estimating the term $e\left(Y_{1} \backslash Z_{1}, Y_{2}, \ldots, Y_{k}\right)$, we use random subsets R_{2}, \ldots, R_{k} of size $(1-\varepsilon) s$ of Y_{2}, \ldots, Y_{k}, respectively. Thus,

$$
e\left(Y_{1} \backslash Z_{1}, Y_{2}, \ldots, Y_{k}\right)=(1-\varepsilon) s^{k} \mathbf{E}\left[\rho\left(Y_{1} \backslash Z_{1}, R_{2}, \ldots, R_{k}\right)\right]
$$

Now for any choice of R_{2}, \ldots, R_{k}, we have

$$
\begin{aligned}
\rho\left(Y_{1} \backslash Z_{1}, R_{2}, \ldots, R_{k}\right) & =((1-\varepsilon) s)^{-\varepsilon^{k}} \mu\left(Y_{1} \backslash Z_{1}, R_{2}, \ldots, R_{k}\right) \\
& \leq((1-\varepsilon) s)^{-\varepsilon^{k}} \mu\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right) \\
& =(1-\varepsilon)^{-\varepsilon^{k}} \rho\left(Y_{1}, \ldots, Y_{k}\right) .
\end{aligned}
$$

Therefore,

$$
e\left(Y_{1} \backslash Z_{1}, Y_{2}, \ldots, Y_{k}\right) \leq(1-\varepsilon)^{1-\varepsilon^{k}} e\left(Y_{1}, \ldots, Y_{k}\right)
$$

To estimate the term $e\left(Z_{1}, Z_{2}, \ldots, Z_{i-1}, Y_{i} \backslash Z_{i}, Y_{i+1}, \ldots, Y_{k}\right)$, we use random subsets $R_{i} \subset Y_{i} \backslash Z_{i}$ and $R_{i+1} \subset Y_{i+1}, \ldots, R_{k} \subset Y_{k}$, this time all of size εs. A similar calculation as before yields

$$
e\left(Z_{1}, Z_{2}, \ldots, Z_{i-1}, Y_{i} \backslash Z_{i}, Y_{i+1}, \ldots, Y_{k}\right) \leq \varepsilon^{i-1-\varepsilon^{k}}(1-\varepsilon) e\left(Y_{1}, \ldots, Y_{k}\right)
$$

(This estimate is also valid for $i=1$, but it is worse than the one derived above and it would not suffice in the subsequent calculation.) From (9.2) we obtain that $e\left(Z_{1}, \ldots, Z_{k}\right)$ is at least $e\left(Y_{1}, \ldots, Y_{k}\right)$ multiplied by the factor

$$
\begin{aligned}
1-(1-\varepsilon)^{1-\varepsilon^{k}}-(1-\varepsilon) \varepsilon^{-\varepsilon^{k}} \sum_{i=2}^{k} \varepsilon^{i-1} & =1-(1-\varepsilon)^{1-\varepsilon^{k}}-\varepsilon^{1-\varepsilon^{k}}+\varepsilon^{k-\varepsilon^{k}} \\
& \geq 1-(1-\varepsilon)^{1-\varepsilon^{k}}-\varepsilon^{1-\varepsilon^{k}}+\varepsilon^{k} \\
& \geq 1-2^{\varepsilon^{k}}+\varepsilon^{k}
\end{aligned}
$$

where the last inequality follows from the inequality $\left(\frac{a^{\alpha}+b^{\alpha}}{2}\right)^{1 / \alpha} \leq \frac{a+b}{2}, a>$ $0, b>0,0<\alpha \leq 1$, between the α th degree mean and the arithmetic mean. Now the function $f(x)=1-2^{x}-x$ safisfies $f(0)=f(1)=1$, and it is concave on $(0,1)$ since $f^{\prime \prime}(x)=-(\ln 2)^{2} 2^{x}<0$. Hence $1-2^{\varepsilon^{k}}+\varepsilon^{k}>0$ for all $\varepsilon \in(0,1)$ and Theorem 9.4.1 is proved.

Bibliography and remarks. Our presentation of Theorem 9.4.1 essentially follows Pach [Pac98], whose treatment is an adaptation of an approach of Komlós and Sós.

The Szemerédi regularity lemma is from [Sze78], and in its full glory it goes as follows: For every $\varepsilon>0$ and for every k_{0}, there exist K and n_{0} such that every graph G on $n \geq n_{0}$ vertices has a partition $\left(V_{0}, V_{1}, \ldots, V_{k}\right)$ of the vertex set into $k+1$ parts, $k_{0} \leq k \leq K$, where $\left|V_{0}\right| \leq \varepsilon n,\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{k}\right|=m$, and all but at most εk^{2}

