

Scheduling Problems and Algorithms in Traffic and Transport

MAPSP 2011
Nymburk, 24.06.11

Ralf Borndörfer
Zuse-Institute Berlin

Joint work with Ivan Dovica, Martin Grötschel, Olga Heismann, Andreas Löbel, Markus Reuther, Elmar Swarat, Thomas Schlechte, Steffen Weider

Optimization in Public Transit

IVU suite

The IVU.suite for Public Transport
for all operational requirements

with a continuous data flow

Railway Challenges

We want to avoid this!

Simplon Tunnel

Basic Rolling Stock Rostering Problem = Multicommodity Flow Problem
\triangleright Can be solved efficiently for networks with 10^{9} arcs
Constraints complicating rolling stock rostering
\triangleright Discretization: Space/Time ("Multiscale Problems")
\triangleright Robustness: Delay Propagation
\triangleright Path Constraints: Maintenance, Parking
\triangleright Configuration Constraints: Track Usage, Train Composition, Uniformity

$$
\begin{aligned}
& \text { Integrated } \\
& \text { Routing and } \\
& \text { Scheduling }
\end{aligned}
$$

Integrated Routing and Scheduling

Routing

Scheduling

Timetable

羔 Tracks (a)

$[057] 21-2$
$[058] 22-1$
$[059] 22-2$
$[060] 23-1$
$[061] 23-2$
$[062] 24-2$
$[063] 24-1$
$[064] 25-2$
$[065] 25-1$
$066] 26-2$
$[067] 26-1$
$[068] 27-1$
$[069] 27-2$
$[070] 79-1$
$[071170$

\oplus stations \quad a

$[00]$ HLER
$[01]$ HHI
$[02]$ HNOS
$[03]$ HWU
$[04]$ HWHN
$[00]$ HG
$[06]$ FK
$[07]$ FKW
$[08]$ HEBG
$[09]$ HWAR
$[10] ~ H A$
$[11] ~ H H M$
$[12] ~ H W E Z ~$
$[13] ~ H L I ~$
[141 HU

Requests \approx
Network display

Blocking time display

Train Routes are Flexible in Space and Time

Conflict

Track Allocation Graph

Track Allocation/Train Timetabling Problem

Literature

$\triangleright \quad$ Charnes and Miller (1956), Szpigel (1973), Jovanovic and Harker (1991),
$\triangleright \quad$ Cai and Goh (1994), Schrijver and Steenbeck (1994), Carey and Lockwood (1995)
$\triangleright \quad$ Nachtigall and Voget (1996), Odijk (1996) Higgings, Kozan and Ferreira (1997)
\triangleright Brannlund, Lindberg, Nou, Nilsson (1998), Lindner (2000), Oliveira and Smith (2000)
$\triangleright \quad$ Caprara, Fischetti and Toth (2002), Peeters (2003)
$\triangleright \quad$ Kroon and Peeters (2003), Mistry and Kwan (2004)

- Barber, Salido, Ingolotti, Abril, Lova, Tormas (2004)
\triangleright Semet and Schoenauer (2005),
\triangleright Caprara, Monaci, Toth and Guida (2005)
\triangleright Kroon, Dekker and Vromans (2005),
$\triangleright \quad$ Vansteenwegen and Van Oudheusden (2006), Liebchen (2006)
\triangleright Cacchiani, Caprara, T. (2006), Cachhiani (2007)
\triangleright Caprara, Kroon, Monaci, Peeters, Toth (2006)
\triangleright Borndoerfer, Schlechte (2005, 2007), Caimi G., Fuchsberger M., Laumanns M., Schüpbach K. (2007)
\triangleright Fischer, Helmberg, Janßen, Krostitz (2008)
- Lusby, Larsen, Ehrgott, Ryan (2009)
\triangleright Caimi (2009), Klabes (2010)
- ...

Path/Arc Packing Model

新䔆

Path Packing Model

(APP) $\max \sum_{i \in I} \sum_{a \in A} c_{a}^{i} x_{a}^{i}$
(i) $\quad \sum_{a \in \mathcal{S}_{i}^{+}(v)} x_{a}^{i}-\sum_{a \in \mathcal{S}_{i}^{-}(v)} x_{a}^{i}=\beta_{i}(v) \quad \forall v \in V, i \in I \quad$ Flow
(ii)

$$
\begin{array}{llll}
\sum_{(a, i) \in k} x_{a}^{i} & \leq 1 & \forall k \in K & \text { Conflicts } \\
x_{a}^{i} & \in\{0,1\} \quad \forall a \in A, i \in I \quad \text { Integ. }
\end{array}
$$

(iii)

$$
f=4=\left(\begin{array}{c}
t \\
f
\end{array}\right.
$$

Packing- and Configuration Model

(APP) $\max \sum_{i \in I} \sum_{a \in A} c_{a}^{i} x_{a}^{i}$
(i) $\sum_{a \in \delta_{i}^{+}(v)} x_{a}^{i}-\sum_{a \in \delta_{i}^{-}(v)} x_{a}^{i}=\beta_{i}(v) \quad \forall v \in V, i \in I \quad$ Flow
(ii)

$$
\sum x_{a}^{i} \quad \leq \quad 1 \quad \forall k \in K \quad \text { Conflicts }
$$

(iii)

$$
x_{a}^{i} \quad \in\{0,1\} \quad \forall a \in A, i \in I \quad \text { Integ. }
$$

(PCP) max $\sum_{i \in I} \sum_{p \in P_{i}} \sum_{a \in p} c_{a}^{i} x_{p}$
(i)
(ii)

$$
\sum_{p \in P_{i}} x_{p}
$$

$\leq \quad 1 \quad \forall i \in I$
Trains
$\leq \quad 1 \quad \forall j \in J \quad$ Configs
(iii)

$$
\sum_{a \in p \in P} x_{p}-\sum_{a \in q \in Q} y_{q}
$$

(iv)
(v)

$$
x_{p}
$$

y_{q}
$\leq 0 \quad \forall a \in A$ Coupling $\in\{0,1\} \quad \forall p \in P \quad$ Integ.
$\in\{0,1\} \quad \forall q \in Q \quad$ Integ.

