
Arc-routing for winter road maintenance

Jǐŕı Fink1,2[L−7284−2015], Martin Loebl3,4[0000−0001−7968−0376], and Petra
Pelikánová3

1 Department of Theoretical Computer Science and Mathematical Logic, Charles
University, Czech Republic fink@ktiml.mff.cuni.cz

2 This research is conducted within the project Network Optimization (17-10090Y)
supported by Czech Science Foundation

3 Department of Applied Mathematics, Charles University, Czech Republic
4 supported by the H2020-MSCA-RISE project CoSP- GA No. 823748

loebl@kam.mff.cuni.cz

Abstract. The winter road maintenance arc-routing is recognised as a
notoriously hard problem not only from the algorithmic point of view.
This paper lays down foundations of theoretical understanding of our
new winter road maintenance optimization for the Plzen region of the
Czech Republic which has been implemented by the regional authori-
ties since the winter of 2019-20. Our approach is not, contrary to most
of existing work, based on the integer and linear programming machin-
ery. We concentrate on studying arc-routing on trees. This is practical
since routes of single vehicles can be well represented by trees, and al-
lows algorithms and complementary hardness results. We then extend
the approach to the bounded tree width graphs. This leads to consid-
ering the planar graphs which well abstract the realistic road networks.
We formalise important aspects of the winter road maintenance problem
which were not formalised before, e.g., public complaints. The number of
complaints from public against the winter road maintenance is a quanti-
tative measure of the quality of the service which is focused on, e.g., in
media or in election campaigns. A fear of ’complaints’ is a fact every op-
timizer must deal with. Hence, a formal model of public complaints and
its inclusion in the optimization is vital. Our formalisation of the win-
ter road maintenance is robust in the sense that it relates to well-know
extensively studied concepts of discrete mathematics like graph cutting
and splitting of necklaces.

Keywords: arc routing · algorithms on trees · necklace splitting.



2 J. Fink et al.

1 Introduction

Our involvement started by being asked

Can you improve routing for winter road maintenance in the Czech Republic
and specifically in the Plzeň region.

We were asked to create new routing for vehicles of winter road maintenance
while minimizing the total number of used vehicles. There were many additional
conditions that needed to be satisfied, in particular, conditions given by the
Czech legislation. A fixed plan for one whole winter season had to be created.

Our plan (described in [12]) has been implemented by the Plzen region au-
thorities starting the winter of 2019-20.

Towards a model. In the design of tours for vehicles in winter road mainte-
nance, one needs to cover the graph of the road network by subgraphs and then
one needs to design routing for each of these subgraphs by one vehicle. Each
edge of the graph has attributes given by the length, the priority and the type of
maintenance of the corresponding road segment. Some vertices serve as depots.
Each such vertex has defined types of material which it can store.

The road network has a service priority defined by the legislation based on
traffic volume which partitions the roads into classes. For instance in the Czech
Republic, there are three such classes: Arterial roads through regions have the
highest level of service priority (1). Priority (2) is assigned to bus routes and
other important routs. Third priority of service is assigned to local roads. Each
class of roads is associated with maximum time of maintenance completion. For
instance, in the Czech Republic the edges in the first priority level have to be
cleaned by a vehicle every three hours, in the second level every six hours and
in the third level every twelve hours.

Next important issue is the length of the working shift. For instance, the
standard length of the working shift of a maintenance driver is eight hours in
the Czech Republic. Moreover, the Czech legislation requires multiple safety
breaks for drivers during the working shift. It is natural to expand the time for
the safety breaks and for all other non-driving manipulations of a vehicle to two
hours per shift; this reduces the total time of driving to six hours.

For simplicity, we will assume in our model that the working shift lasts a fixed
amount of time, e.g., six hours during which there are no breaks for the drivers
and also the time to load the maintenance material is negligible. We translate
the time requirement into the upper bound of the length of the vehicle route.

Another imposed rule (without clear rationale) is that each road has to be
maintained by the same car in both directions. In this work we assume that there
are no one-way roads. The results presented here are valid also for the more
general case when one-way roads are present; the assumption does not change
the algorithmic and complexity considerations for the problems discussed while
simplifies the definitions and the arguments. Also, this assumption has been valid
for the winter road maintenance of the Plzeň region road network we optimised.
This is the reason why we base our models on undirected graphs in the next



Arc-routing for winter road maintenance 3

sections. For each undirected graph G we consider its symmetric orientation
Gs where each edge is replaced by two arcs with opposite orientations. This
representation enables to discuss maintaining of edges in both directions.

Finally, there is the capacity cm describing the maximum length of a route
which can be maintained with only one loading of the material m ∈ M . The
capacity condition requires that during each spreading materialm on road-length
cm the vehicle must pass its depot d at least once. It is convenient to define cm
as a fraction of the maximum route-length of one vehicle.

The goal is to assign for each edge a vehicle which will maintain the cor-
responding road while minimizing the number of used vehicles and the length
of the roads traversed without maintenance (deadhead). A critically important
part of the considerations are public complaints.

Features of a winter road maintenance plan

– We construct a partition P = {P1, . . . , Pr} of the set of arcs of Gs into sets
P1, . . . , Pr and for each i we assign vertex (depot) di ∈ D. We assume the
type of maintenance m constant in Pi. We also assume that the oppositely
oriented edges belong to the same Pi.

– We construct, for each i, set Ri so that Pi ⊂ Ri and each arc of Pi may be
reached from di by a directed closed walk of Ri.

– For each i, we design a route servicing the edges of Pi by a single vehicle
starting and terminating at di and using only arcs of Ri. The schedule must
meet
(1) the requirement of the maximum length of the route,
(2) the requirements given by priorities p(e), e ∈ Pi,
(3) the requirements given by capacities cm.

– In our actual computation for the Plzen region descibed in [12], the steps
above are performed simultaneously.

1.1 State of the art

Winter road maintenance is recognised as a notoriously hard problem (not only)
from the algorithmic point of view. As far as we know, most of the literature in
the algorithmic winter road maintenance concentrates in designing algorithms,
which are typically based on Integer Linear Programming (LP), Constrain Pro-
gramming (CP) and local heuristics. The complexity of such algorithms is at
least exponential.

An overview of literature on the problem of winter road maintenance and
its solutions is [26–29]. An excellent recent overview illustrating main works on
the General Routing Problem can be found in [7] where the authors design a
new branch-and-cut algorithm for the capacitated general routing problem. In
[25], the authors also consider road priorities and a precedence relation between
roads of different priority. In [18], the authors aim at constructing the routes
schedule minimising the maximum length of a route; the network may have
one-way streets and is modelled as a mixed graph.



