

Scheduling Problems and Algorithms in Traffic and Transport

MAPSP 2011 Nymburk, 24.06.11

> Ralf Borndörfer Zuse-Institute Berlin

Joint work with Ivan Dovica, Martin Grötschel, Olga Heismann, Andreas Löbel, Markus Reuther, Elmar Swarat, Thomas Schlechte, Steffen Weider

DFG Research Center MATHEON *Mathematics for Key Technologies*

Railway Challenges

Basic Rolling Stock Rostering Problem = Multicommodity Flow Problem

- ▷ Can be solved efficiently for networks with 10⁹ arcs
- Constraints complicating rolling stock rostering
- Discretization: Space/Time ("Multiscale Problems")
- Robustness: Delay Propagation
- Path Constraints: Maintenance, Parking
- > Configuration Constraints: Track Usage, Train Composition, Uniformity

Integrated Routing and Scheduling

Integrated Routing and Scheduling

Routing

Scheduling

Scheduling Problems in Traffic and Transport

Timetable

Scheduling Problems in Traffic and Transport

Memory usage: 116 MB | 12.11 %

Train Routes are Flexible in Space and Time

Scheduling Problems in Traffic and Transport

10:40

Scheduling Problems in Traffic and Transport

Track Allocation Graph

Literature

- Charnes and Miller (1956), Szpigel (1973), Jovanovic and Harker (1991),
- Cai and Goh (1994), Schrijver and Steenbeck (1994), Carey and Lockwood (1995)
- Nachtigall and Voget (1996), Odijk (1996) Higgings, Kozan and Ferreira (1997)
- Brannlund, Lindberg, Nou, Nilsson (1998), Lindner (2000), Oliveira and Smith (2000)
- Caprara, Fischetti and Toth (2002), Peeters (2003)
- ▷ Kroon and Peeters (2003), Mistry and Kwan (2004)
- ▷ Barber, Salido, Ingolotti, Abril, Lova, Tormas (2004)
- ▷ Semet and Schoenauer (2005),
- Caprara, Monaci, Toth and Guida (2005)
- ▷ Kroon, Dekker and Vromans (2005),
- Vansteenwegen and Van Oudheusden (2006), Liebchen (2006)
- Cacchiani, Caprara, T. (2006), Cachhiani (2007)
- Caprara, Kroon, Monaci, Peeters, Toth (2006)
- Borndoerfer, Schlechte (2005, 2007), Caimi G., Fuchsberger M., Laumanns M., Schüpbach K. (2007)
- ▷ Fischer, Helmberg, Janßen, Krostitz (2008)
- ▷ Lusby, Larsen, Ehrgott, Ryan (2009)
- Caimi (2009), Klabes (2010)
- ▷ ...

Path/Arc Packing Model

Path Packing Model

(APP)	$\max \sum_{i=1}^{i} \sum_{a} c_a^i x_a^i$				
(i)	$\sum_{a^{i+1}} x_a^{i} - \sum_{a^{i-1}} x_a^{i}$	=	$\beta_i(v)$	$\forall v \in V, i \in I$	Flow
(ii)	$a \in \delta_i^+(v) \qquad a \in \delta_i^-(v) \\ \sum_{(a,i) \in k} x_a^i $	\leq	1	$\forall k \in K$	Conflicts
(iii)	$(a,i) \in \kappa$ X_a^i	\in	{0,1}	$\forall a \in A, i \in I$	Integ.

13

Scheduling Problems in Traffic and Transport

Packing- and Configuration Model

(APP)	$\max \sum \sum c_a^i x_a^i$					
(i)	$\sum_{a \in \delta^+_{+}(v)} x_a^{i} - \sum_{a \in \delta^{-}(v)} x_a^{i}$	=	$\beta_i(v)$	$\forall v$	$r \in V, i \in I$	Flow
(ii)	$\sum_{\substack{(a,i) \in k}} x_a^i$	\leq	1	Ň	$\forall k \in K$	Conflicts
(iii)	x_a^i	\in	{0,1}	$\forall a$	$c \in A, i \in I$	Integ.
(PCP)	$\max \sum_{i \in I} \sum_{p \in P} \sum_{a \in p} c_i$	$a^{i} x_{i}$	D			
(i)	$\sum_{p \in P} x_p$		\leq	1	$\forall i \in I$	Trains
(ii)	$\sum_{q \in Q}^{p \in P_i} \mathcal{Y}_q$		\leq	1	$\forall j \in J$	Configs
(iii)	$\sum_{a \in p \in P} x_p - \sum_{a \in q \in Q} y$	'q	\leq	0	$\forall a \in A$	Coupling
(iv)	$x_p^{}$		∈ {0),1}	$\forall p \in P$	Integ.
(v)	${\mathcal Y}_q$		∈ {0),1}	$\forall q \in Q$	Integ.

