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Abstract

We prove optimality of the Arf invariant formula for the generating function of even subgraphs, or,
equivalently, the Ising partition function, of a graph.
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1. Introduction

Let G = (V (G),E(G)) be a finite un-oriented graph (loop-edges and multiple edges are al-
lowed). We say that E′ ⊂ E(G) is even if the graph (V (G),E′) has even degree (possibly zero)
at each vertex. By abuse of language, E′ is also called an even subgraph of G. We say that
M ⊂ E(G) is a perfect matching if the graph (V (G),M) has degree one at each vertex. Let
E(G) denote the set of all even subgraphs of G, and let P(G) denote the set of all perfect match-
ings of G.

We assume that an indeterminate xe is associated with each edge e, and define the generating
polynomials for even sets and for perfect matchings, EG and PG, in Z[(xe)e∈E(G)], as follows:

EG(x) =
∑

E′∈E(G)

∏
e∈E′

xe,

PG(x) =
∑

M∈P(G)

∏
e∈M

xe.

Knowing the polynomial EG is equivalent to knowing the partition function Z
Ising
G of the Ising

model on the graph G. This is explained later in the introduction.
Assume the vertices of G are numbered from 1 to n. If D is an orientation of G, we denote

by A(G,D) the skew-symmetric adjacency matrix of D defined as follows: the diagonal entries
of A(G,D) are zero, and the off-diagonal entries are

A(G,D)ij =
∑

±xe,

where the sum is over all edges e connecting vertices i and j , and the sign in front of xe is 1 if
e is oriented from i to j in the orientation D, and −1 otherwise. As is well known, the Pfaffian
of this matrix counts perfect matchings of G with signs:

PfafA(G,D) =
∑

M∈P(G)

sign(M,D)
∏
e∈M

xe,

where sign(M,D) = ±1. We use this as the definition of the sign of a perfect matching M with
respect to an orientation D.

We denote the polynomial PfafA(G,D) ∈ Z[(xe)e∈E(G)] by FD(x) and call it the Pfaffian
associated to the orientation D. The following result is well known.

Theorem 1. (See Kasteleyn [9], Galluccio and Loebl [6], Tesler [15], Cimasoni and Reshetikhin
[4].) If G embeds into an orientable surface of genus g, then there exist 4g orientations Di

(i = 1, . . . ,4g) of G such that the perfect matching polynomial PG(x) can be expressed as a
linear combination of the Pfaffian polynomials FDi

(x).
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The explicit expression for PG(x) will be given in Theorem 2.11. We call it the Arf invariant
formula, as it is based on a property of the Arf invariant of quadratic forms in characteristic two.
As far as we know, the relationship with the Arf invariant was first observed in [4].

Let cmatch(G) be the minimal number of orientations Di of G so that PG(x) is a linear com-
bination of the Pfaffian polynomials FDi

(x). We think of cmatch(G) as a kind of complexity of
the graph G. Since every graph embeds into some surface, cmatch(G) is finite. Norine [13] con-
jectured that cmatch(G) is always a power of 4. He also showed that cmatch(G) cannot be equal
to 2,3, or 5. However, Miranda and Lucchesi [12] recently disproved Norine’s conjecture by
exhibiting a graph G with cmatch(G) = 6.

The main result of the present paper is that, contrary to the case of perfect matchings, an ana-
logue of Norine’s conjecture is true for the even subgraph polynomial EG(x) (or, equivalently,
the Ising partition function of G). To explain the statement, we first need to recall how the Arf in-
variant formula for PG can be used to obtain a similar formula for EG, using the following slight
modification of a construction of Fisher. (This formula for EG follows from [7, Theorem 2.3].)
Although the construction may seem a little bit un-natural at first sight, it is justified by Propo-
sition 1.2 and Theorem 2 below. We’ll briefly comment on a different construction by Kasteleyn
in Remark 1.4.

Definition 1.1. (See Fisher [5].) Let G be a graph. Let σ = (σv)v∈V (G) be a choice, for every
vertex v, of a linear ordering of the half-edges incident with v. The blow-up, or �-extension, of
(G,σ ) is the graph Gσ obtained by performing the following operation one by one for each
vertex v. Assume first that no edge incident with v is a loop-edge. Then σv is the same as
a linear ordering of the edges incident with v. Let e1, . . . , ed be this linear ordering and let
ei = vui , i = 1, . . . , d . We delete the vertex v and replace it with a path consisting of 6d new
vertices v1, . . . , v6d and edges vivi+1, i = 1, . . . ,6d − 1. To this path, we add edges v3j−2v3j ,
j = 1, . . . ,2d . Finally we add edges v6i−4ui corresponding to the original edges e1, . . . , ed . This
definition can be extended naturally to the case where there are loop-edges, using that σv is a
linear ordering on the set of half-edges incident with v.

The subgraph of Gσ spanned by the 6d vertices v1, . . . , vd that replaced a vertex v of the
original graph will be called a gadget and denoted by Γv . The edges of Gσ which do not belong
to a gadget are in natural bijection with the edges of G. By abuse of notation, we will identify an
edge of G with the corresponding edge of Gσ . Thus E(Gσ ) is the disjoint union of E(G) and
the various E(Γv) (v ∈ V (G)).

It is important to note that different choices of linear orderings σv at the vertices of G may
lead to non-isomorphic graphs Gσ . Nevertheless, one always has the following

Proposition 1.2. (See Fisher [5].) There is a natural bijection between the set of even subsets
of G and the set of perfect matchings of Gσ . More precisely, every even set E′ ⊂ E(G) uniquely
extends to a perfect matching M ⊂ E(Gσ ), and every perfect matching of Gσ arises (exactly
once) in this way.

