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Basic Rolling Stock Rostering Problem = Multicommodity Flow Problem 

 Can be solved efficiently for networks with 109 arcs 

Constraints complicating rolling stock rostering 

 Discretization: Space/Time ("Multiscale Problems")  

 Robustness: Delay Propagation 

 Path Constraints: Maintenance, Parking 

 Configuration Constraints: Track Usage, Train Composition, Uniformity 
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Photo courtesy of DB Mobility Logistics AG 

We want to avoid this! Simplon Tunnel 

Visualization based on JavaView 
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 Integrated 
Routing and 
Scheduling 



Integrated Routing and Scheduling 

Routing Scheduling 
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Timetable 
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Train Routes are Flexible in Space and Time 
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Conflict 
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Track Allocation Graph 
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Track Allocation/Train Timetabling Problem 

 

 

 

 

 

 

 

Combinatorial Optimization Problem 

 Path Packing Problem 
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Path/Arc Packing Model 
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Path Packing Model 
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Configuration Model 
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Configuration Model 
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Packing- and Configuration Model 
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Track Allocation Models 

Theorem (B., Schlechte 

[2007]): 

 = vLP(PCP) = vLP(ACP)  

 = vLP (APP) = vLP(PPP) 

 ≤ vLP(APP'). 

All LP-relaxations can be 

solved in polynomial time. 

 = vIP(PCP) = vIP(ACP)  

 = vIP (APP) = vIP(PPP) 

 = vIP(APP'). 
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APP 

ACP PCP 

PPP 
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Packing- and Configuration Model 
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Configuration Model 
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Configuration Model 

 

 

 

 

Proposition:  

Route pricing = acyclic shortest 

path problem with arc weights 

 

  ca = ca+a. 
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Configuration Model 

 

 

 

 

Proposition:  

Config pricing = acyclic shortest 

path problem with arc weights 

 

  ca = a. 
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Configuration Model 
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Lagrange Funktion des PCP 

(PCP) (LD) 
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Bundle Method 
(Kiwiel [1990], Helmberg [2000]) 
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 Problem 

 Algorithm 

 Subgradient 

 Cutting Plane Model 

 Update 

 Quadratic Subproblem 

 

 

 

 

 

 

 Primal Approximation 

 Inexact Bundle Method 
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Bundle Method 
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 Primal Approximation 

 Inexact Bundle Method 
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Bundle Method 
(Kiwiel [1990], Helmberg [2000]) 
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 Inexact Bundle Method 
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Rapid Branching 

Perturbation Branching 

 Sequence of perturbed IP objectives  cj
i+1 := cj

i – (xj
i)2,  j, i=1,2,… 

 Fixing candidates in iteration i   Bi := { j : xj
i  1 –  } 

 Potential function in iteration i  vi := cTxi  – w|Bi | 

 Go on while not integer and potential decreases, else  

 Perturb for kmax additional iterations, if still not successful 

 Fix a single variable and reset objective every ks iterations 

 Set of fixed variables (many)    B* := Bargmin vi 

Binary Search Branching 

 Set of fixed variables (many)   B* := {j1, ... , jm}, cj1
  ...  cjm 

 Sets Qj
k at pertubation branch j  Qj

k := { x : xj1
=...=xjk

=1 }, 

      k=0,...,m 

 Branch on Qj
m 

 Repeat perturbation branching to plunge 

 Backtrack to Qj
m/2 and set m := m/2 to prune 

29 

Qj
2 

Qj
m/4 

Qj
m/2 

Qj
m 

Qj-1
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Qj
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Qj
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A Simple LP-Bound 

  

 

  

 

  

  

 

Lemma (BS [2007]):  







Solving the LP-Relaxation  
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Mathematische Optimierung 

Solving the IP 

 HaKaFu, req32, 1140 requests, 30 mins time windows 
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Mathematische Optimierung 

Track Allocation and Train Timetabling 

 BAB: Branch-and-Bound 

 PAB: Price-and-Branch 

 BAP: Branch-and-Price 
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Article Stations Tracks Trains Modell/Approach 

