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Abstract

Jaeger’s directed cycle double cover conjecture can be formulated as a problem of existence of

special perfect matchings in a class of graphs that we call hexagon graphs. In this work, we explore

the structure of hexagon graphs. We show that hexagon graphs are braces that can be generated

from the ladder on 8 vertices using two types of McCuaig’s augmentations.

1 Introduction

The long-standing Jaeger’s directed cycle double cover conjecture [1], usually known as DCDC conjec-

ture, is broadly considered to be among the most important open problems in graph theory. A typical

formulation asks whether every 2-connected graph admits a family of cycles such that one may prescribe

an orientation on each cycle of the family in such a way that each edge e of the graph belongs to exactly

two cycles and these cycles induce opposite orientations on e. In order to prove the DCDC conjecture,

a wide variety of approaches have arisen [1, 8], among them, the topological approach. The topological

approach claims that the DCDC conjecture is equivalent to the statement that every cubic bridgeless

graph admits an embedding in a closed orientable surface such that every edge belongs to exactly two

distinct face boundaries defined by the embedding; that is, with no dual loop.

In this work, we formulate the DCDC conjecture as a problem of existence of special perfect matchings

in a class of graphs that we call hexagon graphs. Initially, our motivation for the formulation of the DCDC

conjecture on hexagons are critical embeddings [2, 6], that in particular are embeddings with no dual loop.

The main goal of this work is to discuss recent progress on the study of the structure of hexagon

graphs. The class of hexagon graphs of cubic bridgeless graphs turns out to be a subclass of braces.

The class of braces, along with bricks, are a fundamental class of graphs in matching theory, mainly

because they are building blocks of a perfect matching decomposition procedure; namely of the tight cut
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decomposition procedure [3]. In [5], McCuaig introduced a method for generating all braces starting from

a large base set of graphs and recursively making use of 4 distinct types of operations. In this paper, we

show that hexagon graphs are braces that can be generated from the ladder on 8 vertices using 2 types

of McCuaig’s operations.

In the following, we make precise the notions discussed above and formally state our main result.

1.1 Hexagon graphs

Hexagon graphs are the main ingredient and the center of attention of this work. In this section, we

define the class of hexagon graphs, look over some of its fundamental properties and formulate the

DCDC conjecture as a question about this new class of graphs. Despite our original motivation for this

new formulation of the DCDC conjecture are critical embeddings, in this work we do not introduce this

notion, and we present the details and proofs regarding the formulation using rotation systems of graphs,

a well known and convenient combinatorial representation of embeddings on closed orientable surfaces [7,

§3.2]. The advantage of using rotation systems is that we avoid topological arguments and present the

equivalence to the DCDC conjecture in a purely combinatorial way.

We refer to the complete bipartite graph K3,3 as a hexagon and say that a bipartite graph H has

a hexagon h if h is a subgraph of H. For a graph G and a vertex v of G, let NG(v) denote the set of

neighbors of v in G.

Definition 1 (Hexagon Graphs). Let G be a cubic graph with vertex set V and edge set E. A hexagon

graph of G is a graph H obtained from G following the next rules:

1. We replace each vertex v in V by a hexagon hv of H so that for every pair u, v ∈ V , if u 6= v, then

hu and hv are vertex disjoint. Moreover, V (H) = {V (hv) : v ∈ V }.

2. For each vertex v ∈ V, let {vi : i ∈ Z6} denote the vertex set of hv and {vivi+1, vivi+3 : i ∈ Z6} its

edge set. With each neighbor u of v in G, we associate an index iv(u) from the set {0, 1, 2} ⊂ Z6 so

that if NG(v) = {u,w, z}, then iv(u), iv(w), iv(z) are pairwise distinct.

3. See Figure 1. Let X = ∪v∈V {v2i : i ∈ Z6} and Y = ∪v∈V {v2i+1 : i ∈ Z6}. We replace each edge

uv in E by two vertex disjoint edges euv, e′uv so that if both viv(u) , uiu(v) belong to either X or Y ,

then euv = viv(u)uiu(v)+3, e′uv = viv(u)+3uiu(v) . Otherwise, euv = viv(u)uiu(v) , e
′
uv = viv(u)+3uiu(v)+3.