Theorem (B., Schlechte [2007]):

$$
\begin{aligned}
& v_{\mathrm{LP}}(\mathrm{PCP})=\mathrm{v}_{\mathrm{LP}}(\mathrm{ACP}) \\
= & \mathrm{v}_{\mathrm{LP}}(\mathrm{APP})=\mathrm{v}_{\mathrm{LP}}(\mathrm{PPP}) \\
\leq & \left.\mathrm{v}_{\mathrm{LP}}(\mathrm{APP})^{\prime}\right) .
\end{aligned}
$$

All LP-relaxations can be solved in polynomial time.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IP}}(\mathrm{PCP})=\mathrm{v}_{\mathrm{IP}}(\mathrm{ACP}) \\
= & \mathrm{v}_{\mathrm{IP}}(\mathrm{APP})=\mathrm{V}_{\mathrm{IP}}(\mathrm{PPP}) \\
= & \mathrm{V}_{\mathrm{IP}}\left(\mathrm{APP}^{\prime}\right) .
\end{aligned}
$$

Packing- and Configuration Model

(APP) $\max \sum_{i \in I} \sum_{a \in A} c_{a}^{i} x_{a}^{i}$
(i) $\sum_{a \in \delta_{i}^{+}(v)} x_{a}^{i}-\sum_{a \in \delta_{i}^{-}(v)} x_{a}^{i}=\beta_{i}(v) \quad \forall v \in V, i \in I \quad$ Flow
(ii)

$$
\sum x_{a}^{i} \quad \leq \quad 1 \quad \forall k \in K \quad \text { Conflicts }
$$

(iii)

$$
x_{a}^{i} \quad \in\{0,1\} \quad \forall a \in A, i \in I \quad \text { Integ. }
$$

(PCP) max $\sum_{i \in I} \sum_{p \in P_{i}} \sum_{a \in p} c_{a}^{i} x_{p}$
(i)
(ii)

$$
\sum_{p \in P_{i}} x_{p}
$$

$\leq \quad 1 \quad \forall i \in I$
Trains
$\leq \quad 1 \quad \forall j \in J \quad$ Configs
(iii)

$$
\sum_{a \in p \in P} x_{p}-\sum_{a \in q \in Q} y_{q}
$$

(iv)
(v)

$$
x_{p}
$$

y_{q}
$\leq 0 \quad \forall a \in A$ Coupling $\in\{0,1\} \quad \forall p \in P \quad$ Integ.
$\in\{0,1\} \quad \forall q \in Q \quad$ Integ.

Configuration Model

$(\mathrm{DUA}) \min \sum_{i \in I} \gamma_{i}+\sum_{j \in J} \pi_{j}$
(i) $\quad \gamma_{i}+\sum_{a \in p} \lambda_{a} \quad \geq \sum_{a \in p} c_{a}^{i} \quad \forall p \in P_{i}, i \in I \quad$ Paths
(ii) $\pi_{j}-\sum_{a \in q} \lambda_{a} \quad \geq \quad 0 \quad \forall q \in Q_{j}, j \in J$ Configs
(iii)

$$
\gamma, \pi, \lambda \quad \geq 0
$$

(PLP) max $\sum_{i \in I} \sum_{p \in P_{i}} \sum_{a \in p} c_{a}^{i} x_{p}$
(i)
(ii)

$$
\begin{array}{lll}
\leq 1 & \forall i \in I & \text { Trains } \\
\leq 1 & \forall j \in J & \text { Configs }
\end{array}
$$

(iii)

$$
\sum_{a \in p \in P} x_{p}-\sum_{a \in q \in Q} y_{q}
$$

(iv)

$$
x_{p}
$$

(v)
y_{q}
$\leq \mathrm{O} \forall a \in A$ Coupling

$$
\geq 0 \quad \forall p \in P \quad \text { Integ. }
$$

$\geq 0 \quad \forall q \in Q \quad$ Integ.

Configuration Model

$(\mathrm{DUA}) \min \sum_{i \in I} \gamma_{i}+\sum_{j \in J} \pi_{j}$
(i)
(ii)

$$
\gamma_{i}+\sum_{a \in p} \lambda_{a} \quad \geq \sum_{a \in p} c_{a}^{i} \quad \forall p \in P_{i}, i \in I \quad \text { Paths }
$$

$$
\begin{array}{cl}
\pi_{j}-\sum_{a \in q}^{a \in p} \lambda_{a} & \geq{ }^{a \in p} 0 \tag{iii}\\
\gamma, \pi & \geq 0
\end{array}
$$

$$
\forall q \in Q_{j}, j \in J \text { Configs }
$$

Proposition:

Route pricing = acyclic shortest path problem with arc weights

$$
\overline{\mathrm{c}}_{\mathrm{a}}=-\mathrm{c}_{\mathrm{a}}+\lambda_{\mathrm{a}} .
$$

Configuration Model

$(\mathrm{DUA}) \min \sum_{i \in I} \gamma_{i}+\sum_{j \in J} \pi_{j}$
(i)
(ii)

$$
\gamma_{i}+\sum_{a \in p} \lambda_{a} \quad \geq \sum_{a \in p} c_{a}^{i} \quad \forall p \in P_{i}, i \in I \quad \text { Paths }
$$

$$
\begin{array}{cl}
\pi_{j}-\sum_{a \in q}^{\overline{a \in p}} \lambda_{a} & \geq 0 \\
\gamma, \pi & \geq 0
\end{array}
$$

Proposition:

Config pricing = acyclic shortest path problem with arc weights

$$
\overline{\mathrm{C}}_{\mathrm{a}}=-\lambda_{\mathrm{a}} .
$$

Configuration Model

(PLP) max $\sum_{i \in I} \sum_{p \in P_{i}} \sum_{a \in p} c_{a}^{i} x_{p}$
(i)
(ii)

$$
\sum_{p \in P_{i}} x_{p}
$$

$$
\leq 1 \quad \forall i \in I
$$

Trains

$$
\leq 1 \quad \forall j \in J \quad \text { Configs }
$$

(iii)

$$
\sum_{a \in p \in P} x_{p}-\sum_{a \in q \in Q} y_{q}
$$

(iv)

$$
x_{p}
$$

$\geq 0 \quad \forall p \in P$
$\geq 0 \quad \forall q \in Q \quad$ Integ.