Szpigel [1973] 6 5 10 Packing/Enumeration 

Brännlund et al. [1998] 17 16 26 Packing/ Lagrange, BAB 

Caprara et al. [2002] 74 (17) 73 (16) 54 (221) Packing/ Lagrange, BAB 

B. & Schlechte [2007] 37 120 570 Config/PAB 

Caprara et al. [2007] 102 (16) 103 (17) 16 (221) Packing/PAB 

Fischer et al. [2008] 656 (104) 1210 (193) 117 (251) Packing/Bundle, IP Rounding 

Lusby et al. [2008] ??? 524 66 (31) Packing/BAP 

B. & Schlechte [2010] 37 120 >1.000 Config/Rapid Branching 
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 Discretization 
and 
Scheduling 



Railway Infrastructure Modeling 

 Detailed railway infrastucture data given by simulation programs 

(Open Track) 

  Switches 

  Signals 

  Tracks (with max. speed, acceleration, gradient) 

  Stations and Platforms 
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Microscopic Model 

 Simplon micrograph: 1154 nodes and 1831 arcs, 223 signals etc. 
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Headways 

 

 

 Simulation tools provide exact running and blocking times 

 Basis for calculation of minimal headway times 
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Macroscopic Network Generation 

38 

 Simulation of all possible routes with appropiate train types 

 

EC R 

GV Auto Brig-Iselle GV ROLA 

GV SIM 

GV MTO 

Chosen TrainTypes 

BRTU SGAA IS_A IS 

BRRB 

BR VAR MOGN PRE 

DOFM 

DO 
DOBI_A 
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Interaction of Train Routes 

 Generation of artifical nodes – „pseudo“ stations  

 No interactions between train routes  

IS 

 Macro network definition is based on set of train routes  
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Interaction of Train Routes 

 Generation of artifical nodes – „pseudo“ stations  

 Diverging of train routes  

IS_P IS 

 The same holds for converging routes  
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Interaction of Train Routes 

 Generation of artifical nodes – pseudo stations  

 crossing of train routes  

IS_P1 IS IS_P2 

 Two pseudo stations were generated  
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Reduced Macrograph 
(53 nodes and 87 track arcs for 28 train routes) 
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Station Aggregation 

 Frequently many macroscopic station nodes are in the area of big stations 

 Further aggregation is needed 

k k 

k =   

EC 2 

R 4 

GV Auto 2 

GV Rola 2 

GV SIM 4 

GV MTO 6 
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Micro-Macro Transformation 

 Planned times in macro network are possible in micro network 

 Valid headways lead to valid block occupations (no conflicts) 

     feasible macro timetable can be transformed to feasible micro timetable 
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Micro-Macro-Transformation: Simplon Case 

Micro 

 12 stations 

 1154 OpenTrack nodes 

 1831 OpenTrack edges 

 223 signals 

 8 track junctions 

 100 switches 

 6 train types 

 28 “routes“  

 230 ”block segments“ 

Macro 

 18 macro nodes 

 40 tracks 

 6 Train types 
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Time Discretization 

Cumulative Rounding Procedure 

 Compute macroscopic running time with specific rounding procedure 

 Consider again routes of trains (represented by standard trains) 

 Example with  

Station Dep/Pass Rounded Buffer 

A 0 0 0 

B 11 12 (2) 1 

C 20 24 (4) 4 

D 29 30 (5) 1 

6

 Theorem: If micro-running time d   for all tracks of the current train 

route, the cumulative rounding error (buffer) is always in         . ),0[ 
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Complex Traffic at the Simplon 

Slalom route 

 ROLA trains traverse the tunnel on the “wrong“ 

side 

Crossing of trains 

 complex crossings of AUTO trains in Iselle 

Conflicting routes 

 complex routings in station area Domodossola 

and Brig 

Source: Wikipedia 
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Dense Traffic at the Simplon 
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Estimation of the maximum theoretical corridor capacity 

  Network accuracy of 6s  

  Consider complete routing through stations  

  Saturate by additional cargo trains  

 

 

 

 

 

 

 

 Conflict free train schedules in simulation software (1s accuracy) 

 