Moreover, E(H) = {E(hv) : v ∈ V } ∪ {euv, e′uv : uv ∈ E}.

We say that hv is the hexagon of H associated with the vertex v of G and that {hv : v ∈ V } is the set

of hexagons of H. For uv ∈ E, we say that hu and hv are hexagon-neighbors in H. We shall refer to the

set of edges
⋃
v∈V {vivi+3 : i ∈ Z6} as the set of red edges of H, to the set of edges {euv, e′uv : uv ∈ E} as

the set of white edges of H and finally, to the set of edges
⋃
v∈V {vivi+1 : i ∈ Z6} as the set of blue edges

of H (see Figure 1). Moreover, we shall say that a perfect matching of H containing only blue edges is a

blue perfect matching.

Observation 1. Hexagon graphs of cubic graphs are bipartite.

Proof. Let H be a hexagon graph of a cubic bridgeless graph. Let X, Y be the sets defined in Definition 1,

item 3. Note that {X,Y } is a partition of V (H) and that there are no edges connecting vertices of the

same partition class.

The following two observations are straightforward.
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Figure 1: Local representation of the hexagon-neighborhood of a hexagon hv in a hexagon graph H of

a cubic graph G. The hexagon hv is associated with vertex v, where NG(v) = {u,w, z}. Red edges are

depicted as red lines, blue edges are depicted as blue lines and white edges as black lines. The set X

is represented by filled-in white vertices and the set Y by filled-in black vertices. Moreover, iv(u) = 0,

iv(w) = 1, iv(z) = 2, iu(v) = 0, iw(v) = 2 and iu(v) = 2.

Observation 2. Let G be a cubic graph and H be a hexagon graph of G. The following properties hold.

1. H is a 4-regular graph.

2. No white edge of H connects two vertices of the same blue hexagon.

3. Both, the set of red edges of H and the set of white edges of H form a perfect matching of H.

4. Let |V (G)| denote the cardinality of V (G). There are 2|V (G)| distinct blue perfect matchings.

Observation 3. If H and H ′ are hexagon graphs of a cubic graph G, then H and H ′ are isomorphic.

Rotation systems and embeddings without dual loops

Recall that our goal in this section is to reformulate the following statement: every cubic bridgeless

graph admits an embedding on a closed orientable surface without dual loops. For this purpose, we now

introduce a combinatorial representation of embedding of graphs on closed orientable surfaces; namely

rotation systems.

Let G be a graph. For each v ∈ V (G), let πv be a cyclic permutation of the edges incident with v.

A collection π = {πv : v ∈ V (G)} is called a rotation system of G. The proof of the following statement

can be found in [7, §3.2].

Theorem 1. Let π be a rotation system of a graph G. Then π encodes an embedding of G on a closed

orientable surfaces with set of face boundaries

{e1e2 · · · ek : ei = vivi+1 ∈ E(G), πvi+1(ei) = ei+1, ek+1 = e1 and k minimal}. (1)

Moreover, the converse holds. That is, every embedding of G on a closed orientable surface defines a

rotation system π of G where the set of face boundaries is given by the set described in (1).

In Lemma 2, we state that blue perfect matchings of hexagon graphs of a cubic graph G define

embeddings of G on closed orientable surfaces with distinguished set of face boundaries, and vice versa.

The proof is based on a natural bijection between blue perfect matchings and rotation systems. We first

need to make an observation.
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Observation 4. Let M be a blue perfect matching of H and let W be the set of white edges of H. Each

cycle C in M∆W induces a subgraph in G defined by the set of edges {uv ∈ E(G) : euv ∈ C or e′uv ∈ C}.

Theorem 2. Let G be a cubic graph, H be the hexagon graph of G and W be the set of white edges of

H. Each blue perfect matching M of H encodes an embedding of G on a closed orientable surface with a

set of face boundaries, the set of subgraphs of G induced by the cycles in M∆W . Moreover, the converse

holds. That is, each embedding of G on a closed orientable surface defines a blue perfect matching M of

H, where the set of subgraphs of G induced by all cycles in M∆W coincides with the set of face boundaries

of the embedding.

Proof. It suffices to prove that there is a bijective function f from the set of blue perfect matchings of H

to the set of rotation systems of G such that for every blue perfect matching M of H, the set of subgraphs

of G induced by the cycles in M∆W equals the set of subgraphs described in (1) defined by the rotation

system f(M) = π.