Lagrange Funktion des PCP

(PCP)

(LD)

(LD) $\min _{\lambda \geq 0}\left[\max _{\substack{A x=1, x \in[0,1]^{P \mid}}}\left(u^{\top}-\lambda^{\top} C\right) x+\max _{\substack{B y=1, y \in[0,1]^{\prime} \mid}}\left(\lambda^{\top} D\right) y\right]$
\triangleright Problem
\triangleright Algorithm

- Subgradient
- Cutting Plane Model
- Update
\triangleright Quadratic Subproblem

$$
\left\|b-A \tilde{x}_{k}\right\| \rightarrow 0(k \rightarrow \infty) \quad \tilde{x}_{k+1}=\sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}
$$

\triangleright Problem
\triangleright Algorithm

- Subgradient
- Cutting Plane Model
- Update
\triangleright Quadratic Subproblem

$$
\begin{aligned}
& f(\lambda):=\min _{x \in X} c^{\top} x+\lambda^{\top}(b-A x) \\
& \bar{f}_{\mu}(\lambda)=c^{\top} x_{\mu}+\lambda^{\top}\left(b-A x_{\mu}\right) \\
& \hat{f}_{k}(\lambda):=\min _{\mu \in J_{k}} \bar{f}_{\mu}(\lambda) \\
& \lambda_{k+1}=\underset{\lambda}{\operatorname{argmax}} \hat{f}_{k}(\lambda)-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2}
\end{aligned}
$$

$$
\max \hat{f}_{k}(\lambda)-\frac{\hat{u}_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2} \Leftrightarrow \max \quad v-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}^{k}\right\|^{2}
$$

s.t. $\quad v \leq \bar{f}_{\mu}(\lambda)$, for all $\mu \in J_{k}$
$\bar{f}_{\lambda_{1}} \Leftrightarrow \max \sum_{\mu \in J_{k}} \alpha_{\mu} \bar{f}_{\mu}(\hat{\lambda})-\frac{1}{2 u_{k}}\left\|\sum_{\mu \in J_{k}} \alpha_{\mu}\left(b-A x_{\mu}\right)\right\|^{2}$
s.t. $\sum_{\mu \in J_{k}} \alpha_{\mu}=1$

$$
0 \leq \alpha_{\mu} \leq 1, \quad \text { for all } \mu \in J_{k}
$$

\triangleright Primal Approximatio ${ }^{\lambda}{ }^{1}$
\triangleright Inexact Bundle Method
\triangleright Problem
\triangleright Algorithm

- Subgradient
- Cutting Plane Model
- Update
\triangleright Quadratic Subproblem

$$
\hat{f} \Leftrightarrow \Leftrightarrow \max \sum_{\mu \in J_{k}} \alpha_{\mu} \bar{f}_{\mu}(\hat{\lambda})-\frac{1}{2 u_{k}}\left\|\sum_{\mu \in J_{k}} \alpha_{\mu}\left(b-A x_{\mu}\right)\right\|^{2}
$$

\triangleright Primal ${ }^{2}{ }^{2}$ Approximatio ${ }^{\lambda}{ }^{1}$
\triangleright Inexact Bundle Method

$$
\begin{aligned}
& f(\lambda):=\min _{x \in X} c^{\top} x+\lambda^{\top}(b-A x) \\
& \bar{f}_{\mu}(\lambda)=c^{\top} x_{\mu}+\lambda^{\top}\left(b-A x_{\mu}\right) \\
& \hat{f}_{k}(\lambda):=\min _{\mu \in J_{k}} \bar{f}_{\mu}(\lambda) \\
& \lambda_{k+1}=\underset{\lambda}{\mu \in J_{k}} \underset{\lambda_{k}}{\operatorname{argmax}} \hat{f}_{k}(\lambda)-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2} \\
& \max \hat{f}_{k}(\lambda)-\frac{\lambda_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2} \Leftrightarrow \max \quad v-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}^{k}\right\|^{2} \\
& \text { s.t. } \quad v \leq \bar{f}_{\mu}(\lambda) \text {, for all } \mu \in J_{k} \\
& \text { s.t. } \quad \sum_{\mu \in J_{k}} \alpha_{\mu}=1 \\
& f \quad 0 \leq \alpha_{\mu} \leq 1, \quad \text { for all } \mu \in J_{k} \\
& \left\|b-A \tilde{x}_{k}\right\| \rightarrow 0(k \rightarrow \infty) \quad \tilde{x}_{k+1}=\sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}
\end{aligned}
$$

\triangleright Problem
\triangleright Algorithm

- Subgradient
- Cutting Plane Model
- Update
\triangleright Quadratic Subproblem

$$
\hat{f} \Leftrightarrow \max \sum_{\mu \in J_{k}} \alpha_{\mu} \bar{f}_{\mu}(\hat{\lambda})-\frac{1}{2 u_{k}}\left\|\sum_{\mu \in J_{k}} \alpha_{\mu}\left(b-A x_{\mu}\right)\right\|^{2}
$$