Saturation 
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Manual Reference Plan 

Aggregation-Test (Micro->Macro->Micro) 

 Microscopic feasible 4h (8:00-12:00) reference plan in Open Track 

 Reproducing this plan by an Optimization run 

 Reimport to Open Track 
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Theoretical Capacities 

 180 trains for network 

small (without station 

routing and buffer times) 

 196 trains for network big 

with precise routing 

through stations (without 

buffer times) 

 175 trains for network big 

with precise routing 

through stations and 

buffer times 
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Retransformation to Microscopic Level (Network big) 

 No delays, no early coming 

 Feasible train routing and block occupation  

 Timetable is valid in micro-simulation 
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Valid blocking time stairs 

53 

 Network big with buffer times 
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 Network big with buffer times 
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Time Discretization Analysis 

Time discretization dt/s 6 10 30 60 

Number of trains 196 187 166 146 

Cols in IP 504314 318303 114934 61966 

Rows in IP 222096 142723 53311 29523 

Solution time in secs 72774.55 12409.19 110.34 10.30 
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 Hypergraph 

Scheduling 



Trip Network 
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Cyclic Timetable for Standard Week 

Scheduling Problems in Traffic and Transport 57 (Visualization based on JavaView) 57 



Rotation 
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Rotation 

Scheduling Problems in Traffic and Transport 59 



Rotation Schedule 
(Blue: Timetable, Red: Deadheads) 
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(Operational) Uniformity 
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Uniformity 
(Blue: Uniform, …, Red: Irregular) 
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Uniformity 
(Blue/Yellow: Uniform, …, Red: Irregular, Fat: Maintenance) 
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Rotation Schedule 
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Uniformity 
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Uniformity 
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Modelling Uniformity Using Hyperarcs 
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Hyperassignment 
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Hyperassignment Problem 

Definition: Let D=(V,A) be a directed hypergraph w. arc costs ca 

 H⊆A hyperassigment : +(v)H = -(v)H = 1 

 Hyperassignment Problem : argmin c(H), H hyperassignment 

 

 

 

 

Literature 

 Cambini, Gallo, Scutellà (1992): Minimum cost flows on hypergraphs; 

solves only the LP relaxation 

 Jeroslow, Martin, Rarding, Wang (1992): Gainfree Leontief substitution 

flow problems; does not hold for the hyperassignment problem 

Theorem: The HAP is NP-hard (even for simple cases). 
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Further Complexity Results 

Theorem: The LP/IP gap of HAP can be arbitrarity large. 
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Further Complexity Results 

Theorem: The LP/IP gap of HAP can be arbitrarity large. 
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Further Complexity Results 

Theorem: The LP/IP gap of HAP can be arbitrarity large. 
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Further Complexity Results 

Theorem: The LP/IP gap of HAP can be arbitrarity large. 

 

Proposition: The determinants of basis matrices of HAP can be 

arbitrarily large, even if all hyperarcs have head and tail size 2. 

 

Proposition: HAP is APX-complete for hyperarc head and tail size 

2 in general and for hyperarc head and tail cardinality 3 in the 

revelant cases. 
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Computational Results 
(CPLEX 12.1.0) 
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Partitioned Hypergraph and Configurations 
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Extended Configuration Formulation 

Theorem: There is an extended formulation of HAP with O(V8) 

variables that implies all clique constraints. 
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 Stochastic 
Scheduling 



LBW 

Delays 

Cost of delays 

72 €/minute average cost of gate delay over 15 minutes, cf. 
EUROCONTROL [2004] 

840 – 1200 millions €  annual costs caused by gate delays in 
Europe 

Benefits of robust planning 

Cost savings 

Reputation 

Less operational changes 

The Tail Assignment Problem – assign legs to aircraft in order to 
fulfill operational constraints such as preassignments, 
maintenance rules, airport curfews, and minimum connection 
times between legs, cf. Grönkvist [2005] 

 

We consider the tail assignment problem in a research project 
based on real-world data from a European carrier using the 
NetLine system 
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LBW 