Track Allocation Models

Theorem (B., Schlechte [2007]):

$$v_{LP}(PCP) = v_{LP}(ACP)$$

= $v_{LP}(APP) = v_{LP}(PPP)$
 $\leq v_{LP}(APP').$

All LP-relaxations can be solved in polynomial time.

$$v_{IP}(PCP) = v_{IP}(ACP)$$

= $v_{IP}(APP) = v_{IP}(PPP)$

$$= v_{IP}(APP').$$

Packing- and Configuration Model

(APP)	$\max \sum \sum c_a^i x_a^i$					
(i)	$\sum_{a \in \delta^+_{+}(v)} x_a^{i} - \sum_{a \in \delta^{-}(v)} x_a^{i}$	=	$\beta_i(v)$	$\forall v$	$r \in V, i \in I$	Flow
(ii)	$\sum_{\substack{(a,i) \in k}} x_a^i$	\leq	1	Ň	$\forall k \in K$	Conflicts
(iii)	x_a^i	\in	{0,1}	$\forall a$	$c \in A, i \in I$	Integ.
(PCP)	$\max \sum_{i \in I} \sum_{p \in P} \sum_{a \in p} c_i$	$a^{i} x_{i}$	D			
(i)	$\sum_{p \in P} x_p$		\leq	1	$\forall i \in I$	Trains
(ii)	$\sum_{q \in Q}^{p \in P_i} \mathcal{Y}_q$		\leq	1	$\forall j \in J$	Configs
(iii)	$\sum_{a \in p \in P} x_p - \sum_{a \in q \in Q} y$	'q	\leq	0	$\forall a \in A$	Coupling
(iv)	$x_p^{}$		∈ {0),1}	$\forall p \in P$	Integ.
(v)	${\mathcal Y}_q$		∈ {0),1}	$\forall q \in Q$	Integ.

(DUA)
$$\min \sum_{i \in I} \gamma_i + \sum_{j \in J} \pi_j$$

(i) $\gamma_i + \sum_{a \in p} \lambda_a \geq \sum_{a \in p} c_a^i \quad \forall p \in P_i, i \in I$ Paths
(ii) $\pi_j - \sum_{a \in q} \lambda_a \geq 0 \quad \forall q \in Q_j, j \in J$ Configs
(iii) $\gamma, \pi, \lambda \geq 0$

(DUA) min
$$\sum_{i \in I} \gamma_i + \sum_{j \in J} \pi_j$$

(i) $\gamma_i + \sum_{a \in p} \lambda_a \geq \sum_{a \in p} c_a^i \quad \forall p \in P_i, i \in I$ Paths
(ii) $\pi_j - \sum_{a \in q} \lambda_a \geq 0 \quad \forall q \in Q_j, j \in J$ Configs
(iii) $\gamma, \pi \geq 0$

Proposition:

Route pricing = acyclic shortest path problem with arc weights

$$\overline{c}_a = -c_a + \lambda_a$$
.

(DUA) min
$$\sum_{i \in I} \gamma_i + \sum_{j \in J} \pi_j$$

(i) $\gamma_i + \sum_{a \in p} \lambda_a \geq \sum_{a \in p} c_a^i \quad \forall p \in P_i, i \in I$ Paths
(ii) $\pi_j - \sum_{a \in q} \lambda_a \geq 0 \quad \forall q \in Q_j, j \in J$ Configs
(iii) $\gamma, \pi \geq 0$

Proposition:

Config pricing = acyclic shortest path problem with arc weights

$$\overline{C}_a = -\lambda_a$$
.

Lagrange Funktion des PCP

(LD)
$$\min_{\lambda \ge 0} \left[\max_{\substack{Ax=1, \\ x \in [0,1]^{|P|}}} (u^{\mathsf{T}} - \lambda^{\mathsf{T}}C)x + \max_{\substack{By=1, \\ y \in [0,1]^{|Q|}}} (\lambda^{\mathsf{T}}D)y \right]$$

 \triangleright

 \triangleright

Bundle Method

(Kiwiel [1990], Helmberg [2000])

- > Problem
- > Algorithm
 - Subgradient
 - Cutting Plane Model
 - Update
- > Quadratic Subproblem

$$f(\lambda) := \min_{x \in X} c^{\mathsf{T}} x + \lambda^{\mathsf{T}} (b - Ax)$$

$$\overline{f}_{\mu}(\lambda) = c^{\mathsf{T}} x_{\mu} + \lambda^{\mathsf{T}} (b - Ax_{\mu})$$

$$\hat{f}_{k}(\lambda) := \min_{\mu \in J_{k}} \overline{f}_{\mu}(\lambda)$$

$$\lambda_{k+1} = \operatorname{argmax} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2}$$

$$\max_{k+1} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2} \Leftrightarrow \max_{k} v - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}^{k}\|^{2}$$
s.t. $v \leq \overline{f}_{\mu}(\lambda)$, for all $\mu \in J_{k}$

$$\Leftrightarrow \max_{\mu \in J_{k}} \sum_{\alpha, \mu} \overline{f}_{\mu}(\hat{\lambda}) - \frac{1}{2u_{k}} \|\sum_{\mu \in J_{k}} \alpha_{\mu} (b - Ax_{\mu})\|^{2}$$
s.t. $\sum_{\mu \in J_{k}} \alpha_{\mu} = 1$

$$0 \leq \alpha_{\mu} \leq 1, \quad \text{for all } \mu \in J_{k}$$

$$\|b - A\tilde{x}_{k}\| \to 0 \quad (k \to \infty) \qquad \tilde{x}_{k+1} = \sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}$$