4 J. Fink et al.

Kinable et.al. [18] study a real-world snow plow routing problem (in the USA)
and they compare three methods based on Integer Linear Programming (LP),
Constraint Programming (CP) and a local heuristic. Ciancio et.al. [8] applied
Branch-price-and-cut method for the Mixed Capacitated General Routing Prob-
lem with Time Windows. Other heuristic algorithms can be found e.g. in [3, 15,
14].

In [12] we introduced an heuristic approach with a very competitive imple-
mentation and described the computational results for the plan of the winter
road maintenance in the Plzen region. Our plan has been implemented by the
regional authorities.

1.2 Main contribution

(1) Based on our experience with practical winter road maintenance we introduce
several new concepts, including public complaints. We concentrate on studying
these concepts first on trees, then on bounded tree width graphs and planar
graphs.
(2) We relate these concepts to extensive research in discrete mathematics.
(3) We design algorithms based on dynamic programming and prove matching
hardness results in most cases.

Summarising, we introduce a realistic robust model of winter road main-
tenance which can be successfully studied by theoretical methods and admits
competitive algorithms without adding unrealistic conditions for the actual road
networks to be maintained.

2 Basic concepts

In practice we have given a road network which we represent by a graph. Vertices
represent crossroads (and dead ends) and edges represent roads among them. Let
z ≥ 1 denote the number of priority classes of roads and let M denote the set
of types of maintenance, e.g., M = {chemical, inert, snow− plow} in the Czech
Republic. We associate several functions with G:

– α : E → R+ gives to every edge a non-negative length,
– p : E → {1, . . . , z} priority level,
– m : E →M type of maintenance.

Let D ⊂ V be a set of depots. For d ∈ D we denote by m(d) ∈ M the stored
material at depot d. The arc routing problem is to search for a cover by subgraphs
which correspond to parts of the network maintained by single vehicles. These
subgraphs maintained by one vehicle are called maintaining plans.

Definition 1 (Maintaining plan). Maintaining plan is a tuple (G,P, d, α, z, p)
where

(1) G = (V,E) is a graph of a road network,
(2) P ⊂ E is the set of maintained edges,



Arc-routing for winter road maintenance 5

(3) d ∈ V is the depot,
(4) α : E → Z+ gives to every edge a non-negative integer length,
(5) p : E → {1, . . . , z} gives to each edge its priority level.

Having a maintaining plan, we can search for a route which services it. There
are several external parameters influencing properties of a servicing route.

Definition 2 (External parameters).

1. maximum length of a servicing route denoted by L = L(G),
2. function f : E → Z+ giving an upper bound on the frequency of traversing

each edge e,
3. function t : {1, . . . , z}×Z+ → Q+ describing limits associated with priorities:

the total length of each servicing route between i-th and (i + 1)-th traversal
of edge e is at most t(p(e), i)L.

4. capacity c ≤ 1 such that the servicing route must visit the depot within each
sub-route of total length bigger than cL.

These parameters are self-explanatory with the exception of function t, namely
why it depends on specific traversals of a given edge: this is a natural feature of
the winter road maintenance since it is most important that the roads are clean
when people leave their homes in the morning, and when they come back home
in the afternoon.

Definition 3 (Vehicle route). For given maintaining plan (G,P, d, α, z, p) we
define a L, c, t, f -vehicle route as a closed walk w = (e1, . . . , e`) where each ei is
an element of the symmetric orientation Gs = (V,Es) of G, each edge e ∈ Es
appears at least once and at most f(e) times in w and (1) the requirement of the
maximum length of the route, (2) the requirements given by priorities p(e), e ∈ P
and (3) the requirements given by the capacity c are kept.

Definition 4 (Maintaining plan routing problem). Maintaining plan rout-
ing problem is to decide, given a maintaining plan with P = E, if a vehicle route
exists. We say that the problem is unweighted if the length of each edge is equal
to one.

We note that the condition P = E is a natural simplification when consider-
ing single routes since the dead-heading is typically negligible.

We first observe that the problem to decide if a vehicle route exists is NP-
complete even if G is a star rooted at its vertex d of degree one, c = 1/2 and
t is uniformly equal to 1. Such input tree admits a vehicle route if and only if
the edges not incident with d can be divided into two parts with equal sums
of edge lengths. This problem is called Partitioning and is a basic NP-complete
problem.

In view of this observation it is natural to consider a restriction that the edge-
lengths are integers bounded by a fixed power of the size of the input graph. A
possible justification is that in practice the resources (time, maintaining material,



6 J. Fink et al.

cost) depend linearly on the length of the road segments. However, it is important
to have in mind that there are situations, e.g., steep hills with heavy snow-
fall, when this is not true and on the contrary it is realistic to assume that
the resources depend non-linearly, even exponentially, on the lengths of road
segments.

Trees. In this paper we concentrate mostly on the Maintaining plan routing
problem on trees. Trees are graphs useful for a representation of a vehicle route
in the winter road maintenance. Even if the set of edges maintained by a single
vehicle is not a tree we can represent it as a tree obtained e.g. from the Depth
first search (DFS) algorithm. The symmetric orientation of a tree is always an
Eulerian graph and thus there exists a natural vehicle route if the only goal is to
visit all arcs exactly once. We show in next sections that the Maintaining plan
routing problem is interesting and not easy even for trees.

Graph cutting. The routing when the priority function is constant is closely
related to the ’classic’ graph theory concept of graph cutting.

Definition 5 (Graph Cutting Problem). Graph Cutting Problem is to find,
for a given graph G rooted in its vertex r and set of numbers t1, . . . , tk, a cover
of E(G) by connected subgraphs G1, . . . , Gk rooted in r of sizes t1, . . . , tk (≤
t1, . . . ,≤ tk respectively).

We will need and prove a negative result on the graph cutting when we
consider the planar graphs. However, there is a very nice positive result:

Theorem 1 ([17, 16, 20]). Given a k-edge-connected graph G = (V,E), k edges
e1, e2, . . . , ek of G and k positive integers m1, . . . ,mk with the sum equal to |E|.
There exists a partition E = E1 ∪ · · · ∪ Ek such that ei ∈ Ei, |Ei| = mi, and
Gi = (V (Ei), Ei) is connected for each i ≤ k.

The particular aspect of winter road maintenance introduced next are public
complaints. This is an important issue of anybody in this business all around
the world. The number of complaints from public against the winter road main-
tenance is a quantitative measure of the quality of the service which is focused
on, e.g., in media or in election campaigns.

2.1 Public complaints

The experience is that residents make complaints to insufficient service if they
think that they are treated in an unfair manner in particular if their neighbour-
hood is ’skipped’ in the service.

We make a rational assumption that the number of public complaints can be
deduced from the structure of a vehicle route and in particular from its perceived
unfairness. We call this (number) the unfairness index of a vehicle route w, and
define it in the Definition 6 below.