Let v ∈ V (G), NG(v) = {u,w, z}, and without loss of generality (by Observation 3) we assume that

iv(u) = 0, iv(w) = 1 and iv(z) = 2. Let M be a blue perfect matching of H. The restriction of M to

hv is either {v0v1, v2v3, v4v5} or {v1v2, v3v4, v5v0}. If the restriction is {v0v1, v2v3, v4v5}, then the cyclic

permutation of the edges incident with v in the rotation system f(M) = π of G is πv = (uv wv zv).

Otherwise, the cyclic permutation is given by πv = (uv zv wv). It is a routine to check that f is the

desired bijection.

The following result is crucial for our approach.

Proposition 3. Let G be a cubic graph, H be the hexagon graph of G, M be a blue perfect matching of

H and W be the set of white edges of H. The embedding of G encoded by M has a dual loop if and only

if there is a cycle in M∆W that contains the end vertices of a red edge.

Proof. An embedding of G has a dual loop if and only if there is an edge uv ∈ E(G) that belongs to

exactly one face boundary, say C ′. The face boundary C ′ is a subgraph of G induced by a cycle C of

M∆W . We have C ′ is the only subgraph induced by a cycle of M∆W that contains uv if and only if euv

and e′uv belong to C. The lemma follows.

Motivated by Proposition 3, we shall say that a blue perfect matching M is safe if no cycle of M∆W

contains the end vertices of a red edge. In Corollary 4 we establish the formulation of the DCDC

Conjecture on hexagon graphs. Note that the result of Corollary 4 follows directly from Theorem 2 and

Proposition 3.

Corollary 4. A cubic graph G has a directed cycle double cover if and only if its hexagon graph H admits

a safe perfect matching.

1.2 Braces

A brace is a simple (that is, no loops and no multiple edges), connected, bipartite graph on at least six

vertices, and with a perfect matching such that for every pair of nonadjacent edges, there is a perfect

matching containing the pair of edges. In [5], McCuaig presented a method for generating braces. He

showed that all braces can be constructed from a base set using four operations. In the following we

describe McCuaig’s method for generating braces.

Let H be a bipartite graph and x be a vertex of H of degree at least 4. Let N1, N2 be a partition of

NH(x) such that |N1|, |N2| ≥ 2. Let {x1, v, x2} be a set of vertices such that {x1, v, x2}∩V (H) = ∅. The
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expansion of x to x1vx2, or briefly an expansion of x is the operation composed of the following three

steps: (i) delete x, (ii) add the new path x1vx2, and (3) connect every vertex of N1 (N2, respectively) to

the vertex x1 (x2, respectively). For i ∈ {1, 2}, we say that Ni is the partition associated with xi. Note

that if H ′ is a graph obtained from H by the expansion of a vertex, then H ′ is also bipartite.

Augmentations. If H ′ is a bipartite graph obtained from H by adding a new edge, then we say that H ′

is obtained from H by a type-1 augmentation. Let x and w be two vertices in the same partition class of

H such that x has degree at least 4. If H ′ is obtained from H expanding x to x1vx2 and adding the new

edge vw, then we say that H ′ is obtained from H by a type-2 augmentation. Let x and y be two vertices

of H of distinct partition classes such that dH(x), dH(y) ≥ 4. Let H ′ be the bipartite graph obtained

from H by expanding x and y to x1vx2 and y1uy2 respectively, and adding the new edge vu. If x and y

are not connected in H, the operation for obtaining H ′ from H is called a type-3 augmentation, otherwise

it is called a type-4 augmentation.

(a) type-1 augmentation

ww

x x1 x2v

(b) type-2 augmentation

Figure 2: Simple augmentations

If H ′ is obtained from H by a type i augmentation for some i ∈ {1, 2, 3, 4}, then we say that H ′ is

obtained from H by an augmentation. If i ∈ {1, 2}, then we say that H ′ is obtained from H by a simple

augmentation (see Figure 2).

Let B be the infinite set consisting of all bipartite Möbius ladders, ladders and biwheels (see Figure 3).

M6 M10 M14

(a) Möbius ladders: M6,M10,M14,M18, . . .

L12 L16L8

(b) Ladders: L8, L12, L16, L20, . . .

