

for planar bridgeless graphs the face-boundaries are a collection of circuits that cover every edge exactly twice. What about nonplanar?

Definitions

- <u>circuit (kružnice)</u> := 2-regular connected graph (subgraph of another graph)
- $\underbrace{\text{cycle}(\text{cyklus})}_{\text{:= edge disjoint union of circuits}}$ = even graph = eulerian graph
- $\underbrace{\text{digraph}}_{\text{lowed}} := \text{directed multigraph, loops allowed}$
- \bullet group := abelian group

arc/edge

Definition 1. Let G be a digraph, Γ a group. A mapping $f: E(G) \to \Gamma$ is called a flow (or, more explicitly, a Γ -flow), if for every $vertex \ v \in V(G)$ the Kirchhoff law is valid:

$$\left(\sum_{e=(v,u)} f(e) = \sum_{e=(u,v)} f(e) \right).$$

 $f^+(v) = the left-hand side of the above$ equation, the amount of flow that leaves v, $f^{-}(v) = the \ right-hand \ side \ of \ the \ above$ equation, the amount of flow that enters v.

$$f'(b) = 1+5$$

$$f'(a) = 1+5$$

$$f'(a) = 0$$

- $f \equiv 0$ is a flow.
- if f, g are flows, then $f \pm g$ are also flows
- \bullet the set of all Γ -flows on a given digraph is again an (abelian) group. —
- If Γ is a field, than the set of all Γ -flows is a vector space.
- related notion flows in networks.
- \mathbb{R}^d -flow. The same definition. Esp. for d =3 has a meaning in physics: momentumpreservation, Feynmann diagrams.

Notation A, B are sets of vertices

$$f(A,B) = \sum f(e) : e \text{ starts in } A \text{ and ends in } B$$

$$f^{+}(A) = f(A, \bar{A})$$

$$f^{-}(A) = f(\bar{A}, A)$$

(where $\bar{A} = V(G) \setminus A$).

Observation 2. Let G be a digraph, Γ a group, f a Γ -flow. Then for $A \subseteq V(G)$

$$f^{+}(A) = f^{-}(A)$$
.

Proof. Let us sum the Kirchhoff law for all $v \in A$.

Corollary 3 (a flow and small cuts). Let G be a digraph, Γ a group, f a Γ -flow.

- If e is a bridge then f(e) = 0.
- If e, e' form a 2-cut (and are oriented in the same direction) then f(e) + f(e') = 0.

Corollary 4 (a flow and a partition). Let G be a digraph, Γ a group, f a Γ -flow. Consider any partition \mathcal{P} of V(G). Let $G_{\mathcal{P}}$ be the graph where each equivalence class is identified to a vertex and all edges are preserved and let $f_{\mathcal{P}}$ be the restriction of f to edges of $G_{\mathcal{P}}$. Then $f_{\mathcal{P}}$ is a Γ -flow on $G_{\mathcal{P}}$.

f f(A) - f - (A) --- Kird. 2. pro Gp a v shol A

Nowhere-zero flows

Definition 5. Let G be a digraph, Γ a group, f a Γ -flow. We say that f is a nowhere-zero Γ -flow, if $f(e) \neq 0$ for all edges $e \in E(G)$. Frequently we will shorten nowhere-zero to NZ.

• bridge \Rightarrow no NZ flow.

• the opposite is also true

 \bullet dependence on the group Γ .

Theorem 6 (flow polynomial, Tutte 1954).

For every graph G there is a polynomial $P_G(x)$ s.t. for every group Γ , the number of NZ Γ -flows on G is $P_G(|\Gamma|)$.

We will prove this by induction on |E(G)|.

$$P_G(x) = (x-1)P_{G-e}(x)$$

$$P_{G}(x) = P_{G/e}(x) - P_{G-e}(x)$$

F(G) = f(G)

G

3) a new sny ska p(xg) je dj. 2x Jjednoza. Lah Fro G Kiver. 2. N X on J fje Nt 2. Oboj: Sagan > BUD P je Nt NG DX230 NE ... \$ (0)=0 -- f je Ni Lh o G-e

Tutte polynomial

Contraction/deletion invariant — a polynomial in two variables that counts NZ flows, colorings and many more graph invariants. The Tutte polynomial is usually denoted $T_G(x,y)$ and satisfies the relation $T_G = T_{G-e} + T_{G/e}$ if e is neither a loop, nor a bridge, with the base case $T_G(x,y) = x^i y^j$ for G with i bridges, j loops, and no other edges. One can use T_G to express the flow polynomial P_G as well as the *chromatic polynomial* C(x) (the number of proper colorings using x colors).