Primal Approximation

Inexact Bundle Method

λ

 \triangleright

 \triangleright

Bundle Method

(Kiwiel [1990], Helmberg [2000])

- Problem
- Algorithm \triangleright
 - Subgradient
 - Cutting Plane Model
 - Update
- Quadratic Subproblem

$$f(\lambda) := \min_{x \in X} c^{\mathsf{T}} x + \lambda^{\mathsf{T}} (b - Ax)$$

$$\overline{f}_{\mu}(\lambda) = c^{\mathsf{T}} x_{\mu} + \lambda^{\mathsf{T}} (b - Ax_{\mu})$$

$$\widehat{f}_{k}(\lambda) := \min_{\mu \in J_{k}} \overline{f}_{\mu}(\lambda)$$

$$\lambda_{k+1} = \operatorname{argmax} \widehat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2}$$

$$\max_{k} \widehat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2} \Leftrightarrow \max_{k} v - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}^{k}\|^{2}$$
s.t. $v \leq \overline{f}_{\mu}(\lambda)$, for all $\mu \in J_{k}$

$$\overline{f}_{\lambda_{1}} \Leftrightarrow \max_{\mu \in J_{k}} \sum_{\alpha_{\mu} \in J_{k}} \alpha_{\mu} f_{\mu}(\hat{\lambda}) - \frac{1}{2u_{k}} \|\sum_{\mu \in J_{k}} \alpha_{\mu} (b - Ax_{\mu})\|^{2}$$
s.t. $\sum_{\mu \in J_{k}} \alpha_{\mu} = 1$

$$\int_{\lambda} \int_{\lambda_{k}} 0 \leq \alpha_{\mu} \leq 1, \quad \text{for all } \mu \in J_{k}$$

$$\|b - A\tilde{x}_{k}\| \rightarrow 0 \quad (k \rightarrow \infty) \qquad \tilde{x}_{k+1} = \sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}$$

Primal Approximation¹

Inexact Bundle Method

λ

Bundle Method

(Kiwiel [1990], Helmberg [2000])

- ⊳ Problem
- > Algorithm
 - Subgradient
 - Cutting Plane Model
 - Update
- > Quadratic Subproblem

$$f(\lambda) := \min_{x \in X} c^{\mathsf{T}} x + \lambda^{\mathsf{T}} (b - Ax)$$

$$\bar{f}_{\mu}(\lambda) = c^{\mathsf{T}} x_{\mu} + \lambda^{\mathsf{T}} (b - Ax_{\mu})$$

$$\hat{f}_{k}(\lambda) := \min_{\mu \in J_{k}} \bar{f}_{\mu}(\lambda)$$

$$\lambda_{k+1} = \operatorname{argmax} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2}$$

$$\max_{\lambda} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2} \Leftrightarrow \max_{k} v - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}^{k}\|^{2}$$

$$\operatorname{s.t.} v \leq \bar{f}_{\mu}(\lambda), \text{ for all } \mu \in J_{k}$$

$$\max_{\mu \in J_{k}} \sum_{\alpha, \mu} \bar{f}_{\mu}(\hat{\lambda}) - \frac{1}{2u_{k}} \|\sum_{\mu \in J_{k}} \alpha_{\mu} (b - Ax_{\mu})\|^{2}$$

$$\operatorname{s.t.} \sum_{\mu \in J_{k}} \alpha_{\mu} = 1$$

$$0 \leq \alpha_{\mu} \leq 1, \quad \text{ for all } \mu \in J_{k}$$

$$b - A\tilde{x}_{k}\| \rightarrow 0 \ (k \rightarrow \infty) \qquad \tilde{x}_{k+1} = \sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}$$

 \triangleright

 \triangleright

Bundle Method

(Kiwiel [1990], Helmberg [2000])

- > Problem
- > Algorithm
 - Subgradient
 - Cutting Plane Model
 - Update
- > Quadratic Subproblem

$$f(\lambda) := \min_{x \in X} c^{\mathsf{T}} x + \lambda^{\mathsf{T}} (b - Ax)$$

$$\overline{f}_{\mu}(\lambda) = c^{\mathsf{T}} x_{\mu} + \lambda^{\mathsf{T}} (b - Ax_{\mu})$$

$$\hat{f}_{k}(\lambda) := \min_{\mu \in J_{k}} \overline{f}_{\mu}(\lambda)$$

$$\lambda_{k+1} = \operatorname{argmax} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2}$$

$$\max_{k+1} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2} \Leftrightarrow \max_{k} v - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}^{k}\|^{2}$$
s.t. $v \leq \overline{f}_{\mu}(\lambda)$, for all $\mu \in J_{k}$

$$\Leftrightarrow \max_{\mu \in J_{k}} \sum_{\alpha, \mu} \overline{f}_{\mu}(\hat{\lambda}) - \frac{1}{2u_{k}} \|\sum_{\mu \in J_{k}} \alpha_{\mu} (b - Ax_{\mu})\|^{2}$$
s.t. $\sum_{\mu \in J_{k}} \alpha_{\mu} = 1$

$$0 \leq \alpha_{\mu} \leq 1, \quad \text{for all } \mu \in J_{k}$$

$$\|b - A\tilde{x}_{k}\| \rightarrow 0 \quad (k \rightarrow \infty) \qquad \tilde{x}_{k+1} = \sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}$$

