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estimating the term e(Y1 \Z1, Y2, . . . , Yk), we use random subsets R2, . . . , Rk

of size (1−ε)s of Y2, . . . , Yk, respectively. Thus,

e(Y1 \ Z1, Y2, . . . , Yk) = (1− ε)skE[ρ(Y1 \ Z1, R2, . . . , Rk)] .

Now for any choice of R2, . . . , Rk, we have

ρ(Y1 \ Z1, R2, . . . , Rk) = ((1 − ε)s)−εkµ(Y1 \ Z1, R2, . . . , Rk)

≤ ((1 − ε)s)−εkµ(Y1, Y2, . . . , Yk)

= (1 − ε)−εkρ(Y1, . . . , Yk).

Therefore,

e(Y1 \ Z1, Y2, . . . , Yk) ≤ (1 − ε)1−εke(Y1, . . . , Yk)

To estimate the term e(Z1, Z2, . . . , Zi−1, Yi \Zi, Yi+1, . . . , Yk), we use random
subsets Ri ⊂ Yi \ Zi and Ri+1 ⊂ Yi+1,. . . , Rk ⊂ Yk, this time all of size εs.
A similar calculation as before yields

e(Z1, Z2, . . . , Zi−1, Yi \ Zi, Yi+1, . . . , Yk) ≤ εi−1−εk(1− ε)e(Y1, . . . , Yk).

(This estimate is also valid for i = 1, but it is worse than the one derived
above and it would not suffice in the subsequent calculation.) From (9.2) we
obtain that e(Z1, . . . , Zk) is at least e(Y1, . . . , Yk) multiplied by the factor

1− (1 − ε)1−εk − (1− ε)ε−εk
k

∑

i=2

εi−1 = 1− (1 − ε)1−εk − ε1−εk + εk−εk

≥ 1− (1 − ε)1−εk − ε1−εk + εk

≥ 1− 2ε
k

+ εk

where the last inequality follows from the inequality
(

aα
+bα

2

)1/α
≤ a+b

2
, a >

0, b > 0, 0 < α ≤ 1, between the αth degree mean and the arithmetic mean.
Now the function f(x) = 1−2x−x safisfies f(0) = f(1) = 1, and it is concave

on (0, 1) since f ′′(x) = −(ln 2)22x < 0. Hence 1−2ε
k

+εk > 0 for all ε ∈ (0, 1)
and Theorem 9.4.1 is proved. ✷

Bibliography and remarks. Our presentation of Theorem 9.4.1
essentially follows Pach [Pac98], whose treatment is an adaptation of
an approach of Komlós and Sós.

The Szemerédi regularity lemma is from [Sze78], and in its full
glory it goes as follows: For every ε > 0 and for every k0, there exist

K and n0 such that every graph G on n ≥ n0 vertices has a partition

(V0, V1, . . . , Vk) of the vertex set into k+1 parts, k0 ≤ k ≤ K, where

|V0| ≤ εn, |V1| = |V2| = · · · = |Vk| = m, and all but at most εk2