Arc-routing for winter road maintenance 7

The additional structure used in this definition is a collection of fixed cyclic
orders of the neighbours of each vertex. We observed the empiric existence and
the importance of such orders in our practical work for the winter road mainte-
nance. In fact, in situations when a consensual order between two edges sharing
a vertex (representing two road-segments sharing a crossing) does not exist, the
administrators in charge of the winter road maintenance insisted on using dif-
ferent maintaining cars to service these two roads in order to avoid complaints
caused by one vehicle giving ’unjustified preference’ to one of the two neighbour-
hoods.

Definition 6. Let G be a graph and let d be its vertex (the depot) of degree 1.
We further assume that we are given a fixed cyclic order O(v) of the neighbours
of each vertex v. Let w = (e1, . . . , el) be a vehicle route. For i < l let ei = (si, ti),
let (w, i)+ denote the edge of G incident with ti which follows {si, ti} in O(ti)
and let (w, i)− denote the edge of G incident with si which precedes {si, ti} in
O(si).

– If no orientation of (w, i)+ belongs to (e1, . . . , ei+1) then we say that edge
(w, i)+ has a forward complaint.

– If no orientation of (w, i+1)− belongs to (e1, . . . , ei+1) then we say that edge
(w, i+ 1)− has a backward complaint.

– The unfairness index of the route w, denoted by Uf(w), is the sum of the
number of edges which have a forward complaint and the number of edges
which have a backward complaint.

Naturally we can introduce the unfairness minimisation problem to find a
vehicle route w with Uf(w) as small as possible. We show further that this
innocent looking problem is related to the extensively studied necklace splitting
problem.

3 Main results

3.1 Routing problem on trees with constant priority function

We recall that the parameters of winter maintaining of a network are (1) upper
bound L for the total length of a vehicle route, (2) priority function t and (3)
capacity c. Additional assumption of this section is a constant priority function.
We denote the value t := t(p(e), i).

We already noticed that the weighted problem is NP-complete even for stars.
Hence, let us consider the unweighted problem. It is equally straightforward to
observe that deciding admissibility for the unweighted problem is NP-complete
for subdivided stars when the capacity c may depend on the input tree (reduction
to the 3-partitioning problem).

The case of the fixed capacity c already admits a polynomial algorithm based
on the dynamic programming.



8 J. Fink et al.

Theorem 2. There is a polynomial algorithm for finding a solution of the un-
weighted maintaining plan routing problem restricted to maintaining plans (T, d, p)
with T tree, the priority function t constant and the capacity c = 1/c′ a constant
fraction not depending on the input tree. Also, the unfairness minimisation prob-
lem admits a polynomial algorithm.

3.2 Public complaints and necklace splitting

Noga Allon [1] studied in 1987 an interesting problem in combinatorics which
may be interpreted as the problem how to divide a stolen necklace fairly between
the thieves.

Definition 7 (k-splitting). Let N be an open necklace, i.e., a path consisting
of k · n vertices-beads, chosen from s different colors. There are k · ai beads of
color i, 1 ≤ i ≤ s. A k-splitting of the necklace is a partition of the necklace into
k parts, each consisting of a finite number of non-overlapping intervals of beads
whose union contains precisely ai beads of color i, 1 ≤ i ≤ s. The size of the
k-splitting is the number of cuts that forms the intervals of the splitting.

Definition 8 (Necklace splitting problem). Let N be a necklace. Necklace
splitting problem is to find for given number k a k-splitting of necklace N of
minimal size.

If the beads of each color appear contiguously, then at least k−1 cuts between
the beads of each color are necessary and hence the number (k−1) ·s of cuts is a
lower bound. The following theorem says that this is sufficient for all k-splittings.

Theorem 3 (Noga Alon). Every necklace with kai beads of color i, 1 ≤ i ≤ s,
has a k-splitting of size at most (k − 1) · s.

This theorem has only topological non-constructive proofs so far; Alon’s proof
uses a transformation of the discrete problem to a continuous coloring of the unit
interval.

Complexity of necklace splitting. The algorithmic complexity of the neck-
lace splitting has been intensively studied. First, the problem to determine the
algorithmic complexity of feasible splitting with the smallest number of cuts was
proven to be NP-complete even for 2-splitting (k = 2) and two beads of each
color by Bonsman, Eppig and Hochstättler [6]. Alternative proof was made by
Meunier [23].

However, more attention has been given to another problem. Since the known
proofs of the existence of the splitting of size (k − 1)s are not constructive,
the consequent research has been directed towards constructively finding the
splitting. The following question had been open for a long time:

Can one find efficiently the splitting guaranteed by Theorem 3?

This was finally answered negatively in 2019 by Filos-Ratsikas and Goldberg
[11]. To explain this result we introduce the problem LEAF (see [24, 11]).



Arc-routing for winter road maintenance 9

Definition 9 (LEAF problem). An instance of the problem called LEAF con-
sists of a graph G of maximum degree 2, whose 2n vertices are represented by
0, 1 sequences of length n; G is given by a polynomial Turing machine that takes
as input a vertex and outputs its neighbours. Moreover, the vertex 0 has degree
1. The goal is to output another vertex of degree 1.

We say that a problem is PPA-complete if it is polynomial time equivalent
to the LEAF problem. A cryptographic hardness of the PPA-complete problems
is discussed e.g. in [11].

The result of Filos-Ratsikas and Goldberg is that finding necklace splitting
guaranteed by Theorem 3 is PPA-complete even for k = 2.

As discussed earlier, the weighted maintaining plans is relevant for the winter
road maintenance when it is realistic to assume that the resources of vehicles
(time, amount of the spreading material) depend non-linearly on the lengths of
road segments.

Theorem 4. There exists a polynomial reduction of the necklace splitting prob-
lem to the unfairness minimisation for maintaining plans routing on trees, even
when the maintaining plan is a star with weights on edges.

Finally, we find the next questions appealing:

Question 1. Is there a good approximation algorithm for the weighted unfairness
minimisation arc routing for trees?

Question 2. Is there an analogue of Theorem 3 for the unfairness minimisation
for general trees and for planar graphs?

3.3 Routing unweighted trees with bounded degrees

In this section we consider general priorities in the maintaining plans. All trees
are unweighted. We construct a polynomial algorithm based on dynamic pro-
gramming which can decide if a given maintaining plan (T, d, z, p), T tree of
bounded degree admits a vehicle root where in addition each arc is traversed
at most a constant number of times. We also show that both these additional
assumptions are necessary.

Theorem 5. Fixed integers F,∆. There exists a polynomial time algorithm
which for a tree T = (V,E) rooted in d with maximal degree at most ∆, function
f : E → N such that f(e) ≤ F for all e ∈ E and function g : E×{1, . . . , F} → N
decides whether there exists a closed walk w starting at r satisfying

– Every edge e of T s is traversed f(e)-times (at most f(e)-times respectively)
in both directions.