Primal²Approximation¹

Inexact Bundle Method

λ

Bundle Method

(Kiwiel [1990], Helmberg [2000])

- > Problem
- > Algorithm
 - Subgradient
 - Cutting Plane Model
 - Update
- > Quadratic Subproblem

$$f(\lambda) := \min_{x \in X} c^{\mathsf{T}} x + \lambda^{\mathsf{T}} (b - Ax)$$

$$\overline{f}_{\mu}(\lambda) = c^{\mathsf{T}} x_{\mu} + \lambda^{\mathsf{T}} (b - Ax_{\mu})$$

$$\hat{f}_{k}(\lambda) := \min_{\mu \in J_{k}} \overline{f}_{\mu}(\lambda)$$

$$\lambda_{k+1} = \operatorname{argmax} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2}$$

$$\max_{k+1} \hat{f}_{k}(\lambda) - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}_{k}\|^{2} \Leftrightarrow \max_{k} v - \frac{u_{k}}{2} \|\lambda - \hat{\lambda}^{k}\|^{2}$$
s.t. $v \leq \overline{f}_{\mu}(\lambda)$, for all $\mu \in J_{k}$

$$\max_{\mu \in J_{k}} \sum_{\alpha, \mu} \overline{f}_{\mu}(\hat{\lambda}) - \frac{1}{2u_{k}} \|\sum_{\mu \in J_{k}} \alpha_{\mu} (b - Ax_{\mu})\|^{2}$$
s.t. $\sum_{\mu \in J_{k}} \alpha_{\mu} = 1$

$$0 \leq \alpha_{\mu} \leq 1, \quad \text{for all } \mu \in J_{k}$$

$$\|b - A\tilde{x}_{k}\| \to 0 \quad (k \to \infty) \qquad \tilde{x}_{k+1} = \sum_{\mu \in J_{k}} \alpha_{\mu} x_{\mu}$$

Rapid Branching

 $Q_i^{\lfloor m/4}$

 $O_i^{\lfloor m/2 \rfloor}$

Perturbation Branching

- ▷ Sequence of perturbed IP objectives $c_j^{i+1} := c_j^i \alpha(x_j^i)^2$, $\forall j, i=1,2,...$
- $\triangleright \text{ Fixing candidates in iteration i } B^i := \{ j : x_j^i \ge 1 \epsilon \}$
- ▷ Potential function in iteration i $v^i := c^T x^i w |B^i|$
- Go on while not integer and potential decreases, else
 - Perturb for k_{max} additional iterations, if still not successful
 - Fix a single variable and reset objective every $k_{\rm s}$ iterations
- ▷ Set of fixed variables (many) $B^* := B^{\operatorname{argmin} v^i}$

Binary Search Branching

▷ Set of fixed variables (many) $B^* := \{j_1, ..., j_m\}, c_{j_1} \le ... \le c_{j_m}$

Q_i^m

> Sets Q_j^k at pertubation branch j $Q_j^k := \{ x : x_{j_1} = ... = x_{j_k} = 1 \}, k=0,...,m$

- \triangleright Branch on Q_j^m
 - Repeat perturbation branching to plunge
 - Backtrack to $Q_j^{\lfloor m/2 \rfloor}$ and set $m := \lfloor m/2 \rfloor$ to prune

 $Q_{j-1}^{\lfloor p/q \rfloor}$

 Q_j

 Q_j^2

$$\begin{array}{ll} (\mathsf{PRICE} \ (\mathsf{x})) & \exists \ \overline{p} \in \mathcal{P}_i : & \gamma_i < \sum_{a \in \overline{p}} (p_a - \lambda_a) \\ \eta_i := \max_{p \in P_i} \ \sum_{a \in p} (p_a - \lambda_a) - \gamma_i, \ \forall i \in I \Longrightarrow \eta_i + \gamma_i \geq \sum_{a \in p} (p_a - \lambda_a) \ \forall i \in I, p \in \mathcal{P}_i \\ (\mathsf{PRICE} \ (\mathsf{y})) & \exists \ \overline{q} \in Q_j : & \pi_j < \sum_{a \in \overline{q}} \lambda_a \\ \theta_j & := \max_{\overline{q} \in Q_j} \ \sum_{a \in \overline{q}} \lambda_a - \pi_j, \ \forall j \in J \implies \theta_j + \pi_j \geq \sum_{a \in q} \lambda_a \ \forall j \in J, q \in Q_j \\ (\max\{\eta + \gamma, 0\}, \max\{\theta + \pi, 0\}, \lambda) \ \text{is feasible for (DLP)} \\ \beta(\gamma, \pi, \lambda) & := \sum_{i \in I} \max\{\gamma_i + \eta_i, 0\} + \sum_{j \in J} \max\{\pi_j + \theta_j, 0\} \end{array}$$