\triangleright Primal ${ }^{2}$ Approx ${ }^{3}$ Pmation $^{\lambda^{1}}$
\triangleright Inexact Bundle Method

$$
\begin{aligned}
& f(\lambda):=\min _{x \in X} c^{\top} x+\lambda^{\top}(b-A x) \\
& \bar{f}_{\mu}(\lambda)=c^{\top} x_{\mu}+\lambda^{\top}\left(b-A x_{\mu}\right) \\
& \hat{f}_{k}(\lambda):=\min _{\mu \in J_{k}} \bar{f}_{\mu}(\lambda) \\
& \lambda_{k+1}=\underset{\lambda}{\mu \in J_{k}} \underset{\lambda}{\operatorname{argax}} \hat{f}_{k}(\lambda)-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2} \\
& \max \hat{f}_{k}(\lambda)-\frac{\lambda_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2} \Leftrightarrow \max \quad v-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}^{k}\right\|^{2} \\
& \text { s.t. } \quad v \leq \bar{f}_{\mu}(\lambda) \text {, for all } \mu \in J_{k} \\
& \text { s.t. } \quad \sum_{\mu \in J_{k}} \alpha_{\mu}=1 \\
& \text { f } \quad 0 \leq \alpha_{\mu} \leq 1, \quad \text { for all } \mu \in J_{k} \\
& \left\|b-A \tilde{x}_{k}\right\| \rightarrow 0(k \rightarrow \infty) \quad \tilde{x}_{k+1}=\sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}
\end{aligned}
$$

\triangleright Problem
\triangleright Algorithm

- Subgradient
- Cutting Plane Model
- Update
\triangleright Quadratic Subproblem

$$
f(\lambda):=\min _{x \in X} C^{\top} x+\lambda^{\top}(b-A x)
$$

$$
\bar{f}_{\mu}(\lambda)=c^{\top} x_{\mu}+\lambda^{\top}\left(b-A x_{\mu}\right)
$$

$$
\hat{f}_{k}(\lambda):=\min _{\mu \in J_{k}} \bar{f}_{\mu}(\lambda)
$$

$$
\lambda_{k+1}=\underset{\lambda}{\mu \in J_{k}} \underset{\lambda}{\arg } \hat{f}_{k}(\lambda)-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2}
$$

$$
\max \hat{f}_{k}(\lambda)-\frac{\hat{u}_{k}}{2}\left\|\lambda-\hat{\lambda}_{k}\right\|^{2} \Leftrightarrow \max \quad v-\frac{u_{k}}{2}\left\|\lambda-\hat{\lambda}^{k}\right\|^{2}
$$

s.t. $\quad v \leq \bar{f}_{\mu}(\lambda)$, for all $\mu \in J_{k}$
$\Leftrightarrow \max \quad \sum_{\mu \in J_{k}} \alpha_{\mu} \bar{f}_{\mu}(\hat{\lambda})-\frac{1}{2 u_{k}}\left\|\sum_{\mu \in J_{k}} \alpha_{\mu}\left(b-A x_{\mu}\right)\right\|^{2}$
s.t. $\sum_{\mu \in J_{k}} \alpha_{\mu}=1$

$$
0 \leq \alpha_{\mu} \leq 1, \quad \text { for all } \mu \in J_{k}
$$

\triangleright Primal2 ${ }^{2}$ Approxpmation ${ }^{1}$

$$
\left\|b-A \tilde{x}_{k}\right\| \rightarrow 0(k \rightarrow \infty) \quad \tilde{x}_{k+1}=\sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}
$$

Rapid Branching

Perturbation Branching
\triangleright Sequence of perturbed IP objectives $c_{j}^{i+1}:=c_{j}^{i}-\alpha\left(x_{j}^{j}\right)^{2}, \forall j, i=1,2, \ldots$
\triangleright Fixing candidates in iteration $i \quad B^{i}:=\left\{j: x_{j}^{i} \geq 1-\varepsilon\right\}$
\triangleright Potential function in iteration $i \quad v^{i}:=c^{\top} x^{i}-w\left|B^{i}\right|$
\triangleright Go on while not integer and potential decreases, else

- Perturb for $\mathrm{k}_{\text {max }}$ additional iterations, if still not successful
- Fix a single variable and reset objective every k_{s} iterations
\triangleright Set of fixed variables (many)

$$
\mathrm{B}^{*}:=\mathrm{B}^{\text {argmin }} \mathrm{v}^{\mathrm{i}}
$$

Binary Search Branching
\triangleright Set of fixed variables (many)
$B^{*}:=\left\{j_{1}, \ldots, j_{m}\right\}, c_{j_{1}} \leq \ldots \leq c_{j_{m}}$
\triangleright Sets $\mathrm{Q}_{\mathrm{j}}{ }^{k}$ at pertubation branch $\mathrm{j} \mathrm{Q}_{\mathrm{j}}{ }^{\mathrm{k}}:=\left\{\mathrm{x}: \mathrm{x}_{\mathrm{j}_{1}}=\ldots=\mathrm{x}_{\mathrm{jk}}=1\right\}$,

$$
\mathrm{k}=0, \ldots, \mathrm{~m}
$$

\triangleright Branch on $\mathrm{Q}_{j}^{\mathrm{m}}$

- Repeat perturbation branching to plunge
- Backtrack to $\mathrm{Q}_{\mathrm{j}}^{\lfloor\mathrm{m} / 2\rfloor}$ and set $\mathrm{m}:=\lfloor\mathrm{m} / 2\rfloor$ to prune