B10 B12 B14

(c) Biwheels: B10, B12, B14, B16, . . .

Figure 3: The base set B.

Theorem 5 (McCuaig, 1998). Let H be a bipartite graph. Then H is a brace if and only if there exists

a sequence H0, H1, . . . ,Hk of bipartite graphs such that H0 ∈ B, Hi may be obtained from Hi−1 by an

augmentation for each i ∈ {1, . . . , k} and Hk = H.

1.3 Main results

The main results of this paper are the following.
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Theorem 6. Let G be a cubic graph. Then the hexagon graph H of G is a brace if and only if G is

bridgeless.

Proof. Let B, W , and R denote the set of blue, white, and red edges, respectively. Moreover, a blue edge

is denoted by b, a white edge by w, and a red edge by r. Each pair of disjoint edges, {b, b′}, {r, r′}, or

{b, r}, can be simply extended to a perfect matching of H.

We note that each component of W ∪ R is a cycle on four vertices, a square. Let w,w′ be a pair of

disjoint white edges. The edges w,w′ belong to the same square of W ∪R, or to two different squares of

W ∪R. In either case w,w′ can be naturally extended to a perfect matching of H. Similarly, each edge

of a pair w, r of disjoint white and red edges belongs to different squares of W ∪R, and therefore it can

be completed into a perfect matching of H.

Finally we consider a pair b, w of disjoint white and blue edges. If the hexagon with b does not contain

an end vertex of w, then it is not difficult to extend b, w to a perfect matching of H. Hence, let hu be

the hexagon that contains b and an end vertex of w, and let hv be the hexagon that contains the other

end vertex of w. Let b = uiui+1, w = ukvj , where i, j, k ∈ Z6.

If k /∈ {i+ 3, i+ 4}, then b, w can be completed into a perfect matching of H that contains the edges

b, w, and ui+3ui+4.

Hence, without loss of generality we can assume that k = i + 3. Let euv = uivj+3 and euz = ui+1zl

(notation as in Definition 1.3 ), where z is the neighbor of v in G such that the white edge with an end

vertex ui+1 has an end vertex in hz, and l ∈ Z6. Given that in G, edges uv, uz have a common end vertex

u represented by hexagon hu, edge b = uiui+1 can be seen as the transition between uv, uz, while ukuk+1

can be seen as this transition reversed.

Now let G be bridgeless. We observe that two adjacent edges in a cubic bridgeless graph belong to a

common cycle. Let C be such a cycle for uv, uz.

The two possible orientations of C correspond to two disjoint cycles Cb, Cw in H, where b ∈ Cb and

w ∈ Cw; they contain the transition and transition reversed (between uv, uz), respectively. Let Mb be

the perfect matching of Cb consisting of all blue edges and Mw be the perfect matching of Cw consisting

of all white edges. In particular, b ∈Mb and w ∈Mw. Since each hexagon of H is intersected by Cb∪Cw
either in a pair of disjoint blue edges, or in the empty set, Mb∪Mw can be extended to a perfect matching

of H.

On the other hand, if G has a bridge e = {u, v}, then let V1 be the component of G− e containing u.

Any perfect matching of G extending b, w must induce a perfect matching of ∪x∈V1
hx \ {ui+3}, but this

set consists of an odd number of vertices and thus no perfect matching containing b, w can exist.

Theorem 7. Let G be a cubic bridgeless graph and L8 denote the ladder on 8 vertices. There is a

sequence H0, H1, . . . ,Hk of bipartite graphs such that H0 = L8, Hi can be obtained from Hi−1 by a

simple augmentation for each i ∈ {1, . . . , k} and Hk is the hexagon graph of G.