Lemma (BS [2007]): $v_{LP}(PCP) \leq \beta(\gamma, \pi, \lambda)$

Solving the LP-Relaxation

HaKaFu, req32, 1140 requests, 30 mins time windows \triangleright

TS-OPT run, model PCP, PCP-24H-NS-BUNDLE-BNB-100401-17:22:40

Scheduling Problems in Traffic and Transport

Track Allocation and Train Timetabling

Article	Stations	Tracks	Trains	Modell/Approach
Szpigel [1973]	6	5	10	Packing/Enumeration
Brännlund et al. [1998]	17	16	26	Packing/ Lagrange, BAB
Caprara et al. [2002]	74 (17)	73 (16)	54 (221)	Packing/ Lagrange, BAB
B. & Schlechte [2007]	37	120	570	Config/PAB
Caprara et al. [2007]	102 (16)	103 (17)	16 (221)	Packing/PAB
Fischer et al. [2008]	656 (104)	1210 (193)	117 (251)	Packing/Bundle, IP Rounding
Lusby et al. [2008]	???	524	66 (31)	Packing/BAP
B. & Schlechte [2010]	37	120	>1.000	Config/Rapid Branching

▷ BAB: Branch-and-Bound

▷ BAP: Branch-and-Price

▷ PAB: Price-and-Branch

Discretization and

Scheduling

Detailed railway infrastucture data given by simulation programs (Open Track)

Signals

- > Switches
- Tracks (with max. speed, acceleration, gradient)
- Stations and Platforms

▷ Simplon micrograph: 1154 nodes and 1831 arcs, 223 signals etc.

- > Simulation tools provide exact running and blocking times
- Basis for calculation of minimal headway times

Scheduling Problems in Traffic and Transport

Simulation of all possible routes with appropriate train types

Scheduling Problems in Traffic and Transport

▷ Generation of artifical nodes – "pseudo" stations

IS

▷ No interactions between train routes

Macro network definition is based on set of train routes

▷ Generation of artifical nodes – "pseudo" stations

Generation of artifical nodes – pseudo stations

Reduced Macrograph

(53 nodes and 87 track arcs for 28 train routes)

- ▷ Frequently many macroscopic station nodes are in the area of big stations
- > Further aggregation is needed

- Planned times in macro network are possible in micro network
- Valid headways lead to valid block occupations (no conflicts)
 - \Rightarrow feasible macro timetable can be transformed to feasible micro timetable

Micro

- 12 stations
- 1154 OpenTrack nodes
- > 1831 OpenTrack edges
- > 223 signals
- 8 track junctions :
- > 100 switches
- 6 train types
- > 28 "routes"
- > 230 "block segments"

Macro

18 macro nodes

Sec.

▷ 40 tracks

6 Train types

0.00.00

Cumulative Rounding Procedure

- Compute macroscopic running time with specific rounding procedure
- Consider again routes of trains (represented by standard trains)
- \triangleright Example with $\Delta = 6$

Station	Dep/Pass	Rounded	Buffer
А	0	0	0
В	11	12 (2)	1
С	20	24 (4)	4
D	29	30 (5)	1

▷ **Theorem:** If micro-running time $d \ge \Delta$ for all tracks of the current train route, the cumulative rounding error (buffer) is always in $[0, \Delta)$.

Complex Traffic at the Simplon

Source: Wikipedia

Slalom route

ROLA trains traverse the tunnel on the "wrong" side

Crossing of trains

complex crossings of AUTO trains in Iselle

Conflicting routes

 complex routings in station area Domodossola and Brig

Dense Traffic at the Simplon

Estimation of the maximum theoretical corridor capacity

- ▷ Network accuracy of 6s
- Consider complete routing through stations
- Saturate by additional cargo trains

▷ Conflict free train schedules in simulation software (1s accuracy)

Manual Reference Plan

Aggregation-Test (Micro->Macro->Micro)

- ▷ Microscopic feasible 4h (8:00-12:00) reference plan in Open Track
- Reproducing this plan by an Optimization run
- Reimport to Open Track

Theoretical Capacities

- 180 trains for network small (without station routing and buffer times)
- 196 trains for network big with precise routing through stations (without buffer times)
- 175 trains for network big with precise routing through stations and buffer times

- No delays, no early coming
- Feasible train routing and block occupation
- Timetable is valid in micro-simulation

Valid blocking time stairs

▷ Network big with buffer times

Brig RB - Domodossola II

Network big with buffer times

Time discretization dt/s	6	10	30	60
Number of trains	196	187	166	146
Cols in IP	504314	318303	114934	61966
Rows in IP	222096	142723	53311	29523
Solution time in secs	72774.55	12409.19	110.34	10.30

Hypergraph Scheduling

Scheduling Problems in Traffic and Transport

Trip Network

Cyclic Timetable for Standard Week

Rotation Schedule

(Blue: Timetable, Red: Deadheads)