A Simple LP-Bound

(PRICE (x)) $\exists \bar{p} \in \mathcal{P}_{i}: \quad \gamma_{i}<\sum_{a \in \bar{p}}\left(p_{a}-\lambda_{a}\right)$
$\eta_{i}:=\max _{p \in P_{i}} \sum_{a \in p}\left(p_{a}-\lambda_{a}\right)-\gamma_{i}, \forall i \in I \Rightarrow \eta_{i}+\gamma_{i} \geq \sum_{a \in p}\left(p_{a}-\lambda_{a}\right) \forall i \in I, p \in \mathcal{P}_{i}$
(PRICE (y)) $\quad \exists \bar{q} \in Q_{j}: \quad \pi_{j}<\sum_{a \in \bar{q}} \lambda_{a}$
$\theta_{j}:=\max _{\bar{q} \in Q_{j}} \sum_{a \in \bar{q}} \lambda_{a}-\pi_{j}, \forall j \in J \Rightarrow \theta_{j}+\pi_{j} \geq \sum_{a \in q} \lambda_{a} \forall j \in J, q \in \mathcal{Q}_{j}$
($\max \{\eta+\gamma, 0\}, \max \{\theta+\pi, 0\}, \lambda$) is feasible for (DLP)
$\beta(\gamma, \pi, \lambda):=\sum_{i \in I} \max \left\{\gamma_{i}+\eta_{i}, 0\right\}+\sum_{j \in J} \max \left\{\pi_{j}+\theta_{j}, 0\right\}$

Lemma (BS [2007]): $\quad v_{L P}(P C P) \leq \beta(\gamma, \pi, \lambda)$

Solving the LP-Relaxation

Solving the IP

> HaKaFu, req32, 1140 requests, 30 mins time windows

TS-OPT run, model PCP, PCP-24H-NS-BUNDLE-BNB-100401-17:22:40

TS-OPT rum, model PCP, PCP-24H-NS-BUNDLE-BNB-TW-30-100331-15:46:57

-	upper bound
\rightarrow	incumbent
\rightarrow	columns fixed
\rightarrow	fixed objective
\rightarrow	active columns (in thousands)
	primal target value

Track Allocation and Train Timetabling

Article	Stations	Tracks	Trains	Modell/Approach
Szpigel [1973]	6	5	10	Packing/Enumeration
Brännlund et al. [1998]	17	16	26	Packing/ Lagrange, BAB
Caprara et al. [2002]	$74(17)$	$73(16)$	$54(221)$	Packing/ Lagrange, BAB
B. \& Schlechte [2007]	37	120	570	Config/PAB
Caprara et al. [2007]	$102(16)$	$103(17)$	$16(221)$	Packing/PAB
Fischer et al. [2008]	$656(104)$	$1210(193)$	$117(251)$	Packing/Bundle, IP Rounding
Lusby et al. [2008]	???	524	$66(31)$	Packing/BAP
B. \& Schlechte [2010]	37	120	>1.000	Config/Rapid Branching

\triangleright BAB: Branch-and-Bound
\triangleright BAP: Branch-and-Price

Discretization and

Railway Infrastructure Modeling

\triangleright Detailed railway infrastucture data given by simulation programs (Open Track)

\triangleright Signals
\triangleright Switches
Δ Tracks (with max. speed, acceleration, gradient)
\triangleright Stations and Platforms

Microscopic Model

\triangleright Simplon micrograph: 1154 nodes and 1831 arcs, 223 signals etc.

Headways

\triangleright Simulation tools provide exact running and blocking times
\triangleright Basis for calculation of minimal headway times

Macroscopic Network Generation

\triangleright Simulation of all possible routes with appropiate train types

Interaction of Train Routes

\triangleright Generation of artifical nodes - „pseudo" stations

\triangleright No interactions between train routes

IS

\triangleright Macro network definition is based on set of train routes

Interaction of Train Routes

\triangleright Generation of artifical nodes - „pseudo" stations

\triangleright Diverging of train routes

\triangleright The same holds for converging routes

Interaction of Train Routes

\triangleright Generation of artifical nodes - pseudo stations

\triangleright crossing of train routes

\triangleright Two pseudo stations were generated

Station Aggregation

\triangleright Frequently many macroscopic station nodes are in the area of big stations
\triangleright Further aggregation is needed

$k=$| EC | 2 |
| :--- | :--- |
| R | 4 |
| GV Auto | 2 |
| GV Rola | 2 |
| GV SIM | 4 |
| GV MTO | 6 |

Micro-Macro Transformation

\triangleright Planned times in macro network are possible in micro network
\triangleright Valid headways lead to valid block occupations (no conflicts)
\Rightarrow feasible macro timetable can be transformed to feasible micro timetable

Micro-Macro-Transformation: Simplon Case

Micro

$\triangleright 12$ stations
$\triangleright 1154$ OpenTrack nodes
$\triangleright 1831$ OpenTrack edqes
$\triangleright 223$ signals
$\triangleright 8$ track junctions

- 100 switches
$\triangleright 6$ train types
$\triangleright 28$ "routes"
■ 230 "block segments"

Macro

$\triangleright 18$ macro nodes
$\triangleright 40$ tracks
$\triangleright 6$ Train types

Time Discretization

Cumulative Rounding Procedure

\triangleright Compute macroscopic running time with specific rounding procedure
\triangleright Consider again routes of trains (represented by standard trains)
\triangleright Example with $\Delta=6$

Station	Dep/Pass	Rounded	Buffer
A	0	0	0
B	11	$12(2)$	1
C	20	$24(4)$	4
D	29	$30(5)$	1

Theorem: If micro-running time $d \geq \Delta$ for all tracks of the current train route, the cumulative rounding error (buffer) is always in $[0, \Delta$).