– For every edge e of T s and y ≤ f(e), there are at most g(e, y) steps between
y−th and (y + 1)−st traverses of e, taken cyclically.



10 J. Fink et al.

As a consequence, there is a polynomial algorithm to decide if a L, c, t, f−vehicle
route on T exists.

Question: Is it necessary to fix F and ∆? We first show that the admissibility
is hard for unbounded f even if G is a binary tree and g depends only on the
edge.

Theorem 6. It is NP-complete to decide whether a given binary tree T = (V,E)
rooted in d and functions f, g : E → N there exists a closed walk w starting at
r satisfying (1) Every edge e is traversed f(e)-times in both directions (2) For
every edge e, there are at most g(e) steps between two consecutive traverses of e
in both direction, taken cyclically. The problem is NP-complete even if we restrict
f to be non-increasing on all paths from the depot.

Next theorem treats the case unbounded degrees.

Theorem 7. Fixed integer F . It is NP-complete to decide whether a given tree
T = (V,E) rooted in d, function f : E → N such that f(e) ≤ F for every edge
e and function g : E × {1, . . . , F} → N there exists a closed walk w starting at
d satisfying (1) Every edge e is traversed f(e)-times in both directions. (2) For
every edge e and y ≤ f(e), there are at most g(e) steps between the y−th and
(y + 1)−st traverses of e in both direction, taken cyclically.

3.4 Routing unweighted graphs of bounded tree-width

In this section, all graphs will be unweighted. A tree decomposition of a graph
G is a pair (W, b) where W is a tree and b : V (W )→ 2V (G) assigns a bag b(v) to
each vertex v of W such that

– every vertex is in some bag,
– every edge is a subset of some bag,
– every vertex of G appears in a connected subtree of the decomposition.

The width of the tree decomposition is defined as the size of the largest
bag, minus one. The tree-width of graph G is the minimum width of a tree
decomposition of G.

Let G = (V,E) have a distinguished vertex, denoted by d. It is useful to
simplify the decomposition. A tree decomposition (W, b) is canonical if

– T is rooted, and the root r satisfies d ∈ b(r).
– Each leaf u satisfies |b(u)| = 1.
– Each non-leaf vertex u satisfies one of the following conditions:
u has exactly one son u′ and b(u) = b(u′) ∪ {v} for some vertex v ∈ V .
u has exactly one son u′ and b(u) = b(u′) \ {v} for some vertex v ∈ V .
u has exactly two sons u′, u′′ and b(u) = b(u′) = b(u′′).

It is straightforward to verify that every graph G of tree-width at most k
has a canonical tree decomposition of width at most k, of polynomial size. The
following theorem is again proved by a dynamic programming argument building
on the proof of Theorem 5.



Arc-routing for winter road maintenance 11

Theorem 8. Let z,∆, F be integer constants and let (G, d, z, p) be a maintain-
ing plan where G = (V,E) is a graph rooted in d and with maximal degree
at most ∆, given along with its canonical tree decomposition (W, b) of width
k − 1 and functions f : Es → N such that f(e) ≤ F for all e ∈ Es and t :
Es×{1, . . . , F} → N . Then there is an algorithm to decide if a L, c, t, f−vehicle
route on G exists of complexity at most pol(|G|, |t|)× (4kF |E|)4Fk∆.

3.5 Case of more routes

In this section all graphs are unweighted. The graph of road network has each
edge maintained by one method. We recall that the set of the possible main-
taining methods is denoted by M . We will assume that M has a fixed size, e.g.,
M = {c, i, s}. It is natural to assume that each maintaining vehicle can snowplow
and thus we can include deadheading in our model.

Definition 10. Let G be a graph of road network and Gs its symmetric orien-
tation. Let p : E → {1, . . . , z} be its priority function and m : E → M be its
maintaining type function. Let D be the set of the depots. We say that a tuple
(H,P, d, α, z, p) where H is a subgraph of G and d ∈ D∩V (H) is a maintaining
plan of G if m is constant on H and (H,P, d, α, z, p) admits a L, c, t, f−vehicle
route.

Definition 11 (Feasible and Optimal Solution). Feasible solution of a road
network G is a set O of admissible plans of G so that the union of their P−sets
covers E(G). A feasible solution O is optimal if |O| is as small as possible.

Finding an optimal solution. First we note that finding an optimal solution
is an NP-complete problem even for G a tree, all edge-weights equal to 1 and
|D| = 1.

Hence from now on let o be a fixed integer and we consider the optimization
problem Roadnet(o): find out if there is a feasible solution of a road network
consisting of at most o admissible plans. We arrive at a result analogous to
Theorem 8 by further refining the dynamic optimization argument of its proof.

Theorem 9. Let z,∆, F be integer constants and let (G,D, z, p,m) be a road
network where G = (V,E) is a graph with maximal degree at most ∆ and D ⊂ V ,
given along with its canonical tree decomposition (W, b) of width k− 1 and func-
tions f : Es → N such that f(e) ≤ F for all e ∈ Es and t : Es×{1, . . . , F} → N .
Then there is an algorithm for Roadnet(o) of complexity at most pol(|G|, |t|)×
(4koF |E|)4Fko∆.

3.6 Solving routing in planar networks

In this section, we consider the class of the planar graphs which realistically
model most of road networks. We start with a hardness result on planar graph
cutting.



12 J. Fink et al.

Theorem 10. The following planar graph cutting problem is NP-complete: given
a planar graph G, its vertex d and numbers t1, t2, decide if there are two con-
nected subgraphs G1, G2 containing d so that |E(Gi)| = ti, i = 1, 2 and E =
E(G1) ∪ E(G2).

Proof. We show a reduction from the Steiner tree problem for planar graphs
which is a well known NP-complete problem.

Steiner tree problem: given a graph and a set T of its vertices called terminals,
find a connected subgraph that includes all the terminals and has the minimum
possible number of edges.

The reduction goes as follows: let G be a planar graph and let T be a set of
its vertices. We take one of the vertices of T and call it d. Next, we attach to
each vertex of T \d a path of |E| edges. We let t1 = (|T |−1)|E|+x and t2 = |E|.
Obviously, G has a Steiner tree of size at most x if and only if a feasible graph
cutting exists.

Taking into account the proof of Theorem 10, we get the following hardness
result:

Theorem 11. The maintaining plan routing problem for the planar graphs is
NP-complete even when c = 1/2 and all edge-weights are equal to one.

By Theorem 9 (case of o = 1), the maintaining plan routing problem for the
planar graphs with bounded degrees can be solved in 2O(

√
nlogn)nO(1) since every

planar graph of n vertices has tree width at most
√
n.

We conjecture that assuming the exponential time hypothesis, there is no
algorithm of complexity 2o(

√
n)nO(1).

Most of the realistic medium size road networks are planar bounded degree,
with at most ten thousand edges (road-segments) and around one hundred of
the maintaining vehicles. This leads to studying planar road networks with n
vertices and O(

√
n) maintenance cars.

