estimating the term $e(Y_1 \setminus Z_1, Y_2, \ldots, Y_k)$, we use random subsets R_2, \ldots, R_k of size $(1-\varepsilon)s$ of Y_2, \ldots, Y_k , respectively. Thus,

$$e(Y_1 \setminus Z_1, Y_2, \dots, Y_k) = (1 - \varepsilon) s^k \mathbf{E}[\rho(Y_1 \setminus Z_1, R_2, \dots, R_k)].$$

Now for any choice of R_2, \ldots, R_k , we have

$$\rho(Y_1 \setminus Z_1, R_2, \dots, R_k) = ((1 - \varepsilon)s)^{-\varepsilon^k} \mu(Y_1 \setminus Z_1, R_2, \dots, R_k)$$
$$\leq ((1 - \varepsilon)s)^{-\varepsilon^k} \mu(Y_1, Y_2, \dots, Y_k)$$
$$= (1 - \varepsilon)^{-\varepsilon^k} \rho(Y_1, \dots, Y_k).$$

Therefore,

$$e(Y_1 \setminus Z_1, Y_2, \dots, Y_k) \le (1 - \varepsilon)^{1 - \varepsilon^k} e(Y_1, \dots, Y_k)$$

To estimate the term $e(Z_1, Z_2, \ldots, Z_{i-1}, Y_i \setminus Z_i, Y_{i+1}, \ldots, Y_k)$, we use random subsets $R_i \subset Y_i \setminus Z_i$ and $R_{i+1} \subset Y_{i+1}, \ldots, R_k \subset Y_k$, this time all of size εs . A similar calculation as before yields

$$e(Z_1, Z_2, \ldots, Z_{i-1}, Y_i \setminus Z_i, Y_{i+1}, \ldots, Y_k) \le \varepsilon^{i-1-\varepsilon^k} (1-\varepsilon)e(Y_1, \ldots, Y_k).$$

(This estimate is also valid for i = 1, but it is worse than the one derived above and it would not suffice in the subsequent calculation.) From (9.2) we obtain that $e(Z_1, \ldots, Z_k)$ is at least $e(Y_1, \ldots, Y_k)$ multiplied by the factor

$$1 - (1 - \varepsilon)^{1 - \varepsilon^{k}} - (1 - \varepsilon)\varepsilon^{-\varepsilon^{k}} \sum_{i=2}^{k} \varepsilon^{i-1} = 1 - (1 - \varepsilon)^{1 - \varepsilon^{k}} - \varepsilon^{1 - \varepsilon^{k}} + \varepsilon^{k - \varepsilon^{k}}$$
$$\geq 1 - (1 - \varepsilon)^{1 - \varepsilon^{k}} - \varepsilon^{1 - \varepsilon^{k}} + \varepsilon^{k}$$
$$\geq 1 - 2^{\varepsilon^{k}} + \varepsilon^{k}$$

where the last inequality follows from the inequality $\left(\frac{a^{\alpha}+b^{\alpha}}{2}\right)^{1/\alpha} \leq \frac{a+b}{2}, a > 0, b > 0, 0 < \alpha \leq 1$, between the α th degree mean and the arithmetic mean. Now the function $f(x) = 1 - 2^x - x$ safisfies f(0) = f(1) = 1, and it is concave on (0, 1) since $f''(x) = -(\ln 2)^2 2^x < 0$. Hence $1 - 2^{\varepsilon^k} + \varepsilon^k > 0$ for all $\varepsilon \in (0, 1)$ and Theorem 9.4.1 is proved.

Bibliography and remarks. Our presentation of Theorem 9.4.1 essentially follows Pach [Pac98], whose treatment is an adaptation of an approach of Komlós and Sós.

The Szemerédi regularity lemma is from [Sze78], and in its full glory it goes as follows: For every $\varepsilon > 0$ and for every k_0 , there exist K and n_0 such that every graph G on $n \ge n_0$ vertices has a partition (V_0, V_1, \ldots, V_k) of the vertex set into k+1 parts, $k_0 \le k \le K$, where $|V_0| \le \varepsilon n$, $|V_1| = |V_2| = \cdots = |V_k| = m$, and all but at most εk^2