Complex Traffic at the Simplon

Source: Wikipedia
Slalom route
\triangleright ROLA trains traverse the tunnel on the "wrong" side

Crossing of trains
\triangleright complex crossings of AUTO trains in Iselle
Conflicting routes
\triangleright complex routings in station area Domodossola and Brig

Dense Traffic at the Simplon

Estimation of the maximum theoretical corridor capacity

\triangleright Network accuracy of 6s
\triangleright Consider complete routing through stations
\triangleright Saturate by additional cargo trains

\triangleright Conflict free train schedules in simulation software (1s accuracy)

Manual Reference Plan

Aggregation-Test (Micro->Macro->Micro)
\triangleright Microscopic feasible 4h (8:00-12:00) reference plan in Open Track
\triangleright Reproducing this plan by an Optimization run
\triangleright Reimport to Open Track

Brig - Domodossola

Theoretical Capacities

$\triangleright 175$ trains for network big with precise routing through stations and buffer times
$\triangleright 180$ trains for network small (without station routing and buffer times)
$\triangleright 196$ trains for network big with precise routing through stations (without buffer times)

Retransformation to Microscopic Level (Network big)

\triangleright No delays, no early coming
\triangleright Feasible train routing and block occupation
\triangleright Timetable is valid in micro-simulation

Valid blocking time stairs

\triangleright Network big with buffer times

Brig RB - Domodossola II

Time Discretization Analysis

\triangleright Network big with buffer times

Time discretization dt/s	6	10	30	60
Number of trains	196	187	166	146
Cols in IP	504314	318303	114934	61966
Rows in IP	222096	142723	53311	29523
Solution time in secs	72774.55	12409.19	110.34	10.30

Hypergraph
 Scheduling

Trip Network

Fri

Sat

Cyclic Timetable for Standard Week

File oftions

［00］ 5	－
［01］ 5	
［02］ 5	
［03］ 70	
［04］ 71	
［05］ 72	
［06］ 73	
［07］ 74	
［08］ 75	
［09］ 76	
［10］ 77	
［11］ 78	
［12］ 79	
［13］ 270	
［14］ 271	－

Rotation

Rotations

氧 Tracks

[006] AA G\#AA
[000] AA\#AAR [001] AA\#AE F [002] AA\#ALA [003] AA\#ALAA [004] AA\#HB [005] AA\#HH [007] AAH\#ABCH 008] AAH\#ABG 009] AAMP\#AH [010] AAMP\#AHROF [011] AAR\#AA [012] AAR\#ADF [013] AAR\#ALA T01コ1 A ADHAI An

(H) Stations ()

[000] AA
[001] AA G
[002] AAH
[003] AAMP
[003] AAMP
[004] AAR
005] ABCH
006] ABG
007] ABLZ
008] ABVS
[010] AE F
[o10] AE F
[011] AEL
[012] AERI

(Operational) Uniformity

Wagenstandanzeiger Gleis 11

3 File Options

绞 Rotations	\approx
氟 Tracks	\approx
（H）Stations	\approx
緒 Requests	，
［00］ 5	\triangle
［01］ 5	
［02］ 5	
［03］ 72	
［04］ 73	
［05］ 74	
［06］ 75	
［07］ 76	
［08］ 77	
［09］ 78	
［10］ 79	
［11］ 270	
［12］ 271	
［13］ 272	
［14］ 272	\checkmark
rurt	－

Q Traintypes

Network display

Memory usage： 140 MB
Visualization based on JavaView）

Uniformity

Modelling Uniformity Using Hyperarcs

Hyperassignment

Hyperassignment Problem

Definition: Let $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ be a directed hypergraph w . arc costs C_{a}
$\triangleright H \subseteq A$ hyperassigment $: \Leftrightarrow \delta^{+}(v) \cap H=\delta^{-}(v) \cap H=1$
\triangleright Hyperassignment Problem : $\Leftrightarrow \operatorname{argmin} \mathrm{c}(\mathrm{H}), \mathrm{H}$ hyperassignment $\min c^{T} x$

$$
\begin{aligned}
x\left(\delta^{+}(v)\right) & =1 & \forall v \in V \\
x\left(\delta^{-}(v)\right) & =1 & \forall v \in V \\
x & \in\{0,1\}^{A} &
\end{aligned}
$$

Literature

\triangleright Cambini, Gallo, Scutellà (1992): Minimum cost flows on hypergraphs; solves only the LP relaxation
\triangleright Jeroslow, Martin, Rarding, Wang (1992): Gainfree Leontief substitution flow problems; does not hold for the hyperassignment problem

Theorem: The HAP is NP-hard (even for simple cases).

Further Complexity Results

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Further Complexity Results

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Further Complexity Results

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Further Complexity Results

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Proposition: The determinants of basis matrices of HAP can be arbitrarily large, even if all hyperarcs have head and tail size 2.

Proposition: HAP is APX-complete for hyperarc head and tail size 2 in general and for hyperarc head and tail cardinality 3 in the revelant cases.

$\begin{aligned} & \sum_{0}^{n} \underset{\sum}{\sum} \\ & \text { \# } \end{aligned}$	$$	$\begin{aligned} & \text { n } \\ & \text { O} \\ & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{0}{5} \\ & \frac{0}{50} \\ & \frac{0}{1} \\ & \underline{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 00 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$			$$	
534	52056	140081	11.16 \%	6.81 \%	4.90 \%	160	14	8
620	80477	236020	8.72 \%	0.00 \%	9.54 \%	120	2	29
812	102375	216566	0.38 \%	0.18 \%	0.20 \%	24	16	40
1128	267542	732134	4.59 \%	0.26 \%	4.55 \%	263	0	160
1310	363513	1006024	7.85 \%	0.22 \%	8.28 \%	378	2	270
1496	469932	1369224	18.70 \%	1.86 \%	20.71 \%	809	0	971
1696	618348	1787078	5.17 \%	0.16 \%	5.28 \%	925	0	1705
1746	649525	1859898	7.52 \%	4.88 \%	2.86 \%	563	0	1129
1798	647650	1822718	13.60 \%	0.95 \%	14.65 \%	537	0	1099
1798	647650	1822718	13.35 \%	0.62 \%	14.69 \%	604	0	873
2006	855153	2491372	5.76 \%	0.68 \%	5.39 \%	1025	0	2490
2260	1079535	3138752	9.89 \%	2.03 \%	8.73 \%	954	0	5483
2502	1290750	3680124	7.06 \%	0.76 \%	6.79 \%	801	0	4583
2620	1432355	4187296	9.05\%	1.15 \%	8.68\%	1068	0	7910
2624	1439453	4087042	14.17 \%	5.23 \%	10.41 \%	951	0	(*) 14400