(Operational) Uniformity

Wagenstandanzeiger Gleis 11

Zeit	Zug		Richtung	G	E	8	D	C	6		
00.34	EN	Jan Kinpuns	Ranpin Poenen (d. Warszawa /		2 2 200 4 Ros			Martin Martin			
05.36	IC		Warschau Eleaunschweig Magenburg								•
06.21	ICE	Zugleburg in Hamm	Leipzig D tre 0 Köln / Bonn Flunkaten	March / Annual	Alter / Barris	Ministere Administere	Aller State			<u>(</u>)→	
00.40	740/750		A bis C Kön Omsbices	+ (20 10 20 10	图 27					
06.40	140		Bad Bertheim Hengele		+		1 ²⁰ . 20	** 2 1		S T	
07.45	IC	Develop bis Dovverting	Bargar		-		·	9		2 2	
07.45	IC	Montag und Freitag	All the second s								
08.45	IC		Bremen Bremen								
09.40	IC.		Distrient/cost Oldenburg Dielefolg		1	+ 2 1 1					
05.40	2044	Contraction of	Dorthund Esten Düsseldorf			+ @		P			
10.45	IC	Contractor	Oldenburg Emden Norddelch Mele			+ @					
11.40	1C		Ebnieheld Gütersloh Hamm								
12.45	IC		Verden Bremen Deimentorret								
13.40	IC		Oldenburg Bielefeld Dortmund								
14.45	2048		Esten Düsseldorf Verden			+ <u>C</u>					
14.40	2038		Detmenhorst Detmenhorst Oktenburg			+ @	" M" M	2002 2003			
15.31	ICE	Dugterung in menne	Köln / Boss Flughafen A tin C Röln	+					ar ar	ER RT	EP ES
16.45	IC		Brennen Oldenburg Einden			+ - 11 1					
17.40	IC		Dorbrund Extern Durbrund	54				1285128			
18.45	IC		Köln Verderi Bremen	-							
19.40	2004	fic: Kideo	Demerhoret Oldenburg Biolefeld							1000 (San - san)	
00.40	2544		Hartm Dortmund	-		+ C 1 1					
20.45	2003		Bramen Delchenhonel			+ @					

Scheduling Problems in Traffic and Transport

Uniformity

(Blue: Uniform, ..., Red: Irregular)

62

Uniformity

(Blue/Yellow: Uniform, ..., Red: Irregular, Fat: Maintenance)

Rotation Schedule

Modelling Uniformity Using Hyperarcs

Hyperassignment

Definition: Let D=(V,A) be a directed hypergraph w. arc costs c_a

- ▷ H⊆A hyperassigment : $\Leftrightarrow \delta^+(v) \cap H = \delta^-(v) \cap H = 1$
- ▷ Hyperassignment Problem :⇔ argmin c(H), H hyperassignment

$$\min \begin{array}{c} c^{T}x\\ x(\delta^{+}(v)) = 1 \quad \forall v \in V\\ x(\delta^{-}(v)) = 1 \quad \forall v \in V\\ x \in \{0,1\}^{A} \end{array}$$

Literature

- Cambini, Gallo, Scutellà (1992): Minimum cost flows on hypergraphs; solves only the LP relaxation
- Jeroslow, Martin, Rarding, Wang (1992): Gainfree Leontief substitution flow problems; does not hold for the hyperassignment problem

Theorem: The HAP is NP-hard (even for simple cases).

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Theorem: The LP/IP gap of HAP can be arbitrarity large.

Proposition: The determinants of basis matrices of HAP can be arbitrarily large, even if all hyperarcs have head and tail size 2.

Proposition: HAP is APX-complete for hyperarc head and tail size 2 in general and for hyperarc head and tail cardinality 3 in the revelant cases.

Computational Results

(CPLEX 12.1.0)

# rows (2 ⋅ <i>V</i>)	# columns (A)	nonzeros	LP-IP gap	root gap	root improvement	# clique cuts	# other cuts	root run time (sec.)	_
534	52056	140081	11.16%	6.81%	4.90 %	160	14	8	
620	80477	236020	8.72 %	0.00 %	9.54 %	120	2	29	
812	102375	216566	0.38 %	0.18 %	0.20 %	24	16	40	
1128	267542	732134	4.59 %	0.26 %	4.55 %	263	0	160	
1310	363513	1006024	7.85 %	0.22 %	8.28 %	378	2	270	
1496	469932	1369224	18.70%	1.86%	20.71 %	809	0	971	
1696	618348	1787078	5.17%	0.16 %	5.28 %	925	0	1705	φ
1746	649525	1859898	7.52 %	4.88 %	2.86 %	563	0	1129	rte
1798	647650	1822718	13.60 %	0.95 %	14.65%	537	0	1099	po
1798	647650	1822718	13.35 %	0.62 %	14.69%	604	0	873	a I
2006	855153	2491372	5.76%	0.68 %	5.39 %	1025	0	2490	"
2260	1079535	3138752	9.89 %	2.03 %	8.73%	954	0	5483	*
2502	1290750	3680124	7.06 %	0.76 %	6.79%	801	0	4583	
2620	1432355	4187296	9.05 %	1.15%	8.68 %	1068	0	7910	
2624	1439453	4087042	14.17%	5.23 %	10.41%	951	0	(*) 14400	