We do not know if this problem admits a sub-exponential algorithm. However,
many realistic road networks contain small cuts and their tree-width is small.
For such networks, Theorem 9 implies a sub-exponential algorithm.

4 The proofs

4.1 Proof of Theorem 2

We start by showing a polynomial algorithm for the Tree Cutting Problem based
on the dynamic programming.

Theorem 12. Let k be any fixed number. There is a polynomial algorithm to
solve the Tree Cutting Problem.

Proof. We are given a tree T rooted in a vertex r and integers s1, . . . , sk. Let
us denote by n the number of vertices of T . We need to cover the graph T with



Arc-routing for winter road maintenance 13

trees of given sizes. To do that we will construct a cover for all possible sizes of
trees. This set of covers is denoted by F (v). Formally, we proceed in two steps.

First, define for each v ∈ V (T ) a set F ′(v); the elements of F ′(v) are all
k-tuples of trees (T1, . . . , Tk) with root v such that:

B(v) =

k⋃
i=1

Ti.

Each k-tuple in F ′(v) is a cover of the branch B(v) by trees T1, . . . , Tk. The
size of (T1, . . . , Tk) as the vector (t1, . . . , tk) where tj = |E(Tj)|, 1 ≤ j ≤ k. We
define an equivalence on F ′(v): (T1, . . . , Tk) and (T ′1, . . . , T

′
k) are equivalent if

∀i ∈ {1, . . . , k} : ti = t′i.
Secondly, for each vertex v we let F (v) to be the set of all representatives of

this equivalence. We denote by S(v) the set of the sizes of the elements in F (v).
We note that |S(v)| ≤ nk because each tree has at most n edges and there are
k trees in every k-tuple.

We will construct F (v) for all v ∈ T recursively.

– Let v be a leaf: F (v) := {(∅, . . . , ∅)}.
– Let v be a parent of vertices v1, . . . , vm and we assume for all i = 1, . . . ,m
F (vi) are determined. We will define for v and 1 ≤ i ≤ m the set Fvi(v) of k-
tuples representing covers of the subtrees induced by vertex v and branches
rooted in its children v1, . . . , vi. We construct Fvi(v) by the additive step
described below.

– We let F (v) := Fvm(v).

Now we describe the additive step used for the construction of F (v).

Additive step: Given a k-tuple (T1, . . . , Tk), we construct a k-tuple (T ′1, . . . , T
′
k)

by addition of the edge {vi, v} in every possible way. There are two cases depen-
dent on the size of the cover.
1. Case ti = 0 for each 1 ≤ i ≤ k :

we add the edge for every nonempty subset of indices

∀I ⊂ {1, . . . , k}, |I| ≥ 1

j ∈ I : T ′j = Tj ∪ {v, vi}
j /∈ I : T ′j = ∅

2. Case ∃i ∈ {1, . . . k} : ti 6= 0
Let J = {i | ti = 0}, we add the edge for all nonepmty trees and we add the
edge for every subset of empty trees

∀I ⊂ J

j /∈ J : T ′j = Tj ∪ {v, vi}
j ∈ I : T ′j = Tj ∪ {v, vi}

j ∈ J \ I : T ′j = ∅



14 J. Fink et al.

This finishes the description of the Additive step.

– Construction of Fv1(v) :
We start with Fv1(v) = ∅. For each (T1, . . . , Tk) ∈ F (v1) we construct by the
additive step the set of k-tuples (T ′1, . . . , T

′
k) which we add into Fv1(v).

– Construction of Fvi+1(v) :
In this case we proceed in two steps.
First we construct F ′(vi+1) by additive steps applied to F (vi+1). Specifically,
we start with F ′(vi+1) = ∅. For each (T1, . . . , Tk) ∈ F (vi+1) we construct by
the additive step a set of k-tuples (T ′1, . . . , T

′
k) which we add into F ′(vi+1).

Secondly, we merge Fvi(v) and F ′(vi+1) again in two steps as follows.
First, for all (T11, . . . , T1k) ∈ Fvi(v) and all (T21, . . . , T2k) ∈ F ′(vi+1)

∀i ∈ {1, . . . , k} : T ′i = T1i ∪ T2i

and we add into Fvi+1
(v) the created k-tuple (T ′1, . . . , T

′
k).

Finally, we clean the set Fvi+1
(v) by keeping only the representatives of

equivalence classes.

The described construction of the set F (r) determines the set S(r) of sizes.
We have a solution of the tree cutting problem if and only if the k-tuple (s1, . . . , sk)
is in S(r).

By analyzing the above procedure we need at most two times nk × nk steps
for adding of one edge. Hence the complexity of the algorithm is asymptotically
n2k+1 because there are at most n edges. So there exists a polynomial algorithm
for the tree cutting problem with fixed k.

Proof of Theorem 2. We distinguish several cases.

1. t ≥ 1, c = 1:

– priority condition and capacity condition always hold
– necessary and sufficient condition for existence of L, c, t-vehicle route is:
|E(T )| ≤ 1

2L

2. t ≥ 1, c < 1:

– priority condition always holds
– clearly, if an arc belongs to a trip then its reverse belongs to the same trip.

Trips are determined by subtrees rooted in d and there is no advantage
in going through an arc more than once in the same trip

– we want to construct subtrees T1, . . . , Tk rooted in d such that k :=
⌈
1
c

⌉
,

∀i ∈ [k] : |Ti| ≤ cL,

T = T1 ∪ . . . Tk

and ∑
i≤k

2|E(Ti)| ≤ L.



Arc-routing for winter road maintenance 15

This is achieved by the algorithm for tree cutting problem described in
the proof of Theorem 12. A solution is any collection of k trees with sizes
ti satisfying ti ≤ cL for each i ≤ k, and∑

i≤k

2ti ≤ L.

3. t < 1, t ≤ c :

– capacity condition holds if priority condition is satisfied

– necessary and sufficient condition for existence of L, c, t-vehicle route is:
2|E(T )| ≤ tL.

4. t < 1, c < t :

– this case is equivalent to case 2. for L′ := tL, t′ = 1 and capacity c′ := c
t

Solution of cases 1 and 3 can be a DFS order of a tree if the necessary condition
holds otherwise there is no solution. Case 4 is reduced to case 2. Case 2 admits
a polynomial algorithm by Theorem 12.

4.2 Proof of Theorem 4

Proof. We have given an instance of the Necklace splitting problem. The necklace
N of length nk has to be partitioned into k parts each containing ai beads of
color i, 1 ≤ i ≤ s. So the number of colors is s.

We describe a construction of a network. The graph of the network will be a
star with center x rooted in its leaf d and with nk non-root leaves u1, . . . , unk.
The cyclic order for x is (d, u1, . . . , unk). The number of traverses of each arc e
will be bounded by f(e) where f(e) = 1 if e is not incident with d, and f(e) = k
otherwise.