It follows that if we set the indeterminates associated to the edges of the gadgets equal to one
in PGσ , we get the even subgraph polynomial of our original graph G:

EG = PGσ |xe=1 ∀e∈E(Gσ )\E(G). (1)
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If D is an orientation of Gσ , we define

Fσ
D(x) = Pfaf

(
A

(
Gσ ,D

)∣∣
xe=1 ∀e∈E(Gσ )\E(G)

)
.

Any polynomial obtained in this way will be called a σ -projected Pfaffian. Note that Fσ
D(x) is a

polynomial in the indeterminates associated to the edges of the original graph G.

Remark 1.3. Here, as before, we need to choose an ordering of the vertices of Gσ to define
the adjacency matrix. We may, of course, take the ordering induced in the obvious way from an
ordering of the vertices of G. In any case, permuting the ordering will only affect the sign of
Fσ

D(x): it gets multiplied by the sign of the permutation.

Now assume G is embedded into an orientable surface Σ of genus g. It is not hard to see that
we can choose σ in such a way that Gσ also embeds into Σ . In view of (1), Theorem 1 implies
the following result for EG:

Theorem 2. (See Galluccio and Loebl [7].) If G embeds into an orientable surface of genus g,
then for an appropriate choice of blow-up Gσ , there exist 4g orientations Di (i = 1, . . . ,4g)
of Gσ such that the even subgraph polynomial EG(x) can be expressed as a linear combination
of the σ -projected Pfaffians Fσ

Di
(x).

Remark 1.4. As was pointed out to us by the referee, a similar result can also be obtained us-
ing a different and in some sense more natural blow-up construction discussed by Kasteleyn in
[9, pp. 102–103], where every vertex of the original graph G is replaced by an even clique. In
Kasteleyn’s construction the correspondence between perfect matchings of the blown-up graph
and even subgraphs of the original graph is not one-to-one, but many-to-one; however, with an
appropriate choice of orientation of the edges of the clique, all but one of the perfect matchings
corresponding to a fixed even subgraph cancel out when signs are taken into account. The draw-
back of Kasteleyn’s construction is that the blown-up graph can in general not be embedded on
the same surface as the original graph. Although the complications resulting from this problem
can be dealt with, it is more appropriate for our purposes to use Fisher’s construction where this
problem does not arise.

It turns out that one can always choose the orientations Di in Theorem 2 in such a way that
the induced orientation on every gadget Γv is independent of i. (We will explain why this is so
in Section 3, see Corollary 3.7.) This motivates the following definition.

Definition 1.5. Let � = (�v)v∈V (G) be a choice of orientations of the gadgets Γv . An orienta-
tion D of Gσ is called �-admissible if D restricts to �v on every gadget Γv .

Note that once � has been fixed, the set of �-admissible orientations of Gσ is in natural
bijection with the set of orientations of the original graph G.

We now come to the main result of the paper, which is a lower bound for the number of
orientations needed in the above expression for EG, provided we assume that the orientations in
question are �-admissible.
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Theorem 3 (Main Theorem). Let G be a graph. Choose a blow-up Gσ and an orientation � of
the gadgets that replaced the vertices of G in Gσ . Let cσ,�(G) be the minimal cardinality of a
set of �-admissible orientations Di of Gσ such that the even subgraph polynomial EG is a linear
combination of the σ -projected Pfaffians Fσ

Di
. Then cσ,�(G) is a power of 4.

Let us denote by cIsing(G) the minimum of the numbers cσ,�(G), over all choices of σ and �.
In view of the relationship of even subgraphs with the Ising model, we call cIsing(G) the Ising
complexity of G.

Theorem 4 (Main Theorem (Cont’d)). For every graph G, the Ising complexity satisfies

cIsing(G) = 4g,

where the number g is the embedding genus of G.

Here, the embedding genus of G is the minimal genus of an orientable surface in which G can
be embedded.

The proof of Theorems 3 and 4 will be given in Section 4.
Let us end the Introduction by pointing out some relations of our results with other topics.

1.1. Equivalence of EG(x) and the Ising partition function

The Ising partition function is defined by

Z
Ising
G (β) = Z

Ising
G (x)

∣∣
xe:=eβJe ∀e∈E(G)

where the Je (e ∈ E(G)) are weights (coupling constants) associated with the edges of the
graph G, the parameter β is the inverse temperature, and

Z
Ising
G (x) =

∑
σ :V (G)→{1,−1}

∏
e={u,v}∈E(G)

xσ(u)σ (v)
e .

The theorem of van der Waerden [18] (see [10, Section 6.3] for a proof) states that Z
Ising
G (x) is

the same as EG(x) up to change of variables and multiplication by a constant factor:

Z
Ising
G (x) = 2|V (G)|

( ∏
e∈E(G)

xe + x−1
e

2

)
EG(z)

∣∣∣∣
ze:= xe−x

−1
e

xe+x
−1
e

.