The crucial ingredients in the proof of Theorem 7 are odd ear decompositions of cubic bridgeless

graphs. We now give a rough sketch of the proof. Let G be a cubic bridgeless graph, H be its hexagon

graph, and (G0, Gi, Pi)
l be an odd ear decomposition of G (see Subsection 3.1). With each intermediate

subgraph Gi of the odd ear decomposition of G we associate an auxiliary graph H ′i. In particular, with

(the cycle) G0 we associate the ladder L8. For each i ∈ {1, . . . , l}, the auxiliary graph H ′i contains the

hexagons hv of H such that v has degree 3 in Gi. Hence, H ′l contains all hexagons of H and indeed

(by construction) it turns out to be isomorphic to H. The proof is based on the fact that for each

i ∈ {1, . . . , l}, it is possible to generate H ′i from H ′i−1 by a sequence of simple augmentations.
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The rest of the paper is devoted to prove Theorem 7. The proof of Theorem 7 is divided into two

parts. The first part is the generation of hexagon graphs from square graphs and the second is the

construction of square graphs from the ladder on 8 vertices. In Section 2, we introduce the concept of

square graphs and prove that hexagon graphs can be obtained from square graphs by a short sequence

of simple augmentations. Section 3 and Section 4 focus on the construction of square graphs.

2 Square graphs

A square is a complete bipartite graph on 4 vertices, namely K2,2. We say that a bipartite graph has a

square s if it contains s as a subgraph. Next we define square graphs.

Definition 2 (Square graphs). Let G be a cubic bridgeless graph with vertex set V and edge set E. Let

M be a perfect matching of G. An M -square graph of G is a bipartite graph Q with neither loops nor

multiple edges satisfying the following properties:

1. For each vertex v in V, the graph Q has a square sv. If u, v ∈ V are such that u 6= v, then sv and

su are vertex disjoint subgraphs of Q. Moreover, V (Q) = {V (v) : v ∈ V }.

2. The set of edges of Q is given by

E(Q) = {E(sv) : v ∈ V } ∪ {uv : uv ∈ E},

where {uv : uv ∈ E} is defined such that the following conditions hold:

(a) For each edge uv ∈ E, there are edges eu in E(su) and ev in E(sv) such that the subgraph of

Q induced by the set of edges {eu, ev}∪uv is isomorphic to K2,2. In particular, |uv| = 2. The

edges eu and ev are called the supporting edges of uv in su and sv, respectively.

(b) Let v ∈ V and NG(v) = {u,w, z}. If uv ∈ M , then the supporting edges of wv and zv in sv

are vertex disjoint.

We say that sv is the square associated with vertex v and that {sv : v ∈ V } is the set of squares of Q.

For each uv ∈ E, if uv ∈ M , then we say that (su, sv) is a pair of matched squares of Q. Moreover, the

subset of edges uv is called the projection of uv in Q. We usually denote by {vi : i ∈ Z4} the vertex set

of the square sv and by {vivi+1 : i ∈ Z4} its edge set.

Note that the graph obtained by contracting each square of Q to a single point and then by deleting

multiple edges is precisely G. The following is a natural observation about square graphs.

Observation 5. For every connected component C of G−M (C is a cycle since G is cubic), there exists

a ladder L on 4 · |C| vertices in the set of connected components of Q − {e : e ∈ M} such that v is a

vertex of C if and only if sv is a square of L.

In Lemma 8, we state that hexagon graphs can be generated from square graphs using simple aug-

mentations.

Lemma 8. Let G be a cubic bridgeless graph, M be a perfect matching of G and Q be an M -square graph

of G. Then there is a sequence of bipartite graphs H0, H1, . . . ,Hl such that H0 = Q, Hi may be obtained

from Hi−1 by a simple augmentation for each i ∈ {1, . . . , l} and Hl is the hexagon graph of G.

7



Proof. We first describe an operation composed of a sequence of simple augmentations which we apply

to each pair of matched squares in order to generate a pair of hexagon-neighbors; we shall call this

operation a double augmentation. Let (su, sv) be a pair of matched squares of Q. By definition, all

distinct configurations of the supporting edges of uv in su and sv, respectively, are the ones depicted in

Figure 4.

svsu

(a)

su sv

(b)

su
sv

(c)

Figure 4: Possible locations of the supporting edges of uv in su and sv for a pair (su, sv) of matched

squares of Q. Supporting edges are depicted by thick lines.

We assume that the supporting edges of uv for the pair (su, sv) are configured as in Figure 4(a).

Consider the vertex labeling depicted in Figure 5(a). Next, we describe the aforementioned operation

with input the pair (su, sv).

Double augmentation on (su, sv): (see Figure 5) [step 0:] addition of the two new edges u1v0 and u2v3.