Delay Propagation 
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LBW 

Delay Propagation Along Rotations  

EDP (bad) EDP (good) 
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LBW 

Delay Propagation 

Goal: Decrease impact of delays 

Primary delays: genuine disruptions, unavoidable 

Propagated delays: consequences of aircraft routing, can be 
minimized 

Rule-oriented planning 

Ad-hoc formulas for buffers 

These rules are costly and it is uncertain how efficient they are 

Calibrating these rules is a balancing act: supporting operational 
stability, while staying cost efficient 

Goal-oriented planning 

Minimize occurrence of delay propagation on average 
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LBW 

Stochastic Model 
(similar to Rosenberger et. al. [2002]) 

Delay distribution 

Delays are not homogeneously spread in the network 

Stochastic model must captures properties of individual airports 
and legs 

Structure of the stochastic model 

Gate phase, representing time spent on the ground 

Flight phase, representing time spent en-route 

Phase durations are modelled by probability distribution 

Gj  is random variable for delay of gate phase of leg j 

Fj  is random variable for duration of flight phase of leg j 

Scheduling Problems in Traffic and Transport 82 



LBW 
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,:

Robust Tail Assignment Problem 

Mathematical model: 

Minimize non-robustness 

 

Cover all legs 

 

Fulfill side constraints 

 

One rotation for each aircraft 

 

Integrality 
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Set partitioning problem with side constraints 

Problem has to be resolved daily for period of a few days 

Solved by Netline/Ops Tail xOPT  (state-of-the-art column generation 
solver by Lufthansa Systems) 
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Column Generation 
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Column Generation 
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Pricing Robust Rotations 

Robustness measure:  total probability of delay propagation (PDP) 

 

 

Resource constraint shortest path problem  

 

 

 where          is random variable of delay propagated to leg i in rotation 
r and                are dual variables corresponding to cover, aircraft, and 
side constraints 

 

To solve this problem one must compute along rotations  
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Computing PDi Along a Rotation 

Delay distribution Hj of leg j 

Hj  =  Gj  + Fj  

 

Delay propagation from leg j to leg k via buffer bjk 

PDk  =  max( Hj  - bjk , 0) 

 

Delay distribution Hk of next leg k 

 Hk  = PDk  + Gk  + Fk  

 

and so on… 
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Convolution 

Convolution 

H = F + G and f, g and h are their probability density functions  

 

 

Numerical convolution based on discretization 

 

 where          are stepwise constant approximations                                                      

of functions f, g  
 

Alternative approaches 

Analytical convolution, cf. Fuhr [2007] 
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Path Search 

Scheduling Problems in Traffic and Transport 89 

Flight 1 

Flight 2 

Flight 4 

Flight 3 

Flight 5 

Flight 6 

Flight 7 



LBW 

Path Search 
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Path Search 
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Path Search 
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Path Search 
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Path Search 
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Path Search 
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Accuracy vs. Speed 

Instance SC1: reference solution 

100 legs, 16 aircraft, no preassignments, no maintenace 

Optimizer produces the same solution for each step size 

CPU time differs only in computation of the convolutions 

PDP values differ because of approximation error 

 

 

 

 

 

 

 

* Comparison with average of 100 000 iterations 
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step size 
[min] 

CPU  
[s] 

PDP error 
[%] 

SC1 0.1 15.4 25.0586 0.11 

SC1 0.5 1.0 25.0672 0.15 

SC1 1 0.5 25.0917 0.25 

SC1 2 0.4 25.2227 0.77 

SC1 3 0.4 25.4775 1.79 

SC1 4 0.3 25.7667 2.94 

Simulation* 25.0303 



LBW 

Accuracy vs. Speed 

Instance SC1: optimized solution 

Different discretization step sizes may produce different 
solutions 

CPU time and PDP are not straightforward to compare 

 

 

 

 

 

 

 

 

 

 

 

 

*Value is average of 10 000 iterations 
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  step size 
[min] 

PDP 
optimized 

CPU 
[s] 

PDP 
simulated* 

SC1 0.1 19.7268 4450 19.7469 

SC1 0.5 19.7362 231 19.7382 

SC1 1 19.7450 70 19.7239 

SC1 2 19.8693 45 19.7313 

SC1 3 20.0651 29 19.7239 

SC1 4 20.3353 31 19.7562 
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Test Instances 