For each color r, 1 ≤ r ≤ s, we define number Mr recursively: M1 = 1 + n
and Mr+1 = 1 + n

∑
q≤rMq.

For each i, 1 ≤ i ≤ nk, if the i-th bead of the necklace has color r, than
we let α({x, ui}) = Mr. We also let α({x, d}) = 1. Finally we let L = 2k(1 +∑s
r=1 arMr)) and c = 1

k .

The capacity constant determines the length of each trip from the depot to
be exactly 2(1+

∑s
r=1 arMr). Multiplication by two means each edge is traversed

in both directions.

A solution of the unfairness minimisation problem is a vehicle route w. The
complaints at edges {x, ui} naturally determine the splits of the necklace. If
{x, ui} has a forward complaint then we split the necklace between the i− 1-th
and i-th beads of the necklace. If {x, ui} has a backward complaint then we split
the necklace between the i-th and i+ 1-st beads of the necklace.

Summarising, the sum of the complaints at vertices of the route minimising
the unfairness index is equal to the minimum size of the necklace splitting.



16 J. Fink et al.

Unfairness and sum packing problem As a follow-up to the proof of The-
orem 4 we show a connection of the unfairness minimisation problem with the
Sum Packing Problem of Erdös [4].

As described above, the Necklace Splitting is, from the complexity point of
view, hard already for the number of thieves k = 2, and each ai = 1. Clearly,
when the number of thieves k = 2 and each ai = 1 then the proof of Theorem
4 works for any set of numbers M1, . . . ,Ms with the property that all partial
sums of Mi’s are pairwise distinct. A natural question is whether such set exists
with all Mi bounded by a fixed power of s.

It turns out that the answer is negative. This is related to a very nice part
of the combinatorial number theory which we now explain.

Definition 12. (Set with distinct subset sums) A set S of positive integers has
distinct subset sums if the set {

∑
x∈X x : X ⊂ S} has 2|S| distinct elements.

For example, any set of distinct powers of number 2 has the distinct subset
sums property. More examples of sets with distinct subset sums are {3, 5, 6, 7}
and {6, 9, 11, 12, 13}. We mention a lower bound for the value of the maximum
in the sets with the distinct subset sums property.

Definition 13. Let f(n) = min{maxS : |S| = n, S has distinct subset sums }.

Paul Erdös conjectured in 1931 that for some constant c

f(n) ≥ c2n.

Conway and Guy [9] found a construction of sets with distinct subset sum,
now called the Conway-Guy sequence, which gives an upper bound on f . This was
later improved by Lunnan [21], and then by Bohman [5] to f(n) ≤ 0.22002 · 2n
(for n sufficiently large).

The best known lower bound, up to the constant, has been proved by Erdös
and Moser [10] in 1955,

f(n) ≥ 2n/(10
√
n).

4.3 Proof of Theorem 5

Proof. The length of the route has to be l = 2
∑
e∈E f(e) and let I = {1, . . . , l}

be the set of all indices on the route. For every A ⊆ I and v ∈ V let Mv[A]
be true if there exists route satisfying all conditions on T [v] using exactly
indices of A on T [v]. Similarly we define M ′v[A] for T ′[v]. Let z(A) for the
set of ordered pairs of starting and ending indices of subsequencies of A, i.e.
z(A) = {(a1, b1), . . . , (aq, bq)} such that A = {a1, . . . , b1}∪ · · · ∪ {aq, . . . , bq} and
a1 ≤ b1 < b1 + 1 < a2 ≤ b2 < b2 + 1 < · · · < bq−1 + 1 < aq ≤ bq. Let |z(a)| = q
be the number of subsequences.

Let v be a non-root vertex and e = vp(v). If M ′v[A] = true, then |z(A)| ≤ f(e)
since e has to be traversed f(e) (some traverses may be consecutive). Therefore,
there are at most f(e) · l2f(e) sets A such that M ′v[A] = true, so we can store all



Arc-routing for winter road maintenance 17

such sets A instead of whole table M ′v to ensure polynomial space. Similarly, if
Mv[A] = true then |z(A)| ≤ f(e) since T [v] can be entered at most f(e)-times.

We determine Mv using the following dynamic programming. If v is a leaf,
then Mv[A] = true only for A = ∅. Consider that u1, . . . , us are all children
of v. Recall that 1 ≤ s ≤ ∆. First, we set Mv[A] := false for all A and then
we consider all combination Ai for i = 1, . . . , s such that M ′ui

[Ai] = true. Note
that there are at most F∆ · l2F∆ ≤ F d · (2Fn)2F∆ such combinations, so the
algorithm is polynomial. Let A = A1 ∪ · · · ∪As. We apply the following function
for every combination.

– If any two sets of A1, . . . , As have a common member, then the function
terminates, since every index has to be used for exactly once on the route.

– If z(A) > f(e), then the function terminates, since T [v] can be entered at
most f(e)-times where e = vp(v).

– In the end, we set Mv[A] := true.

Now, we determine M ′v. Let e = {v, p(v)}. First, we set M ′v[A] := false for
all A and then we apply the following function for every A with Mv[A] = true.

– Let z(A) = {(a1, b1), . . . , (aq, bq)}. If q > f(e) then stop.
– Let X1 = {a′i; 1 ≤ i ≤ f(e)}, X2 = {b′i; 1 ≤ i ≤ f(e)} and X = X1 ∪X2 be

such that (1) X ∩ A = ∅ (2) X1 ∩X2 = ∅ and (3) for each (ai, bi) ∈ z(A),
ai − 1 ∈ X1 and bi + 1 ∈ X2. For each such X1, X2 we let A′ = A ∪X.

– We check if X1, X2 satisfy the conditions for g(e): if not, we stop.
– We set M ′v[A

′] := true.

Finally, the algorithm returns Md[I].

We note that the same proof works if we require that every edge e is traversed
at most f(e)-times in both directions.

Theorem 13. Let z,∆, F be integer constants and let (T, d, z, p) be a main-
taining plan where T is a tree with maximum degree ∆. Let f : E → N satisfies
for each e ∈ E, f(e) ≤ F . Then there is a polynomial algorithm to decide if a
L, c, t, f−vehicle route on T exists.

Proof. We use Theorem 5 and note that we can require that every edge e is
traversed at most f(e)-times in both directions, function t can be modelled by g
and the capacity constraint can be modelled by connecting the depot to a new
vertex of degree one and setting the proper value on g(e) for the new edge.

4.4 Proof of Theorem 6

Proof. The 3-partition problems ask to decide whether a given integers a1, . . . , a3n
can be split into n groups with the same sum. The problem is strongly NP-
complete even if it is restricted to integers strictly between S/2 and S/4 where
S is the target sum. Note that in this case, every group has to contains exactly
3 integers.



