Flows and cycles in graphs - Exercises 6

1. Suppose that for a graph G exists a collection of cycles that covers every edge once or twice. Then there is another collection that covers every edge twice.
2. Suppose a graph G has a 4 -edge cut but no smaller edge cuts. Let $e_{i}(i=1, \ldots, 4)$ be the edges of the 4 -edge cut. Let $G^{\prime}, G^{\prime \prime}$ be graphs obtained by cutting each of the edges e_{i} "in the middle" and connecting the edges in each of the resulting components arbitrarily.

Formally: suppose $e_{i}=x_{i} y_{i}$ and in $G-\left\{e_{1}, \ldots, e_{4}\right\}$ all vertices x_{i} are in one component, and all y_{i} 's in the other. Choose a matching M_{x} on vertices $\left\{x_{1}, \ldots, x_{4}\right\}$ and M_{y} on $\left\{y_{1}, \ldots, y_{4}\right\}$. The graph $\left(G-\left\{e_{1}, \ldots, e_{4}\right\}\right) \cup M_{x} \cup M_{y}$ consists of two components, we let them be $G^{\prime}, G^{\prime \prime}$. (They do depend on the choice of M_{x}, M_{y}.)

Question: are the graphs $G^{\prime}, G^{\prime \prime}$ bridgeless for some choice of M_{x}, M_{y} ? Are the graphs $G^{\prime}, G^{\prime \prime}$ bridgeless for all choices of M_{x}, M_{y} ?
3. In class we saw a proof that a minimal counterexample to the CDC conjecture does not have a 2 -edge cut neither a 3 -edge cut; the proofs used different approaches. Try to prove each of these results by "the other proof".