1.2. Determinantal complexity

For a polynomial P(x1, . . . , xn) with rational coefficients, let the determinantal complexity
of P , denoted by cdet(P ), be the minimum m so that, if A is the m × m matrix of variables
(xij )i,j=1,...,m, then P may be obtained from the determinant det(A) by a number of applications
of the operation of replacing some variable xij by a variable xk or by a rational constant. This con-
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cept was introduced by Valiant (see [17]) who also proved that cdet(P ) is at most 2cform(P ) + 2;
here cform(P ) denotes the formula size of P , i.e. the minimum number of additions and multi-
plications one needs to obtain P starting from the variables x1, . . . , xn and constants. The main
problem in the area of algebraic complexity theory is to find lower bounds for cform(P ). Lower
bounds for cdet(P ) have recently been investigated extensively (see e.g. [11]). We suggest to
study cdet(E(G)) using the methods introduced in the present paper.

1.3. Pfaffian graphs

It follows from Theorem 4 that cIsing(G) = 1 if and only if G is planar. This characterises
the graphs for which the Ising partition function ZG(x) is equal to one Pfaffian, in the sense of
Theorems 3 and 4. Note that this characterisation can be formulated in terms of excluded minors,
by Kuratowski’s theorem. It also provides a polynomial algorithm to recognize the graphs G for
which cIsing(G) = 1, since planar graphs can be recognized in polynomial time. We remark that it
remains a longstanding open problem to characterise the Pfaffian graphs, i.e. graphs G satisfying
cmatch(G) = 1, in a way which yields a polynomial recognition algorithm (see [16]).

1.4. Even drawings

Norine [13] has considered drawings ϕ of a graph G on an orientable surface Σ such that the
self-intersection number of every perfect matching M of G in this drawing is even. (Contrary
to our definition of drawings (see Definition 2.1 below), he does not, however, allow edges to
self-intersect.) Let us call a drawing satisfying Norine’s definition matching-even. As pointed
out by Norine, the Arf invariant formula for perfect matchings (Theorem 1) goes through if we
have a matching-even drawing of a graph on a surface in place of an embedding. Moreover,
Norine has shown that cmatch(G) = 1 if and only if G has a matching-even drawing in the plane,
and cmatch(G) = 4 if and only if G has a matching-even drawing on the torus. It is, however,
conceivable that, in general, the minimal genus of a surface supporting a matching-even drawing
of G could be smaller than the embedding genus. We will point out that no such phenomenon
can occur for even subgraphs (see Section 5 and Theorem 5 for a precise statement).

2. The Arf invariant formula for perfect matchings

In this section, we give a proof of the Arf invariant formula for the perfect matching polyno-
mial. Other proofs can be found in [6,15,4].

Definition 2.1. A drawing of a finite graph G on a surface Σ is a continuous and piecewise
smooth map ϕ from the topological realization of G (as a one-dimensional CW-complex) to Σ so
that ϕ is injective except for a finite number of transverse double points, subject to the condition
that for every double point p = ϕ(x) = ϕ(x′), none of the preimages x and x′ is a vertex.

In other words, all intersections in the drawing happen in the interiors of edges. Note that we
allow self-intersections of edges in this definition. A drawing without double points is called an
embedding.
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If a drawing ϕ of G is given, and E′ ⊂ E(G) is a collection of edges, we denote by κϕ(E′)
the number (mod 2) of double points of ϕ(E′). Note that if E′ = {e1, . . . , ek} is a collection of
distinct edges, then

κϕ

(
E′) =

∑
i

κϕ(ei) +
∑
i<j

crϕ(ei, ej ) (mod 2), (2)

where crϕ(ei, ej ) is the number of intersections of the interiors of the edges ei and ej in the
drawing. We emphasize that vertices of the graph never count as intersection points.

We will use the following result of Tesler.

Theorem 2.2. (See Tesler [15].) Let G be a graph drawn in the plane. Then there is ε0 ∈ {±1}
and an orientation D0 of G so that for every perfect matching M of G, its sign in Pfaf(A(G,D0))

satisfies

sign(M,D0) = ε0(−1)κϕ(M). (3)

Definition 2.3 (Tesler). An orientation D0 satisfying (3) is called a crossing orientation.

We now describe how an embedding of a graph in a surface can be used to make a planar
drawing of that graph of a special kind. First, recall the following standard description of a genus
g surface Sg with one boundary component. (We reserve the notation Σg for a closed surface of
genus g.)

Definition 2.4. The highway surface Sg consists of a base polygon R0 and bridges R1, . . . ,R2g ,
where

• R0 is a convex 4g-gon with vertices a1, . . . , a4g numbered clockwise;
• Each R2i−1 is a rectangle with vertices x(i,1), . . . , x(i,4) numbered clockwise. It is glued

with R0 so that its edge [x(i,1), x(i,2)] is identified with the edge [a4(i−1)+1, a4(i−1)+2] and
the edge [x(i,3), x(i,4)] is identified with the edge [a4(i−1)+3, a4(i−1)+4];

• Each R2i is a rectangle with vertices y(i,1), . . . , y(i,4) numbered clockwise. It is glued
with R0 so that its edge [y(i,1), y(i,2)] is identified with the edge [a4(i−1)+2, a4(i−1)+3] and
the edge [y(i,3), y(i,4)] is identified with the edge [a4(i−1)+4, a4(i−1)+5]. (Here, indices are
considered modulo 4g.)

There is an orientation-preserving immersion Φ of Sg into the plane which is injective except
that for each i = 1, . . . g, the images of the bridges R2i and R2i−1 intersect in a square.