Partitioned Hypergraph and Configurations

Extended Configuration Formulation

Theorem: There is an extended formulation of HAP with $\mathrm{O}\left(\mathrm{V}^{8}\right)$ variables that implies all clique constraints.
$\min c^{T} x$

$$
\begin{aligned}
x\left(\delta^{+}(v)\right) & =1 & \forall v \in V \\
x\left(\delta^{-}(v)\right) & =1 & \forall v \in V \\
x & \in\{0,1\}^{A} & \\
y\left(C^{+}(a)\right) & =x_{a} & \forall a \in A \\
y\left(C^{-}(a)\right) & =x_{a} & \forall a \in A \\
y & \in\{0,1\}^{C} &
\end{aligned}
$$

Stochastic

Scheduling

Cost of delays

$\triangleright 72 € /$ minute average cost of gate delay over 15 minutes, cf. EUROCONTROL [2004]
$\triangleright 840$ - 1200 millions $€$ annual costs caused by gate delays in Europe

Benefits of robust planning
\triangleright Cost savings
\triangleright Reputation
\triangleright Less operational changes
The Tail Assignment Problem - assign legs to aircraft in order to fulfill operational constraints such as preassignments, maintenance rules, airport curfews, and minimum connection times between legs, cf. Grönkvist [2005]

Delay Propagation Along Rotations

EDP (bad)

EDP (good)

Delay Propagation

Goal: Decrease impact of delays

\triangleright Primary delays: genuine disruptions, unavoidable
\triangleright Propagated delays: consequences of aircraft routing, can be minimized

Rule-oriented planning

\triangleright Ad-hoc formulas for buffers
\triangleright These rules are costly and it is uncertain how efficient they are
\triangleright Calibrating these rules is a balancing act: supporting operational stability, while staying cost efficient

Goal-oriented planning

\triangleright Minimize occurrence of delay propagation on average

Delay distribution

\triangleright Delays are not homogeneously spread in the network
\triangleright Stochastic model must captures properties of individual airports and legs

Structure of the stochastic model
\triangleright Gate phase, representing time spent on the ground
\triangleright Flight phase, representing time spent en-route
Phase durations are modelled by probability distribution
$\triangleright G_{j}$ is random variable for delay of gate phase of leg j
$\triangleright F_{j}$ is random variable for duration of flight phase of leg j

Robust Tail Assignment Problem

Mathematical model:

$$
\begin{array}{rll}
\min \sum_{k} \sum_{r \in R_{k}} d_{r} x_{r}^{k} & \triangleright \text { Minimize non-robustn } \\
\sum_{k} \sum_{r: l \in r, r} x_{r}=1 & \forall l \in L & \triangleright \text { Cover all legs } \\
\sum_{k} \sum_{p \in R_{k}} a_{b p} x_{p}^{k} \leq r_{b} & \forall b \in B & \triangleright \text { Fulfill side constraints } \\
\sum_{j \in R_{k}} x_{j}^{k}=1 & \forall k & \triangleright \text { One rotation for each } \\
x_{r}^{k} \in\{0,1\} & \forall k, \forall r \in R_{k} & \triangleright \text { Integrality }
\end{array}
$$

\triangleright Set partitioning problem with side constraints
\triangleright Problem has to be resolved daily for period of a few days
\triangleright Solved by Netline/Ops Tail xOPT (state-of-the-art column generation solver by Lufthansa Systems)

Column Generation

Column Generation

Pricing Robust Rotations

\triangleright Robustness measure: total probability of delay propagation (PDP)

$$
d_{r}=\sum_{i \in r} \mathrm{P}\left[P D_{i}^{r}>0\right]
$$

\triangleright Resource constraint shortest path problem

$$
\min _{r \in R^{k}} d_{r}-\sum_{i \in r} \pi_{i}+\sum_{b \in B} a_{b r} \mu_{b}-v_{k}
$$

where $P D_{i}^{r}$ is random variable of delay propagated to leg i in rotation r and π_{i}, v_{k}, μ_{b} are dual variables corresponding to cover, aircraft, and side constraints

$$
\min _{r \in R^{k}} \sum_{i \in r} \mathrm{P}\left[P D_{i}^{r}>0\right]-\sum_{i \in r} \pi_{i}+\sum_{b \in B} a_{b r} \mu_{b}-v_{k}
$$

To solve this problem one must compute $P D_{i}^{r}$ along rotations

Computing PD Along a Rotation

Delay distribution H_{j} of leg j

$$
\triangleright H_{j}=G_{j}+F_{j}
$$

Delay propagation from leg j to leg k via buffer $b_{j k}$

$$
\triangleright P D_{k}=\max \left(H_{j}-b_{j k}, 0\right)
$$

Delay distribution H_{k} of next leg k

$$
\triangleright H_{k}=P D_{k}+G_{k}+F_{k}
$$

and so on...

