Motivation — Cycle uble Cover

for planar bridgeless oraphs the face-boundaries

are a collection of circuits that cover every
- e e,

edge exactly twice. What about nonplanar?
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Definitions

e circuit (kruznice) := 2-regular connected graph
(subgraph of another graph)

o cycle (cyklus) = even graph = eulerian graph
:= edge disjoint union of circuits

e digraph := directed multigraph, loops al-
lowed

e gcroup := abelian group
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Definition 1. Let G be a digraph, I' a group.

A mapping f: E(G) — ' ts called a flow
(or, more explicitly, a U-flow), if for every
vertex v € V(G) the Kirchhoff law is valid:

CZ fley=">" fle).
e=(v,u)

fH(v) = the left-hand side of the above
equation, the amount of flow that leaves v,
f~(v) = the right-hand side of the above
equation, the amount of flow that enters v.




Cos ¢

o A6

- o f=0is a flow. {rp?/}’(/“ [_'

e if f, g are flows, then f + g are also flows

e the set of all ['-flows on a given digraph is ﬁx’
PR - . 1, l" oT . /
again an (abelian) group - _C W > /

o If I' is a field, than the set of all I-flows is

a vector space.

e related notion — flows in networks.

o R flow. The same definition. Esp. for d =
3 has a meaning in physics: momentum- /’\ Q

preservation, Feynmann diagrams.

Notation A, B are sets of vertices

flA, B) = Z f(e) : e starts in A and ends in B 4
FT(A) = f(A,A)

F(4) = (A, A QU\ T3 1\ {l%(%)

(where A =V (G)\ A).



Observation 2. Let GG be a digraph, ' a
group, [ a I'-flow. Then for A C V(G)

FHA) =17 (4A).
l—\_/”/
Proof. Let us sum the Kirchhoff law for all
ve A O

Corollary 3 (a flow and small cuts). Let G

be a digraph, I' a group, f a I'-flow.

o If e is a bridge then fle) =

(o If e, e’ form a 2-cut (and are oriented in
the same direction) then f(e)+ f(e') =

Corollary 4 (a flow and a partition). Let G
be a digraph, I' a group, [ a I'-flow. Con-
sider any partition P of V(G). Let Gp be
the graph where each equivalence class is
identified to a verter and all edges are pre-
served and let fp be the restriction of f to
edges of Gp. Then fp is a I'-flow on Gp.






Nowhere-zero flows

Definition 5. Let G be a digraph, I' a group, Oe/-@
f al-flow. We say that f is a nowhere-zero (

[-flow, if f(e) # 0 for all edges e € E(G).
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Frequently we will shorten nowhere-zero to

NZ.

’ e}
bridge NZ flow. vdh ; ~ ’4/{‘/
e bridge = no OW M o 2 1[ ’/ . ?g ,C/a)‘ Z;

e the opposite is also true e

e dependence on the group I'. —

Theorem 6 (flow polynomial Tutte 1954). // //) E / {/ N % 2
4

For_every graph G there is a_polynomial
(x) s.t. for every group I', the number ik

o (+
of NZ I'-flows on G z's r'%Z/ {f a2y .

We will prove this by induction on |F(G E (‘)g) ?/ /_é
4) Palz) = (z — 1) Pl \T\] 2) 0 €€(6) el £ J‘yyt‘{e . V-

37) Pe(w) = Pye(@) — Po—e
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Tutte polynomial

Contraction/deletion invariant — a polyno-

mial in two variables that counts NZ flows, col-
orings and many more graph invariants. The
Tutte polynomial is usually denoted T (x, y)
and satisfies the relation Ty = Tg_m

e 1s neither a loop, nor a bridgeﬁﬁh the Dase
case Tz, y) = 'y for G with i bridges,
7 loops, and no other edges. One can use 1y
?O—Express the flow polynomial P as well as
the chromatic polynomial C'(z) (the number

of proper colorings using x colors).



Reversing orientations

We need directed edges for the definition of
flows. However, we will in fact study undi-
rected graphs. To understand why, let us de-
fine a simple notation. Let G be a digraph,
f amapping E(G) — ' and £ C E(G) any
set of edges. We let G denote the digraph
obtained from G a.fter‘-l:-e_orienting all edges in

F. We define a mapping fr as follows:

—_—

—f(e) ife€eF

frle) =

f(e) otherwise

Observation 7. Let f be a I'-flow on a di-
graph G, let F C E(G). Thenﬁ is a I'-
flow on G'p. Moreover, if f is NZ then fp
15 also NZ.

We can consider all pairs (G, fr) to be dif-
ferent representations of “the same flow” and
we pick the most convenient one.
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Easy properties of flows
The following easy observation connects Zis-
flows with cycles (# circuits).
Observation 8 (Zo-flow). Let G be a graph
and f any Zo-flow on G. Then the support
of f (that is, the set of edges with nonzero
“value of f)is a cycle.
In particular a graph has a NZ Zo-flow iff
it 1s a cycle. r—
Theorem 9 (Zs-flow of cubic graphs). Let

G be a cubic (i.e., 3-reqular) graph. Then
G admits a NZ Zs-flow iff G is bipartite.

Proof. If G is bipartite, we direct all edges
from one part to the other and assign 1 to
each edge, clearly this is the desired flow. On
the other hand, ... ]

O~ (s l/



STV e
L L, 7,@ —p(€> 7 /
PR XN

O - (e~

~—

Qle)c/70-/f



Theorem 10 (Zg—ﬂow of cubic graphs). Let
G be a cubic (i.c., 3-reqular) graph. Then

G admits a NZ Z%-ﬂow iff G is edge %ﬁ

— — — ——
colorable. = o (-::"‘-——-

e As opposed to the previous two characteri-

sations (being a cycle and being bipartite),
the condition in this theorem is NP-complete
to check.

e We will frequently meet graphs that are cu-
bic and fail to have edge 3-coloring =
T ee—

snarks.
—_—————

e As we are calculating modulo 2, we don’t

care about the orientation.

e [t is easy to check that if three elements of
A sum to zero, they must be in fact distinct.
]
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Corollary 11 (3-edge-coloring and bridges). (% s 3’«@ é N M <)

Let G be a cubic graph with at least one
bridge. Then (G is not edge-3-colorable.
In analogy with the chromatic numbem

we define the flow number of a graph G to be

/ (;@ = inf{|I'| : G has a NZ I'-flow} ;
/ — —_—

e ©((G) is defined (as oo) if G has no NZ flow.

———

e This happens iff G' has a bridge. — ) \

e (In analogy: what graphs have no proper ~_ ?
/ coloring?) - S Qo f 9
e Monotonicity: compare with . T~ Y "’? C‘%
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Definition 12. Let G be a digraph, f a Z-
flow on G. -
f is a k-flow if [f(e)] < k (Ve).
fisa nowhere-zero k-flow if 0 < |f(e)
(Ve). -

< k

k-NZF := nowhere-zero k-flow
['-NZF := nowhere-zero I'-flow

—_———

Note: Many authors use k-flow to mean NZ
k-flow.

Theorem 13 (Tutte). A graph has a k]
NZF iff it has Zi,-NZF.

Motivated by this result we will sometimes

use k-flow to mean I-flow for any I' of size k.
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Corollary 14 (group-monotonicity). Let I'y, / /\ / é &( _ 4
'y be groups, with || £ |I'o|. Then any é Mt L=
graph with I'\-NZF has also a I'y-NZF. ﬂ /
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