Now assume the graph G is embedded into a closed orientable surface Σg of genus g. We
think of Σg as Sg union an additional disk R∞ glued to the boundary of Sg . By an isotopy of the
embedding, we may assume that G does not meet the disk R∞, and that, moreover, all vertices
of G lie in the interior of R0. We may also assume that the intersection of G with any of the
rectangular bridges Ri consists of disjoint straight lines connecting the two sides of Ri which
are glued to the base polygon R0. (This last assumption is not really needed, but it makes the
proof of Proposition 2.6 below more transparent.) If we now compose the embedding of G into
Sg with the immersion Φ , we get a drawing ϕ of G in the plane. A planar drawing of G obtained
in this way will be called special. Observe that double points of a special drawing can only come
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from the intersection of the images of bridges under the immersion Φ of Sg into the plane. Thus
every double point of a special drawing lies in one of the squares Φ(R2i ) ∩ Φ(R2i−1).

We now explain how a special drawing can be used to get a homological expression for the
sign of a perfect matching. Let H = H1(Σg;F2) be the first homology group of Σg with coeffi-
cients in the field F2. We have canonical isomorphisms H ∼= H1(Sg;F2) ∼= H1(Sg,R0;F2). This
gives us a basis

a1, b1, . . . , ag, bg (4)

of H , where ai corresponds to the class of the bridge R2i−1 in H1(Sg,R0;F2), and bi corre-
sponds to the class of R2i . Recall that H has a non-degenerate (skew-)symmetric bilinear form
called the (mod 2) intersection form. (The name comes from the fact that this form can be de-
fined using intersection numbers of closed curves on the surface.) We let · denote this form. In
the basis (4), it is given by

ai · aj = bi · bj = 0, (5)

ai · bj = δ
j
i (6)

for all i, j = 1, . . . , g.

Definition 2.5. A quadratic form on (H, ·) is a function q : H → F2 so that

q(x + y) = q(x) + q(y) + x · y (x, y ∈ H). (7)

We denote the set of such quadratic forms by Q. It follows from (7) that q(0) = 0 for all
q ∈ Q. Also, (7) implies that a quadratic form q ∈ Q is determined by its values on a basis of H ,
and these values can be prescribed freely in F2. It follows that Q has 4g elements (the number of
elements in F2g

2 ). Another way to see that Q has 4g elements is to observe that the dual vector
space H ∗ = Hom(H,F2) acts simply transitively on Q, where � ∈ H ∗ acts on q ∈ Q to give
q + � ∈ Q.

The usefulness of special drawings and quadratic forms for studying perfect matchings comes
from the following basic proposition. To state it, let q0 ∈ Q be the quadratic form on H whose
value on each of the basis vectors ai and bi is zero.

Proposition 2.6. Let ϕ be a special planar drawing of G obtained from an embedding of the
graph G on the surface Σg . Then for every perfect matching M ⊂ E(G) the number of double
points kϕ(M) satisfies

kϕ(M) = q0
([M]) (mod 2)

where [M] is the homology class of M .

Here, the homology class of a perfect matching is defined as follows. First, since all ver-
tices of G lie in the base polygon R0, every edge e of G defines a homology class [e] in
H1(Sg,R0;F2). Since this group is canonically identified with H , we can think of [e] as an
element of H . If now M is a collection of distinct edges ei , we let [M] be the sum of the [ei].



Author's personal copy

340 M. Loebl, G. Masbaum / Advances in Mathematics 226 (2011) 332–349

Proof of Proposition 2.4. In view of (2) and (7), it is enough to show that

(i) For every edge e, the number of double points of ϕ(e) is equal to q0([e]) (mod 2).
(ii) For every pair of distinct edges e1, e2, the number crϕ(e1, e2) is equal to [e1] · [e2] (mod 2).

Recall that every double point of a special drawing lies in one of the squares Φ(R2i )∩Φ(R2i−1).
To prove (i), assume that e∩R2i−1 consists of αi straight lines, and e∩R2i consists of βi straight
lines, for i = 1, . . . , g. Then the number of double points is

kϕ(e) =
∑

αiβi (mod 2).

On the other hand, the homology class of e is [e] = ∑
i αiai + ∑

j βj bj . Using (5), (6), and (7),
one has

q0
([e]) = q0

(∑
αiai

)
+

(∑
αiai

)
·
(∑

βjbj

)
+ q0

(∑
βjbj

)

=
∑

αiβi (mod 2),

since q0(ai) = 0 = q0(bj ) for all i and j by the definition of q0. Thus kϕ(e) = q0([e]) (mod 2),
as asserted. Statement (ii) is proved in a similar way. �

The following corollary is immediate from the definition of a crossing orientation.

Corollary 2.7. Let ϕ be a special planar drawing of G obtained from an embedding of the
graph G on the surface Σg . Let D0 be a crossing orientation of G with respect to this drawing.
Then there is ε0 ∈ {±1} so that for every perfect matching M of G, its sign in Pfaf(A(G,D0))

satisfies

sign(M,D0) = ε0(−1)q0([M]).

Thus the quadratic form q0 controls the sign of any perfect matching in the orientation D0.
The following proposition says that, more generally, every q ∈ Q controls the sign of perfect
matchings in some orientation.

Proposition 2.8. Let ϕ be a special planar drawing of G obtained from an embedding of the
graph G on the surface Σg . Then there is ε0 ∈ {±1}, and a collection (Dq) of 4g orientations
of G indexed by quadratic forms q ∈ Q, such that for every perfect matching M of G one has

sign(M,Dq) = ε0(−1)q([M]).

The following notation will be useful: if D is an orientation of a graph, and S is a set of edges,
we write D(S) for the orientation obtained from D by reversing the orientation of all edges in S.