Convolution

Convolution

$\triangleright \mathrm{H}=\mathrm{F}+\mathrm{G}$ and f, g and h are their probability density functions

$$
h(t)=\int_{0}^{t} f(x) g(t-x) d x
$$

Numerical convolution based on discretization

$$
\bar{h}_{t}=\sum_{i=1}^{t} \bar{f}_{i}\left(\bar{g}_{t-i}+\bar{g}_{t-i-1}\right) / 2
$$

where f, g are stepwise constant approximations of functions f, g

Alternative approaches

\triangleright Analytical convolution, cf. Fuhr [2007]

Path Search

Accuracy vs. Speed

Instance SC1: reference solution

$\triangleright 100$ legs, 16 aircraft, no preassignments, no maintenace
\triangleright Optimizer produces the same solution for each step size
\triangleright CPU time differs only in computation of the convolutions
\triangleright PDP values differ because of approximation error

	step size $[\mathrm{min}]$	CPU $[\mathrm{s}]$	PDP	error $[\%]$
SC1	0.1	15.4	25.0586	0.11
SC1	0.5	1.0	25.0672	0.15
SC1	1	0.5	25.0917	0.25
SC1	2	0.4	25.2227	0.77
SC1	3	0.4	25.4775	1.79
SC1	4	0.3	25.7667	2.94
Simulation*			25.0303	

Accuracy vs. Speed

Instance SC1: optimized solution

\triangleright Different discretization step sizes may produce different solutions
\triangleright CPU time and PDP are not straightforward to compare

	step size $[$ min $]$	PDP optimized	CPU $[\mathrm{s}]$	PDP simulated*
SC1	0.1	19.7268	4450	19.7469
SC1	0.5	19.7362	231	19.7382
SC1	1	19.7450	70	19.7239
SC1	2	19.8693	45	19.7313
SC1	3	20.0651	29	19.7239
SC1	4	20.3353	31	19.7562

Test Instances

Analyzed data

\triangleright approx. 350000 flights / 300-650 flights per day
$\triangleright 28$ months, 4 subfleets
\triangleright European airline with hub-and-spoke network

Test instances

\triangleright We optimize single day instances of one subfleet
\triangleright Data for 4 months, no maintenance rules and preassignments

		min			max			avg		
	\#days	Legs	aircraft	flight time [min]	legs	aircraft	flight time [min]	legs	aircraft	flight time [min]
January	26	44	12	3840	105	17	8830	88	15	7447
February	22	94	15	8295	118	17	10065	109	16	9339
March	21	94	15	7900	121	17	10390	110	16,3	9483
April	27	93	15	7080	118	18	9750	103	16	8648

Gate Phase

Probability of delay

\triangleright Depends on day time and departure airport

probability of departure delay during the day on various airports

Gate phase

\triangleright gate delay distribution G_{j} of flight j

$$
\operatorname{Pr}\left[G_{j}=x\right]=\left\{\begin{array}{cl}
1-p_{j} & x=0 \\
p_{j} \operatorname{Ln}(x, \mu, \sigma) & x>0
\end{array}\right.
$$

Distribution of delay

\triangleright Independent of daytime and departure airport

distribution of the length of gate primary delays on various airports

where $\operatorname{Ln}()$ is probability density function of Log-normal distribution with Power-law distributed tail and $p_{j}=c(t(j), a(j)), \mathrm{t}(\mathrm{j})$ is departure time of flight j and $\mathrm{a}(\mathrm{j})$ is departure airport of flight j

Flight Phase

Distribution of deviation from scheduled duration

\triangleright Depends on scheduled leg duration

Histogram of the flight duration and its representation by random variable. left: scheduled flight duration 80 minutes, right: scheduled flight duration 45 minutes

Flight phase

\triangleright flight delay distribution F_{j} of flight j

$$
\operatorname{Pr}\left[F_{j}=x\right]=\operatorname{Llg}\left(x+l_{j}, \alpha_{l_{j}}, \beta_{l_{j}}\right) \quad x \in R
$$

where LIg() is probability density function of Log-logistic distribution and I_{j} is scheduled flight
 duration of leg j

Model Verification

Parameters of the model:
$\triangleright p$ for every airport and day hour
$\triangleright \mu, \sigma$
$\triangleright \alpha, \beta$ for every flight length
\triangleright Parameters are estimated by automatic scripts in R and quality is proofed by Chi-Square test.

Model applied to South American airline data
Validation of various assumptions of the model

- Stability of parameters over time, ...

Gain of the Method

ORC

\triangleright Standard KPI method
\triangleright Bonus for ground buffer minutes
\triangleright Threshold value for maximal ground buffer time (15 minutes)

PDP

\triangleright Total probability of delay propagation

		ORC				PDP			Savings	
	\#days	PDP	EAD $[\mathrm{min}]$	CPU [s]	PDP	EAD $[\mathrm{min}]$	CPU [s]	PDP	EAD $[\mathrm{min}]$	
January	26	414,51	28488	28	395,46	28085	66	19,05	403	
February	22	540,48	31870	31	530,42	31652	89	10,06	218	
March	21	516,69	30363	31	507,91	30174	75	8,78	189	
April	27	465,48	34453	42	449,16	34159	71	16,51	294	

Gain in Detail

ORC vs. PDP on a single disruption scenario

- ORC outperforms PDP only in 21% of cases
- PDP saves on average 29 minutes of arrival delay
- For more disrupted days, PDP saves on average 62 minutes of arrival delay

Estimation of monetary savings by the cost model developed based on EUROCONTROL [2004]

Lufthansa Systems estimates annual saving of the method in the tail assignment to $300,000 €$ for short haul carrier with 30 aircraft

Application in other planning stages may increase the benefit

Planning in Public Transport

multidepartmental
Departments
multidepotwise
Depots
multiple line groups
Line Groups
multiple lines
Lines
multiple rotations
Rotations

Visit ISMP 2012!

Home

General Informations

Contact

Conference Venue

Program Committee
Organizing Committee

LEADERSHIP SPONSORS

Thank your for your attention

PD Dr. habil. Ralf Borndörfer

Zuse-Institute Berlin Takustr. 7
14195 Berlin-Dahlem

Fon (+49 30) 84185-243
Fax (+49 30) 84185-269 borndoerfer@zib.de
www.zib.de/borndoerfer