Partitioned Hypergraph and Configurations

Theorem: There is an extended formulation of HAP with $O(V^8)$ variables that implies all clique constraints.

min $c^T x$ $x(\delta^+(v)) = 1 \quad \forall v \in V$ $x(\delta^-(v)) = 1 \quad \forall v \in V$ $x \in \{0,1\}^A$ $y(C^+(a)) = x_a \quad \forall a \in A$ $y(C^{-}(a)) = x_a \quad \forall a \in A$ $y \in \{0,1\}^C$

Stochastic Scheduling

Scheduling Problems in Traffic and Transport

Cost of delays

- ▷ 72 €/minute average cost of gate delay over 15 minutes, cf. EUROCONTROL [2004]
- ▷ 840 1200 millions € annual costs caused by gate delays in Europe

Benefits of robust planning

- Cost savings
- Reputation
- Less operational changes

The Tail Assignment Problem – assign legs to aircraft in order to fulfill operational constraints such as preassignments, maintenance rules, airport curfews, and minimum connection times between legs, cf. Grönkvist [2005]

Delay Propagation

Delay Propagation Along Rotations

EDP (bad)

EDP (good)

Goal: Decrease impact of delays

- Primary delays: genuine disruptions, unavoidable
- Propagated delays: consequences of aircraft routing, can be minimized

Rule-oriented planning

- Ad-hoc formulas for buffers
- These rules are costly and it is uncertain how efficient they are
- Calibrating these rules is a balancing act: supporting operational stability, while staying cost efficient

Goal-oriented planning

Minimize occurrence of delay propagation on average

Delay distribution

- Delays are not homogeneously spread in the network
- Stochastic model must captures properties of individual airports and legs

Structure of the stochastic model

- ▷ Gate phase, representing time spent on the ground
- Flight phase, representing time spent en-route
- Phase durations are modelled by probability distribution
 - \triangleright G_j is random variable for delay of gate phase of leg j
 - \triangleright F_i is random variable for duration of flight phase of leg j

Mathematical model:

$$\min \sum_{k} \sum_{r \in R_{k}} d_{r} x_{r}^{k}$$

$$\sum_{k} \sum_{r:l \in r, r \in R_{k}} x_{r} = 1 \quad \forall l \in L$$

$$\sum_{k} \sum_{p \in R_{k}} a_{bp} x_{p}^{k} \leq r_{b} \quad \forall b \in B$$

$$\sum_{j \in R_{k}} x_{j}^{k} = 1 \quad \forall k$$

$$x_{r}^{k} \in \{0,1\} \quad \forall k, \forall r \in R_{k}$$

- Minimize non-robustness
- Cover all legs
- Fulfill side constraints
- One rotation for each aircraft
- Integrality
- Set partitioning problem with side constraints
- Problem has to be resolved daily for period of a few days
- Solved by Netline/Ops Tail xOPT (state-of-the-art column generation solver by Lufthansa Systems)

Column Generation

Column Generation

Pricing Robust Rotations

Robustness measure: total probability of delay propagation (PDP)

$$d_r = \sum_{i \in r} \mathbf{P} \Big[P D_i^r > 0 \Big]$$

Resource constraint shortest path problem

$$\min_{r\in R^k} \quad d_r - \sum_{i\in r} \pi_i + \sum_{b\in B} a_{br} \mu_b - \nu_k$$

where PD_i^r is random variable of delay propagated to leg i in rotation r and π_i, ν_k, μ_b are dual variables corresponding to cover, aircraft, and side constraints

$$\min_{r \in \mathbb{R}^k} \sum_{i \in \mathbb{R}} \mathbb{P}\left[PD_i^r > 0\right] - \sum_{i \in \mathbb{R}} \pi_i + \sum_{b \in B} a_{br}\mu_b - \nu_k$$

To solve this problem one must compute PD_i^r along rotations

Computing PD_i Along a Rotation

Delay distribution H_j of leg j $\vdash H_j = G_j + F_j$

Delay propagation from leg j to leg k via buffer b_{jk}

 $\triangleright PD_k = max(H_j - b_{jk}, 0)$

$$\triangleright \quad H_k = PD_k + G_k + F_k$$

and so on...

Convolution

▷ H = F + G and f, g and h are their probability density functions $h(t) = \int_{0}^{t} f(x)g(t-x)dx$

Numerical convolution based on discretization

$$\overline{h}_{t} = \sum_{i=1}^{t} \overline{f}_{i} (\overline{g}_{t-i} + \overline{g}_{t-i-1})/2$$

where f, g are stepwise constant approximations of functions f, g

Alternative approaches

Analytical convolution, cf. Fuhr [2007]

Instance SC1: reference solution

- ▷ 100 legs, 16 aircraft, no preassignments, no maintenace
- Optimizer produces the same solution for each step size
- CPU time differs only in computation of the convolutions
- PDP values differ because of approximation error

	step size [min]	CPU [s]	PDP	error [%]
SC1	0.1	15.4	25.0586	0.11
SC1	0.5	1.0	25.0672	0.15
SC1	1	0.5	25.0917	0.25
SC1	2	0.4	25.2227	0.77
SC1	3	0.4	25.4775	1.79
SC1	4	0.3	25.7667	2.94
Simulation*			25.0303	