Proof of Proposition 2.8. For q = q0 we take Dq to be the crossing orientation D0 which exists
by Tesler’s theorem (Theorem 2.2). Any other q ∈ Q can be uniquely written as q = q0 + �

where � ∈ H ∗ is a linear form on H . We define Sq ⊂ E(G) to be the set of edges e such that
�([e]) �= 0 ∈ F2, and define Dq to be the orientation D0(Sq). We have
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sign(M,Dq) = sign(M,D0)(−1)|M∩Sq |

= ε0(−1)q0([M])(−1)|{e∈M|�([e])�=0}|

= ε0(−1)q0([M])(−1)�([M])

= ε0(−1)q([M]),

as asserted. �
We now recall the definition of the Arf invariant [1] of a quadratic form q ∈ Q. Let N0 =

2g−1(2g + 1), N1 = 2g−1(2g − 1), and observe that N0 + N1 = 4g and N0 − N1 = 2g . Recall
that any q ∈ Q is a function H → F2.

Fact 2.9 (Arf). Any q ∈ Q either takes N0 times the value 0 (and hence N1 times the value 1),
or q takes N1 times the value 0 (and hence N0 times the value 1). We define Arf(q) ∈ F2 to be
equal to zero in the first case, and equal to one in the second case. Thus, for every q ∈ Q one has

∑
x∈H

(−1)q(x) = (−1)Arf(q)2g. (8)

For more about the Arf invariant, see for example Johnson [8], Atiyah [2]. We remark that
there are N0 quadratic forms of Arf invariant zero, and (hence) N1 quadratic forms of Arf in-
variant one. In fact, the assignment q �→ Arf(q) is itself a quadratic form in an affine sense (see
Theorems 2 and 3 of [2]).

The relevance of the Arf invariant for us comes from the following lemma, which is in some
sense the dual statement to (8).

Lemma 2.10. For every x ∈ H , one has

1

2g

∑
q∈Q

(−1)Arf(q)(−1)q(x) = 1. (9)

We defer the proof to the end of this section. Combining Lemma 2.10 with Proposition 2.8, it
follows that for every perfect matching M of G, we have

ε0

2g

∑
q∈Q

(−1)Arf(q)sign(M,Dq) = 1. (10)

We refer to (10) as the Arf invariant formula. Thus, we have obtained the following more precise
version of Theorem 1 stated in the introduction.

Theorem 2.11 (Arf invariant formula for perfect matchings). Let the graph G be embedded
into a closed orientable surface Σg of genus g. Then the perfect matching polynomial PG can
be written as a sum of 4g Pfaffians associated to orientations Dq indexed by quadratic forms
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on H = H1(Σg;F2):

PG =
∑
q∈Q

αq Pfaf
(
A(G),Dq

)
,

where αq = ε0(−1)Arf(q)/2g .

It remains to give the

Proof of Lemma 2.10. For z ∈ H , define qz : H → F2 by qz(x) = q0(x)+ z · x. Since x �→ z · x
is a linear form on H , one has qz ∈ Q. We claim that Arf(qz) = q0(z). Indeed, one has

∑
x∈H

(−1)qz(x) =
∑
x∈H

(−1)q0(x)+z·x

= (−1)q0(z)
∑
x∈H

(−1)q0(x+z) = (−1)q0(z)
∑
x∈H

(−1)q0(x)

= (−1)q0(z)(−1)Arf(q0)2g,

where we have used (7) in the second equality and (8) in the last equality. But it is easy to check
that Arf(q0) = 0. This proves the claim that Arf(qz) = q0(z) (again by the characterisation of the
Arf invariant in (8)).

Now observe that the correspondence z �→ qz establishes a bijection H
≈→Q. This is because

H ∗ acts simply transitively on Q, as already remarked above, and any linear form � ∈ H ∗ is
of the form �(x) = z · x for a unique z ∈ H (because the intersection form is non-degenerate).
Therefore we can prove (9) as follows:

∑
q∈Q

(−1)Arf(q)(−1)q(x) =
∑
z∈H

(−1)Arf(qz)(−1)qz(x)

=
∑
z∈H

(−1)q0(z)(−1)q0(x)+z·x

=
∑
z∈H

(−1)q0(z+x) =
∑
z∈H

(−1)q0(z)

= (−1)Arf(q0)2g = 2g.

This completes the proof of Lemma 2.10. �
3. The Arf invariant formula for even subgraphs

Let G be a finite graph. Assume we have chosen a blow-up Gσ ; recall that Gσ is determined
by a choice σ = (σv) of linear orderings of the half-edges at every vertex v ∈ V (G). Assume we
have also fixed a choice � = (�v)v∈V (G) of orientations of the gadgets Γv .

In this section, we begin the proof of Theorem 3 by giving an upper bound for the number cσ,�

defined in the introduction. This is done by constructing an embedding of G into an orientable
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surface which is compatible with the choice of σ and �, and then proving an Arf invariant
formula for EG coming from this embedding.

Recall the notion of a Kasteleyn orientation of a graph Γ which is embedded into the plane
equipped with its standard clockwise orientation. We assume that when we walk around any
bounded face of the embedding, we encounter each edge at most once. This property is satisfied
for 2-connected graphs, but also for the embeddings of the gadgets Γv that we will consider.

Definition 3.1. An orientation D of Γ is Kasteleyn if every bounded face F of the embedding
is clockwise odd with respect to D, meaning that the number of edges e of the boundary of F

where the orientation of e in D coincides with the orientation of e as the boundary of F is odd.