Analyzed data 

approx. 350000 flights / 300 – 650 flights per day 

28 months, 4 subfleets 

European airline with hub-and-spoke network 

Test instances 

We optimize single day instances of one subfleet  

Data for 4 months, no maintenance rules and preassignments 
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  min max avg 

#days 

Legs aircraft 
flight 
time 
[min] 

legs aircraft 
flight 
time 
[min] 

legs aircraft 
flight 
time 
[min] 

January 26 44 12 3840 105 17 8830 88 15 7447 

February 22 94 15 8295 118 17 10065 109 16 9339 

March 21 94 15 7900 121 17 10390 110 16,3 9483 

April 27 93 15 7080 118 18 9750 103 16 8648 
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Gate Phase 

Probability of delay 
Depends on day time and departure airport  

 

 

 

 

 

 

 

 

 

 

 

 

Distribution of delay 
Independent of daytime and departure 
airport 
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 where Ln() is probability density function of Log-normal distribution with Power-law 
distributed tail and                           ,  t(j) is departure time of flight j and a(j) is 
departure airport of flight j 
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Flight Phase 

Distribution of deviation from scheduled duration 

Depends on scheduled leg duration 

 

 

 

 

 

 

Flight phase 

flight delay distribution Fj of flight j 

 

 where Llg() is probability density function  

of Log-logistic distribution and  lj is scheduled flight    
duration of leg j 
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Histogram of the flight duration and its representation by random variable. left: scheduled flight 

duration 80 minutes, right: scheduled flight duration 45 minutes 

RxlxxF
jj lljj  ),,Llg(]Pr[ 
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Model Verification 

Parameters of the model: 

   for every airport and day hour 

  

       for every flight length 

Parameters are estimated by automatic scripts in R and quality is proofed by 
Chi-Square test. 

Model applied to South American airline data 

Validation of various assumptions of the model 

Stability of parameters over time, … 
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Gain of the Method 

ORC 

Standard KPI method 

Bonus for ground buffer minutes 

Threshold value for maximal ground buffer time (15 minutes) 

PDP 

Total probability of delay propagation 

 

 

 

 

 

 

EAD – expected arrival delay 
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  ORC PDP Savings 

#days PDP EAD 
[min] 

CPU [s] PDP EAD 
[min] 

CPU [s] PDP EAD 
[min] 

January 26 414,51 28488 28 395,46 28085 66 19,05 403 

February 22 540,48 31870 31 530,42 31652 89 10,06 218 

March 21 516,69 30363 31 507,91 30174 75 8,78 189 

April 27 465,48 34453 42 449,16 34159 71 16,51 294 

102 Scheduling Problems in Traffic and Transport 
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Gain in Detail 

Estimation of monetary savings by the cost  model developed based 
on EUROCONTROL [2004] 

Lufthansa Systems estimates annual saving of the method in the tail 
assignment to 300,000 € for short haul carrier with 30 aircraft 

Application in other planning stages may increase the benefit 
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ORC vs. PDP on a single disruption scenario 

ORC outperforms PDP only in 21% of cases 

PDP saves on average 29 minutes of arrival 
delay 

For more disrupted days, PDP saves on 
average  62 minutes of arrival delay 



Planning in Public Transport 
(Product, Project, Planned) 
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multidepotwise 
Depots 
multiple line groups 
Line Groups 
multiple lines 
Lines 
multiple rotations 
Rotations 

B1 AN-OPT/B5 BS-OPT 

IS-OPT 

VS-OPT DS-OPT APD B1 

VS-OPT2 B15 



Visit ISMP 2012! 
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Thank your for your attention 

PD Dr. habil. Ralf Borndörfer 
 
Zuse-Institute Berlin 
Takustr. 7 
14195 Berlin-Dahlem 
 
Fon (+49 30) 84185-243 
Fax (+49 30) 84185-269 
borndoerfer@zib.de  
 
www.zib.de/borndoerfer 
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