18 J. Fink et al.

Let h = dlog2 3ne and B = 3h and bi = Bai for all i = 1, . . . , 3n and
S′ = B(S + 1).

Let Ti be a binary tree on bi edges rooted in ri. Let T ′ be a binary tree
rooted in r′ with leaves r1, . . . , r3n such that all leaves are in depth h. Let T be
a binary tree such that

– d is the root of T
– d has only one child d′

– T ′ is attached to the node d′

– trees T1, . . . , T3n are attached to leaves of T ′.

Note that the size of T is O(log n
∑
i ai), so it is only O(log n)-times larger than

the size of the instance of 3-partition problem.
Next, f(e) = 1 for all edges e on trees T1, . . . , T3n. For an edge e of T ′, f(e)

is the number of trees of T1, . . . , T3n in the subtree of e. Finally, f(dd′) = n. The
goal is to ensure there that the route can be split into n parts by passing dd′

and each part traverses from d′ to some ri, whole tree Ti, returns to d′ and then
traverse two other trees of T1, . . . , T3n. In order to ensure the proper sum, we
set g(dd′) = 2S′ + 2 and g(e) is a sufficiently larger number for all other edges
e. Clearly, if integers can be split into n groups, there exists a route.

Consider a walk w. Clearly, every tree T1, . . . , T3n has to be traversed by w
completely once it is entered. Traverses of dd′ split w into n parts and every tree
T1, . . . , T3n is completely traversed in one part. Note that g(dd′) ensures that
one part traverses at most S′ edges in both directions (excluding dd′).

We prove that every part traverse exactly tree trees. For contradiction, as-
sume that trees Ti, Tj , Tk, Tl are traversed in one part. Then, the number of
edges in the part is at least bi + bj + bk + bl + h = B(ai + aj + ak + al) + h ≥
4B S+1

4 +h = B(S+ 1) +h > S′ which is a contradiction. Since all parts contain
at most 3 trees, every part must contains exactly 3 trees.

Now, consider a part traversing trees Ti, Tj , Tk. For contradiction, assume
that ai + ak + aj > S. The number of traversed edges in the part is at least
bi + bj + bk + h = B(ai + aj + ak) + h ≥ B(S + 1) + h > S′ which is a
contradiction. Hence, the sum of integers corresponding to each group is exactly
S.

4.5 Proof of Theorem 7

Proof. Consider an instance of 3-partition consisting of 3n integers a1, . . . , a3n
and let S be the target sum. Let B = n and bi = Bai for i = 1, . . . , 3n and
S′ = BS + 1 and S′′ = (n− 1)S′. Let T be tree which consists of

– a depo d, and
– n vertices u1, . . . , un incident only to d where f(dui) = 2 and g(dui, 1) = S′

and g(dui, 2) = S′′, and
– 3n paths P1, . . . , P3n on b1, . . . , b3n edges such that one end-vertex of each

path is d and these paths have to be traversed only once.



Arc-routing for winter road maintenance 19

Note that the only possible length of a route is S′ + S′′ and the short and
long distances between tranverses of edges dui have to be exactly S′ and S′′,
respectively. If a1, . . . , a3n can be partitioned into n groups of equal sum S then
we construct a route as follows: Starts by traversing du1, tranverse 3 paths of
the first group, tranverse du1, traverse du2, etc.

Observe that there is no route such that two close traverses of an edge dui
which is interleaved by a traverse of an edge duj since the sum of lengths of any
subset of paths is divisible by B and even all edges edges du1, . . . , dun cannot
contribute to a multiple of B. Hence, if there exists a route then it looks like as
the one constructed above.

Note that the problem is NP-complete even if F = 2 and all vertices except one
have degree at most 2.

4.6 Proof of Theorem 8

Theorem 8 immediately follows from the following

Theorem 14. Fixed integers F,∆, k. There exists a polynomial time algorithm
which for a graph G = (V,E) rooted in d and with maximal degree at most ∆,
given along with its canonical tree decomposition (W, b) of width k− 1 and func-
tions f : Es → N such that f(e) ≤ F for all e ∈ Es and g : Es×{1, . . . , F} → N
decides whether there exists a closed walk w starting at d satisfying

– Every edge e is traversed f(e)-times in both directions.
– For every edge e and y ≤ f(e), there are at most g(e, y) steps between the
y−th and (y + 1)−st traverses of e, taken cyclically.

Proof. We assume that for each bag b(v), the edges of Gs incident to a vertex
of b(v) (there are at most 2k∆ of them) are linearly ordered. The ordering may
differ in different bags.

The length of the route has to be l = 2
∑
e∈E f(e) and let I = {1, . . . , l} be

the set of all indices on the route. Let I ′ = {(x, i);x ∈ I, 0 ≤ i ≤ 2k∆}. For every
A ⊆ I ′, and u ∈ V (W ) let Mu[A] be true if there exists route w = (e1, . . . , el)
satisfying all conditions on Gp(u),u so that:

– If A0 = {x; there is i such that (x, i) ∈ A} then w uses exactly indices of A0

on Gp(u),u,
– For each (x, i) ∈ A, i = 0 iff ex is not incident to a vertex of b(u).
– Let S(A) = {x ∈ A0; ex is incident with a vertex of b(u)}. For each x ∈ S(A),

if (x, i) ∈ A then the edge ex of w is the i−th edge of the fixed linear order
of the edgers incident with a vertex of b(w).

Let z(A) = {(a1, b1), . . . , (aq, bq)} such thatA0 = {a1, . . . , b1}∪· · ·∪{aq, . . . , bq}
and a1 ≤ b1 < b1 + 1 < a2 ≤ b2 < b2 + 1 < · · · < bq−1 + 1 < aq ≤ bq. Clearly,
|z(a)| = q be the number of subsequences in A0.

If Mu[A] = true then |z(A)| ≤ |S(A)| ≤ 2Fk∆ since Gp(u),u can only be
entered from a vertex of b(u) which is incident with at most ∆ edges in Gp(u),u



20 J. Fink et al.

and each such edge can be used at most f(e)−times. Therefore, there are at
most (2kl∆)2Fk∆ sets A such that Mu[A] = true, so we can store all such sets
A instead of whole table Mu to ensure polynomial space.

We determine Mu using the following dynamic programming. Let u be a
non-root vertex of W .

If u is a leaf, then Mu[A] = true only for A = ∅.
If u is unique son of p(u) and b(p(u)) = b(u)\{v} for some vertex v of G then

Mp(u)[A] = true iff Mu[A′] = true where A′ obtained from A but correcting the
contribution of the linear order of edges associated with b(p(u)).