If Γ is embedded into the interior of an oriented disk D, the notion of Kasteleyn orientation
is defined in the same way.

Proposition 3.2. There exists an embedding of Gσ into a closed oriented surface Σ such that
each gadget Γv is entirely contained in the interior of a closed disk Dv ⊂ Σ and the orientation
�v is Kasteleyn with respect to the embedding of Γv into the disk Dv . Moreover, the disks Dv are
pairwise disjoint.

Proof of Proposition 3.2. Consider the gadget Γv with its chosen orientation �v . Let
{e′

1, . . . , e
′
d} be the edges of Gσ corresponding to the original (half-)edges of G incident with v,

and let Γ ′
v be the subgraph of Gσ consisting of Γv and these edges. The vertices of Γ ′

v are those
of Γv union one vertex, say ui , for each of the edges e′

i (i = 1, . . . , d). We claim that Γ ′
v can be

embedded into an oriented disk D so that

• Γv lies in the interior of the disk,
• the vertices ui lie on the boundary of the disk, and
• the orientation �v is Kasteleyn with respect to the embedding restricted to Γv .

To see this, first embed Γv into the interior of the disk so that �v is Kasteleyn, and then add the
edges e′

i one after the other so that they never cross each other.
Thus we obtain a cyclic ordering of the vertices ui , coming from the orientation of the bound-

ary of the disk. It corresponds to a cyclic ordering cv of the half-edges incident with v in the
original graph G. It is important to observe that this cyclic ordering only depends on σv and �v .
The collection c = (cv)v∈V (G) of cyclic orderings is sometimes called a rotation system on the
graph G. As is well known, c gives G the structure of a ribbon graph. It means that G naturally
embeds into an oriented surface S(G, c) obtained as follows: take one oriented d-gon Pv for ev-
ery d-valent vertex and one oriented rectangle Ie ×[0,1] for every edge e (here Ie is an interval).
Then glue Ie × 0 and Ie × 1 to the boundary of the disjoint union of the polygons in the way
prescribed by the structure of the graph G and the cyclic orientations cv . The surface S(G, c) has
boundary, so we let Σ(G,c) be the closed surface obtained from S(G, c) by gluing disks to the
boundary components of S(G, c).

By construction, the blow-up Gσ of G also embeds into Σ(G,c), via an embedding such that
each gadget Γv is contained in the interior of the polygon Pv . The polygon Pv plays the role of
the disk Dv in the statement of the proposition, and �v is Kasteleyn in Dv . This completes the
proof. �



Author's personal copy

344 M. Loebl, G. Masbaum / Advances in Mathematics 226 (2011) 332–349

The genus of the surface Σ(G,c) is called the genus of the ribbon graph (G, c) and denoted
by g(G, c). It is the minimal genus of a closed orientable surface in which the ribbon graph
(viewed as the surface S(G, c)) embeds.

Definition 3.3. We define g(G,σ,�) to be g(G, c) where c is constructed from (σ,�) as in
the proof of Proposition 3.2. It is the minimal genus of a closed orientable surface in which Gσ

embeds so that the gadgets Γv are contained in disjoint disks Dv and the orientations �v are
Kasteleyn with respect to the embeddings Γv ⊂ Dv .

Let g = g(G,σ,�) be the genus of the surface Σ = Σg obtained in the previous proposition.
We now apply the machinery of the previous section to the embedding of Gσ into Σg . Decom-
pose Σg into base polygon R0, bridges Ri , and additional disk R∞, as described in Section 2.
Perform an isotopy of the embedding to make Gσ disjoint from R∞ and to move all gadgets Γv

entirely into R0. (This is possible because every gadget Γv is contained in its own disk Dv .) Let ϕ

denote the special planar drawing of Gσ obtained using the immersion Φ of the highway surface
Sg = Σg\R∞ into the plane. Note that in this drawing, the subgraph consisting of the disjoint
union of the Γv is planarly embedded, and the orientation � of this subgraph is Kasteleyn in the
sense of Definition 3.1.

Lemma 3.4. The orientation � = (�v)v∈V (G) of the union of the gadgets Γv can be extended to
a crossing orientation D0 of Gσ with respect to the drawing ϕ.

Proof. This follows easily from the construction of a crossing orientation in [15, Section 6]. In
fact, the following more general statement is true: if we remove from a planar drawing of a graph
all edges involved in crossings, then any Kasteleyn orientation (as defined in Definition 3.1) of
the remaining planar graph can be extended to a crossing orientation of the original graph. �

Let H = H1(Σg;F2) and let Q be the set of quadratic forms on (H, ·) where · is the in-
tersection form on H . Let Dq = D0(Sq) be the orientations indexed by quadratic forms q ∈ Q

which were constructed in Proposition 2.8 starting with the crossing orientation D0. Recall that
D0 corresponds to the quadratic form q0.

Proposition 3.5. Each Dq is a �-admissible orientation.

Proof. Recall that Dq differs from D0 precisely on the set of edges Sq defined as follows: write
q = q0 + � where � ∈ H ∗, then e ∈ Sq if and only if �([e]) �= 0 ∈ F2. But the edges of the gadgets
Γv are zero in homology, since the gadgets are entirely contained in the base polygon R0. Thus
Sq ∩ E(Γv) = ∅ for all v ∈ V (G). Hence Dq coincides with D0 on the gadgets. Since D0 is
�-admissible by construction, so is every Dq . �

Here is, then, the main result of this section.