Instance SC1: optimized solution

- Different discretization step sizes may produce different solutions
- CPU time and PDP are not straightforward to compare

	step size [min]	PDP optimized	CPU [s]	PDP simulated*
SC1	0.1	19.7268	4450	19.7469
SC1	0.5	19.7362	231	19.7382
SC1	1	19.7450	70	19.7239
SC1	2	19.8693	45	19.7313
SC1	3	20.0651	29	19.7239
SC1	4	20.3353	31	19.7562

Analyzed data

- ▷ approx. 350000 flights / 300 650 flights per day
- > 28 months, 4 subfleets
- European airline with hub-and-spoke network

Test instances

- We optimize single day instances of one subfleet
- Data for 4 months, no maintenance rules and preassignments

		min			max		avg			
	#days	Legs	aircraft	flight time [min]	legs	aircraft	flight time [min]	legs	aircraft	flight time [min]
January	26	44	12	3840	105	17	8830	88	15	7447
February	22	94	15	8295	118	17	10065	109	16	9339
March	21	94	15	7900	121	17	10390	110	16,3	9483
April	27	93	15	7080	118	18	9750	103	16	8648

Gate Phase

Probability of delay

Depends on day time and departure airport

probability of departure delay during the day on various airports

Gate phase

gate delay distribution G_i of flight j

$$\Pr[G_j = x] = \begin{cases} 1 - p_j & x = 0\\ p_j \operatorname{Ln}(x, \mu, \sigma) & x > 0 \end{cases}$$

Distribution of delay

Independent of daytime and departure airport

distribution of the length of gate primary delays on various airports

where Ln() is probability density function of Log-normal distribution with Power-law distributed tail and $p_j = c(t(j), a(j))$, t(j) is departure time of flight j and a(j) is departure airport of flight j

Distribution of deviation from scheduled duration

Depends on scheduled leg duration

Histogram of the flight duration and its representation by random variable. left: scheduled flight duration 80 minutes, right: scheduled flight duration 45 minutes

Flight phase

Flight delay distribution F_i of flight j

$$\Pr[F_j = x] = \operatorname{Llg}(x + l_j, \alpha_{l_j}, \beta_{l_j}) \qquad x \in \mathbb{R}$$

where Llg() is probability density function of Log-logistic distribution and l_j is scheduled flight duration of leg j

Scheduling Problems in Traffic and Transport

Parameters of the model:

- $\triangleright p$ for every airport and day hour
- $\triangleright \mu, \sigma$
- $\triangleright \alpha, \beta$ for every flight length
- Parameters are estimated by automatic scripts in R and quality is proofed by Chi-Square test.

Model applied to South American airline data

Validation of various assumptions of the model

Stability of parameters over time, ...

ORC

- Standard KPI method
- Bonus for ground buffer minutes
- Threshold value for maximal ground buffer time (15 minutes)

PDP

Total probability of delay propagation

		ORC				PDP	Savings		
	#days	PDP	EAD [min]	CPU [s]	PDP	EAD [min]	CPU [s]	PDP	EAD [min]
January	26	414,51	28488	28	395,46	28085	66	19,05	403
February	22	540,48	31870	31	530,42	31652	89	10,06	218
March	21	516,69	30363	31	507,91	30174	75	8,78	189
April	27	465,48	34453	42	449,16	34159	71	16,51	294

Gain in Detail

ORC vs. PDP on a single disruption scenario

- ORC outperforms PDP only in 21% of cases
- PDP saves on average 29 minutes of arrival delay
- For more disrupted days, PDP saves on average 62 minutes of arrival delay

Estimation of monetary savings by the cost model developed based on EUROCONTROL [2004]

Lufthansa Systems estimates annual saving of the method in the tail assignment to 300,000 € for short haul carrier with 30 aircraft

Application in other planning stages may increase the benefit

Planning in Public Transport

(Product, Project, Planned)

multidepartmental Departments multidepotwise Depots multiple line groups Line Groups multiple lines Lines multiple rotations Rotations

Scheduling Problems in Traffic and Transport

Visit ISMP 2012!

Home

General Informations

Registration

Accomodation

Programm

Berlin

Contact

Conference Venue

Program Committee

Organizing Committee

LEADERSHIP SPONSORS

Microsoft* Solver Foundat

Government

The 21st International Symposium on Mathematical Programming (ISMP) take place in Berlin, Germany from August 19 - 24 2012.

ISMP is a scientific meeting held every 3 years on behalf of the Mathematical Optimization Society. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

GENERAL INFORMATIONS

WE MEET IN BERLIN

2012/08/19

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero <u>eros et accumsan</u> et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

ANOTHER HEADLINE

2012/08/19

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquin ex ea commodo.

Scheduling Problems in Traffic and Transport

Thank your for your attention

PD Dr. habil. Ralf Borndörfer

Zuse-Institute Berlin Takustr. 7 14195 Berlin-Dahlem

Fon (+49 30) 84185-243 Fax (+49 30) 84185-269 <u>borndoerfer@zib.de</u>

www.zib.de/borndoerfer