Let u be the unique son of p(u) and b(p(u)) = b(u) ∪ {v} for some vertex v
of G. We notice that no edge incident with v belongs to Gp(u),u. We construct
sets A for which Mp(u)[A] = true by considering edges from v to b(u) one by one
and for each such edge e we perform the same construction as the one of M ′v[A

′]
from Mv[A] in the proof of Theorem 5.

Finally let p(u) have two sons u = u1, u2. We know b(p(u)) = b(u1) = b(u2).
Let S = Es(Gp(p(u1),u1

∩Es(Gp(p(u2),u2
). We observe: if e ∈ S then e is incident

with a vertex of b(p(u1)).
We let again Mp(u)[A] = false for each A and do the following:
Consider all pairs A1, A2 such that Mu1

[A1] = true and Mu2
[A2] = true. We

first modify the elements of both A1, A2 to reflect the fixed linear order of the
edges incident with a vertex of b(p(v); this linear order may be different from
the linear order (of thesame set) fixed for b(u1) or for b(u2). Let the resulting
sets be denoted by A′1, A

′
2.

For e ∈ S let i(e) denote its index in the fixed linear order of the edges
incident with a vertex in b(p(u1)). For each such i(e) let S1 = {x; (x, i(e)) ∈ A′1}
and S2 = {x; (x, i(e)) ∈ A′2}. If S1 6= S2 then stop.

If [A′1]0 ∩ [A′2]0 contain any other element then stop.
If A′ = A′1 ∪A′2 does not satisfy the requirements given by function g on the

edges incident with a vertex of b(p(u)) then stop.
Let Mp(u)[A

′] = true.
Finally, the algorithm returns Md[I].

References

1. N. Alon: Splitting necklaces. Advances in Mathematics, Volume 63 (3), (1987) 247–
253.

2. N. Alon, A. Graur, Efficient splitting of measures and necklaces,
arXiv:2006.16613v1 (2020).

3. Binglei Xie, Ying Li, Lei Jin: Vehicle routing optimization for deicing salt spread-
ing in winter highway maintenance. Procedia - Social and Behavioral Sciences 96
(2013), 945–953.

4. T. Bohman: A sum packing problem of Erdös and the Conway-Guy sequence. Pro-
ceedings of the American Mathematical Society, Volume 124 (12), (1996) 3627–
3636.

5. T. Bohman: A construction for sets of integers with distinct subset sums. The
Electronic. Journal of Combinatorics 5 (1998) R3.



Arc-routing for winter road maintenance 21

6. P. Bonsma, T. Epping, W. Hochstaettler: Complexity results on restricted instances
of a paint shop problem for words. Discrete Applied Mathematics, Volume 154 (9),
(2006) 1335-1343.

7. A. Bosco, D. Lagana, R. Musmanno, F. Vocaturo: A Matheuristic Algorithm for
the Mixed Capacitated General Routing Problem. Networks 64(4) (2014), 262–281.

8. C. Ciancio, D. Laganá, and F. Vocaturo: Branch-price-and-cut for the mixed capac-
itated general routing problem with time windows. European Journal of Operational
Research 267.1 (2018): 187–199.

9. J. H. Conway, R. K. Guy: Sets of natural numbers with distinct subset sums. No-
tices, Amer. Math. Soc. 15 (1968): 345.

10. P. Erdös,: Problems and results from additive number theory. Colloque sur la
Theorie des Nombres, Bruxelles, 1955, Liege & Paris, (1956) 127-137.

11. A. Filos-Ratsikas, P. W. Goldberg: The complexity of splitting necklaces and bisect-
ing ham sandwiches. Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, (2019) 638-649.

12. J. Fink, M. Loebl, P. Pelikanova, A New Arc-Routing Algorithm Applied to Winter
Road Maintenance, arXiv:2001.10828 (2020).

13. M.R. Garey, D.S.Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W. H. Freeman & Co. New York, USA (1979),
ISBN:0716710447.

14. L. Gaspar, Z. Bencze, Salting route optimization in Hungary. Transportation Re-
search Procedia 14 (2016), 2421–2430.

15. I. Gudac, I. Marovic, T. Hanak: Sustainable optimization of winter road mainte-
nance services under real-time information. Procedia Engineering 85 (2014), 183–
192.

16. E. Gyori, On division of graphs to connected subgraphs. Colloq. Math. SOC.J.
Bolyai 18, (1976), 485-494.

17. M. Junger, G. Reinelt, W.R. Pulleyblank, On Partitioning the Edges of Graphs
into Connected Subgraphs, Journal of Graph Theory 9 (1985) 539-549.

18. J. Kinable, Joris, W-J. van Hoeve, and S. F. Smith: Optimization models for a
real-world snow plow routing problem. International Conference on AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems.
Springer, Cham, 2016.

19. M. Kwan: Programming method using odd or even pints. Acta Mathematica Sinica,
Volume 10, (1960) 263–266.

20. L. Lovasz, A homology theory for spanning trees of a graph. Acta Math. Acad.
Sci. Hungar. 30 (1977) 241-251.

21. W. F. Lunnon: Integers sets with distinct subset sums. Math. Compute 50 (1988)
297-320.

22. D. Marx, M. Pilipczuk, M. Pilipczuk, On sub-exponential parameterised algorithms
for Steiner Tree and Directed Subset TSP on planar graphs, FOCS 59 (2018).

23. F. Meunier: Discrete Splittings of the Necklace. Mathematics of Operations Re-
search, Volume 33 (3), (2008) 678–688.

24. C.H. Papadimitriou: On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences 48 (1994), 498–532.

25. N. Perrier, A. Langevin, C.A. Amaya: Vehicle routing for urban snow plowing
operations. Transp.Sci. 42 (2008), 44–56.

26. N. Perrier, A. Langevin, J. F. Campbell: A survey of models and algorithms for
winter road maintenance. Part I: system design for spreading and plowing. Com-
puters & Operations Research 33 (2006), 209–238.



22 J. Fink et al.

27. N. Perrier, A. Langevin, J. F. Campbell: A survey of models and algorithms for
winter road maintenance. Part II: system design for snow disposal. Computers &
Operations Research 33 (2006), 239–262.

28. N. Perrier, A. Langevin, J. F. Campbell: A survey of models and algorithms for
winter road maintenance. Part III: Vehicle routing and depot location for spreading.
Computers & Operations Research 34 (2007), 211–257.

29. N. Perrier, A. Langevin, J. F. Campbell: A survey of models and algorithms for
winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing and
snow disposal. Computers & Operations Research 34 (2007), 258–294.

30. T. Tantau, A Gentle Introduction to Application of Algorithmic Metatheorems for
Space and Cicuit classes, Algorithms 9, 44 (2016).

31. Sándor F. Tóth, Marc E. McDill, Nóra Könnyü, Sonney George: Testing the Use
of Lazy Constraints in Solving Area-Based Adjacency Formulations of Harvest
Scheduling Models. Forest Science, Volume 59, Issue 2, (2013) 157–176.