[step 1:] expansion of v0 to v10vv
2
0 in such a way that the partition associated with v20 is {u1, u3} and

with v10 is {v1, v3, z1} and addition of the new edge vv2. [step 2:] addition of the new edge vu2. [step 3:]

expansion of u2 to u12uu
2
2 in such a way that the partition associated with u12 is {u1, x2, u3} and with u22

is {v1, v, v3} and addition of the new edge uv20 . [step 4:] addition of the new edge uu0. We observe that

in steps 1 and 3 respectively, expansion of v0 and expansion of u2 respectively are allowed given that the

degrees are 5 and 6 respectively; recall that degree at least 4 is required for expansion; see Subsection 1.2.

In case that the supporting edges of uv for the pair (su, sv) are configured as in Figure 4(b) or as

in Figure 4(c) respectively (set the same vertex labeling), if we replace the edges added at the step 0

of the double augmentation described above by u2v3, u3v0 and u2v1, u3v0 respectively, then the local

configuration obtained is the one depicted in Figure 5(b). Therefore, if we continue applying steps 1, 2,

3 and 4 as before we obtain the local configuration depicted in Figure 5(f).

We claim that the graph obtained from Q by performing a double augmentation on every pair of

matched squares is a hexagon graph of G. The disjoint subsets of vertices {u0, u3, u1, u12, u, v20} and

{v1, v2, v3, v10 , v, u22} induce hexagons. Let hu and hv denote them respectively. The claim follows by

setting {u0u3, u1u12, uv20} and {v1v2, v3v10 , vu22} to be the subsets of red edges in hu and hv, respectively

(see Figure 5(f)).

To conclude, since steps 0, 2 and 4 correspond to type-1 augmentations, and steps 1 and 3 correspond

to type-2 augmentations, we have that a double augmentation on a pair of matching related squares is

composed of a sequence of simple augmentations.

3 Construction of square graphs

In order to prove Theorem 7, by Lemma 8 it suffices to show that we can construct an M -square graph of

G, for some perfect matching M of G, from the ladder on 8 vertices using simple augmentations. In this

8
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(a) Initial configuration

x1 x2
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w1 w2

z2z1

svsu

v2

v3

u2

u3

v1

v0

u0

u1

(b) step 0

x1 x2

y2y1

w1 w2

z2z1

v2

v3

u2

u0

u1

vu3

v20

v10

v1

(c) step 1

x1 x2

y2y1

w1 w2

z2z1

v2

v3

u2

u0

u1

vu3 v10

v1

v20

(d) step 2

x1 x2

y2y1

w1 w2

z2z1

v2

v3u0

u1

vu3 v10

v1u22uu12

v20

(e) step 3

x1 x2

y2y1

w1 w2

z2z1

v2

v3u0

u1

vu3 v10

v1u22uu12

v20

(f) step 4

Figure 5: Double Augmentation on (su, sv). In subfigure (f), red edges are depicted by red lines.

section we develop a method to construct square graphs following an ear decomposition of the underlying

cubic bridgeless graph G and using simple augmentations.

3.1 Odd ear decomposition of a cubic bridgeless graph

Let G be a graph. We say that a path, or a cycle of G, is even (odd respectively) if it has an even

(odd respectively) number of edges. An odd ear decomposition of G, denoted by (G0, Gi, Pi)
l, consists

of a sequence of subgraphs G0, G1, . . . , Gl and a sequence of odd paths P1, . . . , Pl of G such that G0 is

an even cycle of G, Gl = G and for each i ∈ {1, . . . , l} the subgraph Gi is obtained from Gi−1 joining

two vertices αi and βi in V (Gi−1) by a path Pi, where Pi is such that V (Pi) ∩ V (Gi−1) = {αi, βi} and

E(Pi) ∩ E(Gi−1) = ∅. It is folklore that every edge of a cubic bridgeless graph is contained in a perfect

matching and hence, the class of cubic bridgeless graph is a subclass of the class of 1-extendable graphs.

In addition, every 1-extendable graph admits an odd ear decomposition [4, §5.4].

Let G be a cubic bridgeless graph and (G0, Gi, Pi)
l be an odd ear decomposition of G. We say that a

perfect matching M of G is absolute in (G0, Gi, Pi)
l if the restriction of M to E(Gi) is a perfect matching

of Gi for every i ∈ {0, 1, . . . , l}. The next observation is straightforward.

