashed edges are in E \ F.
F-balanced edges are indicated
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Fig. 2 Definition of F(u, v, w). Solid edges are in F. Dashed edges are in E \ F. In the first diagram uv
and vw are F-related; in the second diagram uv and vr are F-related; in the third diagram vr and vw are
F-related. Notice that we have shown only one of the two possible cases for each value of F(u, v, w)

Theorem 1 A bridgeless cubic graph G admits a nowhere-zero 5-flow if and only if
there exists an even (1, 2)-factor F of G.



Let F be a (1, 2)-factor of a cubic graph G. Let v be a vertex of G and let u, w, r be
its three neighbors. We say that the edges uv and vw are F-related if uv, vw € F or

uv, vw ¢ F. We define the F-parity of the tuple (u, v, w), denoted by F(u.v. w).
by (Fig. 2): T

2 if uv and vw are F-related
F(u,v,w)= {1 if_uv and vr are F-related
"3 if vr and vw are F —related.ﬁ L R Bl
~—
We extend the definition of F-parity to cycles. Clearly, given a cycle C the number
of vertices whose incident edges in C are not F-related is even. Hence if the vertices

of C are numbered by ug, u1, ..., u,—1, u, = ugp, then the following quantity is even:

n—2
T(C):= > Fluj, uiy1,uiy2) + F(un_1, uo, ur).

- F(C):=

-

Lemma 1 Let G be a bridgeless cubic graph. For each (1, 2)-factor F and each cycle
C of G we have the following:

/?(C)ZELCFI modg peorm = - ?

where CF is the set of F-balanced edges of C.




Lemma 1 Let G be a bridgeless cubic graph. For each (1, 2)-factor F and each cycle
C of G we have the following:

F(C)=2|Cr| mod 4,

where CF is the set of F-balanced edges of C.

Proof Let C = (ug, ..., uy—1,up). The relation is clear when E(C) € F because
the F-parity of each tuple of the cycle is 2, then™F(C) = 2|E(C)|. Let Q be a
non trivial (at least one edge) connected component of C \ F. Let us assume that
Q= (uy,...,u;),i 22 . Leta(Q)bedefinedby«(Q) := lezl Fuj_i,uj,ujyr).
We prove that — —

a(Q) =2|E(Q)NCr| +2 mod 4.
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Let us consider first the case i > 3. Notice that F(ug, uy,u2) + F(u;_1, u;,
uj+1) = 0 mod 4 when uur and u;_u; are F-balanced and F(uq, uy,u>) + // 2. 2 Q-7 /{

F(uj—1,ui,uj+1) =2 mod 4 otherwise. Hence, ﬂ’f%m/i’r

a(Q) = D Fluj-1.uj.uj1) ]

S TN ,

o =
= Fuo,uy, u2) +20 = 3) + 2+ Fui—1, ui, uit1) \ =) f {Q /}!Jc}
=2IE(O)YNCrl+2  mod 4. - -
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Proposition 1 Let G = (V, E) be an undirected cubic graph. If G admits a nowhere-
zero ZLs-flow, then there exists an even (1, 2)-factor F of G.

Proof Letus assume that G has a nowhere-zero Zs-flow associated with an orientation
H = (V, A) and a function ¢. Let F be defined as follows.

F=F,:={uvekFE:pu,v)el{l 4forev,u)e{l,4}}.
In Zs the equatlon x +y+z = 0 has exactly 5 distinct solutions given by {{a. a, 3¢} :

a € Zs}. Then, for each vertex v at least one arc incident with v has flow in the set
{1, 4} and at least one arc incident with v has flow in the set {2, 3}. Therefore, F is a

{_2)-factor of G. =
Let C = (uq,...,uun—1, ug) be a cycle of length n in G. To ease the notation, let
us define a; = (u;, uj4+1) fori =0,...,n— 1. wlog we can assume that a; € A, for

i=0,...,n—1.Toseethis,leta € Aandlet A’ = A\ {a}U{—a}and ¢’ : A" — Zs,
where ¢'(b) = @(b), if b # —a and ¢'(—a) = —¢(a). Then, F, = F. Hence, by
modifying the orientation of subgraphs of H and the associated flow, the set F remains
the same.

the definition of F(u, v, w), the reader can check that

(v, w) = @(u, v)2F @) (dee Fig. 3), for each path (u, v, w) in H. Hence, for each
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