Reversing orientations

We need directed edges for the definition of flows. However, we will in fact study undirected graphs. To understand why, let us define a simple notation. Let G be a digraph, f a mapping $E(G) \to \Gamma$ and $F \subseteq E(G)$ any set of edges. We let G_F denote the digraph obtained from G after reorienting all edges in F. We define a mapping f_F as follows:

$$f_F(e) = \begin{cases} \frac{-f(e)}{f(e)} & \text{if } e \in F \\ \frac{-f(e)}{f(e)} & \text{otherwise} \end{cases}$$

Observation 7. Let f be a Γ -flow on a digraph G, let $F \subseteq E(G)$. Then $\underline{f_F}$ is a Γ -flow on G_F . Moreover, if f is NZ then f_F is also NZ.

We can consider all pairs (G_F, f_F) to be different representations of "the same flow" and we pick the most convenient one.

Easy properties of flows

The following easy observation connects \mathbb{Z}_2 flows with cycles (\neq circuits).

Observation 8 (\mathbb{Z}_2 -flow). Let G be a graph and f any \mathbb{Z}_2 -flow on G. Then the support of f (that is, the set of edges with nonzero value of f) is a cycle.

In particular a graph has a NZ \mathbb{Z}_2 -flow iff it is a cycle.

Theorem 9 (\mathbb{Z}_3 -flow of cubic graphs). Let G be a cubic (i.e., 3-regular) graph. Then G admits a NZ \mathbb{Z}_3 -flow iff G is bipartite.

Proof. If G is bipartite, we direct all edges from one part to the other and assign 1 to each edge, clearly this is the desired flow. On the other hand, . . .

G je hebrely a f.... Pt Zz-tok -> f(e) G 5+1,-1} belie the f(e) = +1 the $f^*(v) = f^-(v)$ reached; fv: dight-of $0 = (\pi/4)$ f(v) = f(v) f(v) = f(v) f(v) = f(v) f(v) = f(v) f(v) = f(v)Zodná hvela v rále! pavtetý 1+

Theorem 10 (\mathbb{Z}_2^2 -flow of cubic graphs). Let G be a cubic (i.e., 3-regular) graph. Then G admits a NZ \mathbb{Z}_2^2 -flow iff G is edge 3-colorable.

- As opposed to the previous two characterisations (being a cycle and being bipartite), the condition in this theorem is NP-complete to check.
- We will frequently meet graphs that are cubic and fail to have edge 3-coloring \Rightarrow snarks.

Proof. • A NZ \mathbb{Z}_2^2 -flow can use only values from $A = \{(0,1), (1,0), (1,1)\}.$

- As we are calculating modulo 2, we don't care about the orientation.
- It is easy to check that if three elements of A sum to zero, they must be in fact distinct.

Corollary 11 (3-edge-coloring and bridges). Let G be a cubic graph with at least one bridge. Then G is not edge-3-colorable.

In analogy with the chromatic number $\chi(G)$ we define the flow number of a graph G to be

$$\varphi(G) = \inf\{|\Gamma| : G \text{ has a NZ } \Gamma\text{-flow}\};$$

- $\bullet \varphi(G)$ is defined (as ∞) if G has no NZ flow.
- \bullet This happens iff G has a bridge.
- (In analogy: what graphs have no proper coloring?)
- Monotonicity: compare with χ .

G mi 102 Z3 - Lah?

G mi 102 Z2 - Lah?

G mi 102 Z2 - Lah?

[Z1 - Lah?]

(hv. 3-06. = Dt & Leen - nejde pe most)

Definition 12. Let G be a digraph, f a \mathbb{Z} flow on G.

f is a k-flow if $|\underline{f(e)}| < \underline{k}$ ($\forall e$). f is a nowhere-zero k-flow if $0 < |f(e)| < \underline{k}$ ($\forall e$).

 \underline{k} - $\underline{NZ}F := nowhere$ -zero k-flow

 Γ -NZF := nowhere-zero Γ -flow

Note: Many authors use k-flow to mean NZ k-flow.

Theorem 13 (Tutte). A graph has a k-NZF iff it has \mathbb{Z}_k -NZF.

Motivated by this result we will sometimes use k-flow to mean Γ -flow for any Γ of size k.

1+1, 12, --, ±(k-1) The splick. 2000. E(6) > The first possession of splicker of splicker of splicker.

15/= la 15/-la Corollary 14 (group-monotonicity). Let Γ_1 , DK TI-NEF TO ZINGE TOLE STILLE Γ_2 be groups, with $|\Gamma_1| \leq |\Gamma_2|$. Then any R-NET SA-NET CARTER CANTER CAN