Observation 6. For every odd ear decomposition (G0, Gi, Pi)
l of a cubic bridgeless graph G, there exists

a perfect matching M of G that is absolute in (G0, Gi, Pi)
l.

In the rest of the paper, we deal only with perfect matchings that are absolute in a given odd ear

decomposition (G0, Gi, Pi)
l. Let i ∈ {1, . . . , l} and let Vj(Gi) denote the subset of vertices of V (Gi) that

have degree j in Gi for each j ∈ {2, 3}. Let u, v ∈ V3(Gi) and P be a path of Gi with end vertices u, v

such that V (P )∩V3(Gi) = {u, v}. In other words, every inner vertex of P belongs to V2(Gi). We say that

P is a (u, v)-path of Gi and usually denote P by p(u, v). Note that there may exist multiple (u, v)-paths.

We shall denote by P(Gi) the set of all (u, v)-paths for all u, v in V3(Gi).

9



We note that if v is a vertex in V3(Gi), then there are three (not necessarily distinct) vertices x, y, z

in V(Gi), such that p(x, v), p(y, v), p(z, v) ∈ P(Gi). We say that the set {x, y, z} is the set of pseudo-

neighbors of v in Gi.

Observe that if M is a perfect matching of G and vw ∈ M , then there is a unique path P ∈
{p(x, v), p(y, v), p(z, v)} such that vw ∈ E(P ). We refer to P as the matching-path of v in Gi (with

respect to M). If vw is not in E(P ), then P is called a cycle-path of v in Gi. Note that a path p(u, v) in

P(Gi) could be both, a matching-path of v and a cycle-path of u. However, since M is a perfect matching

that is absolute in (G0, Gi, Pi)
l, the path Pi = p(αi, βi) ∈ P(Gi) is always a cycle-path of both αi and βi

in Gi (see Figure 9(a)).

In Subsection 3.2, we generalize the definition of square graphs of a cubic graph G to the intermediate

graphs G0, G1, . . . , Gl associated with an odd ear decomposition of G.

3.2 Ear square graphs

In this section and in the rest of the paper, G is a cubic bridgeless graph, (G0, Gi, Pi)
l is an odd ear

decomposition of G and M is a perfect matching of G that is absolute in (G0, Gi, Pi)
l.

Definition 3 (Ear square graphs). For each i ∈ {1, . . . , l}, a (Gi,M)-ear square graph is a bipartite

graph Qi with neither loops nor multiple edges that satisfies the following properties:

1. For each vertex v in V3(Gi), the graph Qi has a square sv. For every u,v in V3(Gi) with u 6= v, the

squares sv and su are vertex disjoint subgraphs of Qi. Moreover, V (Qi) = {V (sv) : v ∈ V3(Gi)}.

2. The set of edges of Qi is given by

{E(sv) : v ∈ V3(Gi)}
⋃̇

p(u,v)∈P(Gi)

p(u, v)

where {p(u, v) : p(u, v) ∈ P(Gi)} is defined such that the following conditions hold:

(a) For each p(u, v) ∈ P(Gi), we have |p(u, v)| = 2, and there are edges eu in E(su), ev in E(sv)

such that the subgraph of Qi induced by the set of edges {eu, ev}∪p(u, v) is isomorphic to K2,2.

The edges eu and ev are called the supporting edges of p(u, v) in su and sv, respectively.

(b) Let v be a vertex in V3(Gi) and {x, y, z} be its set of pseudo-neighbors. If p(x, v) is the

matching-path of v in Gi, then the supporting edges of p(v, y) and p(v, z) in sv are vertex

disjoint (see Figure 6).

(c) Elements in {p(u, v) : p(u, v) ∈ P(Gi)} are pairwise disjoint.

For every p(u, v) ∈ P(Gi), the set p(u, v) is said to be its projected (u, v)-path in Qi. If p(u, v) is the

matching-path of v in Gi, we say that p(u, v) is the projected matching-path of sv in Qi.

Since V3(Gl) = V (G), the following proposition follows from Definition 2 and Definition 3.

Observation 7. A graph H is a (Gl,M)-ear square graph if and only if H is an M -square graph.

In Lemma 9 we formalize the construction of square graphs using ear square graphs and simple

augmentations. This lemma is proved in Section 4.

