Erratum to "Nonexistence of 2-reptile simplices"

Jiří Matoušek
Department of Applied Mathematics and
Institute of Theoretical Computer Science (ITI)
Charles University, Malostranské nám. 25 11800 Praha 1, Czech Republic

Zuzana Safernová
Department of Applied Mathematics
Charles University, Malostranské nám. 25 11800 Praha 1, Czech Republic

The paper "Nonexistence of 2-reptile simplices" of the first author [in Discrete and Computational Geometry: Japanese Conference, JCDCG 2004, Lecture Notes in Computer Science 3742 , Springer, Berlin etc., pages 151-160, 2005] contains a (computational) error, found by the second author.

The error is this: At the end of the proof of Theorem 1, the matrix $\bar{A}_{2}^{-1} \bar{A}_{1}$ is considered, and it is claimed that its characteristic polynomial equals $(1-x)^{d-2}\left(x^{2}-2 x+3\right)$. However, the characteristic polynomial actually equals $(1-x)^{d-2}\left(x^{2}+1\right)$, and its roots all have absolute value 1 ; thus, the desired contradiction is not reached using this matrix.

The proof can be corrected using the same approach, but considering another suitable expression in the matrices \bar{A}_{1} and \bar{A}_{2}. Concretely, instead of $\bar{A}_{2}^{-1} \bar{A}_{1}$, we consider $\bar{A}_{2} \bar{A}_{1}$, which has the form (shown here for $d=5$)

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & \frac{1}{2} & 1 \\
-1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0
\end{array}\right) .
$$

The characteristic polynomial $p(x)$ comes out as follows:

$$
p(x)= \begin{cases}-x^{d}-x^{d-1}-\ldots-x^{(d+1) / 2}+\frac{1}{4} & \text { for } d \text { odd } \\ x^{d}+x^{d-1}+\ldots+x^{d / 2+1}+\frac{1}{4} & \text { for } d \text { even }\end{cases}
$$

It remains to check that for every $d \geq 3, p(x)$ has a root with absolute value distinct from $2^{-2 / d}$.

First let $d \geq 3$ be odd. Then $p(x)$ has at least one real root, and it is easily checked that neither $2^{-2 / d}$ nor $-2^{-2 / d}$ is a root.

For d even and at least 6 , we use Lehmer's criterion as stated in the paper (in the proof of Lemma 3). To this end, we first rewrite $p(x)$ to the form $p(x)=\frac{q(x)}{4-4 x}$ with $q(x)=$ $-4 x^{d+1}+4 x^{d / 2+1}-x+1$. It suffices to show that $q(x)$ has a root strictly inside the circle $\Gamma^{\prime}=\left\{z \in \mathbf{C}:|z|=2^{-2 / d}\right\}$. In other words, we want that for some $\beta<2^{-2 / d}$ the polynomial $g(z):=q(\beta z)$ has a root inside the unit circle Γ.

We have $g(z)=\sum_{i=0}^{d+1} a_{i} x^{i}=-4 \beta^{d+1} z^{d+1}+4 \beta^{1+d / 2} z^{1+d / 2}-\beta z+1$. Let us write $T(g)(z)=$ $\bar{a}_{0} g(z)-a_{d+1} z^{d+1} \overline{g\left(z^{-1}\right)}=\sum_{i=0}^{d} b_{i}$. Then, for β sufficiently close to $2^{-2 / d}$, we have $b_{0}=$ $1-\left(4 \beta^{(d+1)}\right)^{2} \leq 1-2^{-4 / d}+\varepsilon \leq 1-2^{-4 / 6}+\varepsilon<\frac{1}{2}$, while $\left|b_{d}\right|=4 \beta^{d+2} \geq \frac{1}{2}$. Thus,
$T^{2}(g)(0)=\left|b_{0}\right|^{2}-\left|b_{d}\right|^{2}<0$, and so $g(z)$ indeed has a root inside Γ by Lehmer's criterion. This finishes the case of even $d \geq 6$.

Finally, for $d=4$, we have $p(x)=x^{4}+x^{3}+\frac{1}{4}$, and it is easy to verify that $p(x)$ has a root with absolute value larger than $2^{-2 / d}=2^{-1 / 2}$. For example, we can use the Gauss-Lucas theorem, asserting that the roots of the derivative $p^{\prime}(x)$ in the complex plane lie in the convex hull of the roots of $p(x)$. Since $p^{\prime}(x)=x^{2}(4 x+3)$ has $-\frac{3}{4}$ as a root, $p(x)$ must also have a root with absolute value exceeding $\frac{3}{4}>2^{-1 / 2}$. This finishes the proof that not all eigenvalues of $\bar{A}_{2}^{-1} \bar{A}_{1}$ have absolute value $2^{-2 / d}$.