Theorem 3.6 (Arf invariant formula for even subgraphs (abstract version)). Let G be a finite
graph. Choose a blow-up Gσ and an orientation � of the gadgets which replaced the vertices
of G in Gσ . Let g = g(G,σ,�) as defined in Definition 3.3. Then the even subgraph polyno-
mial EG(x) is a linear combination of the 4g σ -projected Pfaffians Fσ

Dq
(x) associated to the
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�-admissible orientations Dq indexed by quadratic forms on H = H1(Σg;F2):

EG(x) =
∑
q∈Q

αqFσ
Dq

(x),

where αq = ε0(−1)Arf(q)/2g , ε0 ∈ {±1} is the universal sign coming with the crossing orienta-
tion D0, and

Fσ
Dq

= PfafA
(
Gσ ,Dq

)∣∣
xe=1 ∀e∈E(Gσ )\E(G)

.

Proof. This follows from formula (1) relating EG to PGσ , Theorem 2.11 applied to PGσ , and
Proposition 3.5. �

The following corollary is a more precise version of Theorem 2 in the introduction.

Corollary 3.7 (Arf invariant formula for even subgraphs (embedded version)). If G embeds into
an orientable surface Σ of genus g, then one can choose the blow-up Gσ in such a way that there
exist 4g orientations Di of Gσ such that the even subgraph polynomial EG(x) can be expressed
as a linear combination of the σ -projected Pfaffians Fσ

Di
(x) (i = 1, . . . ,4g). Moreover, for every

v ∈ V (G), each of the orientations Di induces the same orientation on the gadget Γv .

Proof. This follows from Theorem 3.6 using the fact that given an embedding of G into an
orientable surface Σ of genus g, we can choose σ and � in such a way that g(G,σ,�) � g.
Here is a proof of this fact. Choose an orientation of the surface Σ . Since G is embedded in Σ ,
the orientation of Σ induces, at every vertex v ∈ V (G), a cyclic ordering cv of the half-edges
incident with v. Now construct the graph Gσ by choosing a linear ordering σv at each vertex
v which induces this cyclic ordering cv . Then it is easy to see that Gσ also embeds into Σ ,
with each gadget Γv being embedded into a little disk neigborhood Dv of v in Σ . Next, choose
the orientations �v of Γv so that they are Kasteleyn with respect to the embeddings of the Γv

into the oriented disks Dv . Then the surface (with boundary) S(G, c) constructed in the proof
of Proposition 3.2 can be embedded into Σ . By the classification of surfaces, it follows that the
genus of Σ is greater or equal to g(G,σ,�), since g(G,σ,�) is the genus of the closed surface
Σ(G,c) obtained by gluing disks to the boundary components of S(G, c). �
Remark 3.8. An even subgraph E′ ⊂ E(G) can naturally be viewed as a 1-cycle (mod 2) of G,
and hence defines a homology class in H1(G;F2). Let [E′] be the image of this homology class
in H = H1(Σg;F2) under the embedding of G into Σg constructed in Proposition 3.2. If now
E′ corresponds to a perfect matching M of Gσ under the bijection of Proposition 1.2, then the
homology classes [E′] and [M] in H coincide. (This is because every edge in E(Gσ )\E(G)

is entirely contained in the base polygon R0, and hence zero in homology.) Therefore, using
Proposition 2.8, the σ -projected Pfaffian polynomial Fσ

Dq
can be written

Fσ
Dq

(x) =
∑

E′∈E(G)

sign
(
E′,F σ

Dq

) ∏
e∈E′

xe,

where sign(E′,F σ
Dq

) = ε0(−1)q([E′]).
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4. Optimality of the Arf invariant formula

We now give the proof of Theorem 3. Since Theorem 3.6 already gives an upper bound for
cσ,�(G), it remains only to prove the following.

Theorem 4.1. Let G be a finite graph. Choose a blow-up Gσ and an orientation � of the gadgets
which replaced the vertices of G in Gσ . Let g = g(G,σ,�) as defined in Definition 3.3. Assume
there exists k � 1 and a collection of �-admissible orientations Di and coefficients λi ∈ Q
(i = 1, . . . , k) such that the even subgraph polynomial EG(x) can be expressed as

EG(x) =
k∑

i=1

λiF
σ
Di

(x).

Then k � 4g .

Proof. A �-admissible orientation differs from the crossing orientation D0 = Dq0 only on edges
of the original graph G. Let Si ⊂ E(G) be the set of edges where Di differs from D0. The sign
of an even subgraph E′ in Fσ

Di
(x) is

sign
(
E′,F σ

Di

) = sign
(
E′,F σ

D0

)
(−1)|E′∩Si |

= ε0(−1)q0([E′])(−1)�i (E
′), (11)

where we have defined

�i

(
E′) = ∣∣E′ ∩ Si

∣∣ (mod 2). (12)

Now recall that any even subgraph E′ ⊂ E(G) can naturally be viewed as a 1-cycle (mod 2)

of G, and every 1-cycle uniquely arises in this way. This establishes an identification

E(G) ∼= C1(G;F2),

where C1(G;F2) is the space of 1-cycles on G. Hence E(G) is naturally endowed with the
structure of an F2-vector space, called the cycle space of G in graph theory. Moreover, addition
(mod 2) of 1-cycles corresponds to taking symmetric difference of even subgraphs. The function
�i defined in (12) is a linear form �i on this vector space, since

∣∣(E1�E2) ∩ Si

∣∣ = |E1 ∩ Si | + |E2 ∩ Si | (mod 2).

(Here, � denotes symmetric difference.)
Next, we observe that by the construction of the surface Σg in Proposition 3.2, the composite

map

C1(G;F2) → H1(G;F2) → H1(Σg;F2)

induced by the embedding of G into Σg , is onto. In other words, any homology class x ∈
H = H1(Σg;F2) can be realized by some even subgraph of G. Choose a sub-vector space C
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of C1(G;F2) which maps isomorphically onto H . When we think of C as a subset of E(G),
we denote C by C. Clearly, the zero element of C corresponds to the empty subgraph ∅ as an
element of C ⊂ E(G).

For every i = 1, . . . , k, we get a linear form �′
i on H defined as

�′
i (x) = �i

(
E′

x

)
(x ∈ H), (13)

where E′
x ∈ C is the unique element of C which maps to x. Observe that the homology class

[E′
x] ∈ H is equal to x.
Define the quadratic form qi ∈ Q by qi = q0 + �′

i . Putting together (11) and (13), we have
shown the following: for every E′ ∈ C, and for every i = 1, . . . , k, one has

sign
(
E′,F σ

Di

) = ε0(−1)q0([E′])(−1)�i (E
′)

= ε0(−1)q0([E′])(−1)�
′
i ([E′])

= ε0(−1)qi ([E′]). (14)

We are now ready to prove Theorem 4.1. By hypothesis, there exists λi ∈ Q (i = 1, . . . , k)
such that

k∑
i=1

λi sign
(
E′,F σ

Di

) = 1

for all even sets E′ ∈ E(G). Since every homology class x ∈ H is realized by some E′
x belonging

to the set C for which expression (14) is valid, it follows that

k∑
i=1

λiε0(−1)qi (x) = 1 (∀x ∈ H). (15)

Now recall from Lemma 2.10 that

∑
q∈Q

αq(−1)q(x) = 1 (∀x ∈ H), (16)

where αq = 2−g(−1)Arf(q). The following Lemma 4.2 implies that (αq)q∈Q is the unique solution
of (16). Since all αq �= 0, every q ∈ Q must appear in (15). It follows that k � |Q| = 4g , as
asserted. �
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Lemma 4.2. One has

det
(
(−1)q(x)

)
(q,x)∈Q×H

�= 0.

Proof. Recall that any q ∈ Q can be written q = q0 + � for a unique linear form � ∈ H ∗. Thus
we can describe the matrix in question as

(
(−1)q0(x)+�(x)

)
(�,x)∈H ∗×H

.

Multiplying this matrix on the right by the diagonal matrix with entries (−1)q0(x) (x ∈ H ), we
get

(
(−1)�(x)

)
(�,x)∈H ∗×H

.

In this 4g × 4g matrix, the scalar product of any two rows corresponding to linear forms � and �′
is

∑
x∈H

(−1)�(x)+�′(x) =
{

4g if � = �′,
0 if � �= �′.

(Recall that a non-trivial linear form on an F2-vector space takes the value 0 as many times as it
takes the value 1.) Thus the matrix is 2g times an orthogonal matrix. Hence it is non-singular. �

This completes the proof of Theorem 4.1, and (hence) of Theorem 3.
To prove Theorem 4, it only remains to show that given a graph G, the minimal genus

g(G,σ,�), over all choices of (σ,�), is equal to the embedding genus of G. But this was
already shown in the proof of Corollary 3.7. Thus Theorem 4 is proved as well.

5. Even drawings don’t help

Definition 5.1. A drawing ϕ of a graph G on a surface Σ (as defined in Definition 2.1) is called
even if the number of double points κϕ(E′) is even for every even subgraph E′ of G.

It is easy to see that the proof of the Arf invariant formula for even subgraphs in Section 3
goes through if we start with an even drawing of the graph on a surface in place of an embedding.
More precisely, we can replace in Corollary 3.7 the embedding of G with an even drawing of G,
and the result still holds. However, even drawings cannot reduce the number of �-admissible
orientations needed to express EG as a linear combination of σ -projected Pfaffians. This can be
deduced from Theorem 3. The underlying topological reason is stated in the next theorem.

Theorem 5. Let G be a graph. The minimal genus of an orientable surface which supports an
even drawing of G is equal to the embedding genus of G.

Proof. One can prove this result by algebraic-topological arguments using non-degeneracy of
the intersection form on closed surfaces. We omit that proof but remark that the main idea can be
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found in the proof of [3, Lemma 3]. (We thank M. Schaefer for this reference. M. Schaefer has
informed us that Theorem 5 also follows from techniques in [14].)

Here is a proof of Theorem 5 in the spirit of the present paper. Assume we have a drawing
ϕ of G on a surface Σ of genus g. The orientation of Σ induces a cyclic orientation cv of
the half-edges at every vertex v ∈ V (G). As in the proof of Corollary 3.7, we can find (σ,�)

inducing that cyclic orientation at every vertex. If we now assume the drawing is even, the proof
of Theorem 3.6 goes through and we can express EG as linear combination of 4g σ -projected
Pfaffians associated to orientations which are all �-admissible. But by our optimality statement
in Theorem 4.1, we know that one needs at least cσ,�(G) = 4g(G,σ,�) such orientations to do that.
Thus g � g(G,σ,�). Since G can be embedded in the surface of genus g(G,σ,�) constructed
in the proof of Proposition 3.2, it follows that g is greater or equal than the embedding genus
of G, as asserted. �
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