Lemma 9 (Construction of square graphs). Let G be a cubic bridgeless graph, (G0, Gi, Pi)
l be an odd

ear decomposition of G and M be a perfect matching of G that is absolute in (G0, Gi, Pi)
l. Let L8 denote

the ladder on 8 vertices (see Figure 3(b)). The following two properties hold.
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v

x

y

z

(a)

sx

p(v, y)

p(v, x)

sy

sz

p(v, z)

sv

(b)

sx

p(v, y)

sy

sz

p(v, x)

sv

p(v, z)

(c)

sx

p(v, y)

sy

sz

p(v, x)

sv

p(v, z)

(d)

sx

p(v, y)

sy

sz

p(v, z)

p(v, x)

sv

(e)

Figure 6: Local representation of Gi and a (Gi,M)-ear square graph of Gi. In subfigure (a), we depict

a vertex v ∈ V3(Gi) with x, y, z ∈ V3(Gi) its pseudo-neighbors and p(v, x) the matching-path of v in Gi.

Dashed edges represent edges from M . In subfigures (b)-(e), we depict all the allowed locations of the

supporting edge of p(v, x) in sv in a (Gi,M)-ear square graph of Gi. In each subfigure the supporting

edge is depicted by a thicker line.

1. A (G1,M)-ear square graph Q1 can be generated from L8 using type-1 augmentations.

2. Let i ∈ {2, . . . , l} and Qi−1 be a (Gi−1,M)-ear square graph. Then a (Gi,M)-ear square graph Qi

can be generated from Qi−1 using a sequence of simple augmentations.

Note that Lemma 9 along with Observation 7 and Lemma 8 imply Theorem 7.

4 Proof of Lemma 9

In this section, G is a cubic bridgeless graph, (G0, Gi, Pi)
l is an odd ear decomposition of G and M is a

perfect matching of G that is absolute in (G0, Gi, Pi)
l. Let L8 denote the ladder on 8 vertices. Moreover,

for each i ∈ {1, . . . , l}, let Qi denote a (Gi,M)-ear square graph.

In what follows we enunciate two natural properties about ear square graphs. The result of Proposi-

tion 10 follows directly from Definition 3.

Proposition 10. For every i ∈ {1, . . . , l}, each square sv in Qi with V (sv) = {vj : j ∈ Z4} is such that

there exists a unique j ∈ Z4 such that dvj = dvj+1
= 4 and dvj+2

= dvj+3
= 3.

Proposition 11. Let p(x, y) and p(w, z) be paths in P(Gi). Let p(x, y) be the projected path of p(x, y)

and p(w, z) be the projected path of p(w, z) in Qi. Then the subgraph S of Qi with a set of edges

p(x, y) ∪ p(w, z) ∪ E(sx ∪ sy ∪ sw ∪ sz) is isomorphic to one of the 9 graphs (configurations) depicted in

Figure 7.

Proof. We first suppose that |{x, y, w, z}| = 4. Then x, y, z, w ∈ V3(Gi) are all distinct and the squares

sx, sy, sw, sz in Qi are vertex disjoint. Therefore, S is isomorphic to the graph depicted in Figure 7(a).

We now suppose that |{x, y, w, z}| = 3. It means that the paths p(x, y) and p(w, y) have one common

end vertex. Without loss of generality we suppose that x = w, and then, sx, sy and sz are vertex disjoint.

In the subgraph S three distinct situations depending on the location of the supporting edges ex and ew

of p(x, y) and p(w, z) in sx can arise:

a.1) either |ex ∩ ew| = 1, or

a.2) ex = ew, or

a.3) ex ∩ ew = ∅.
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z1 z2

x2

y2

x1

y1

w2w1

(a) Configuration 1

w2

x1=w1

y2 y1 z2 z1

x2

(b) Configuration 2

x2=w2

z1 z2

x1=w1

y1 y2

(c) Configuration 3

x1

x2 w1

w2

y2 y1 z2 z1

(d) Configuration 4

z1

x2 x1=w1

w2

y1z2=y2

(e) Configuration 5

x1

x2

y1

w1

w2

z2

z1y2

(f) Configuration 6

y1

w1=x1

x2

w2

z2

z1y2

(g) Configuration 7

y2 z1

x1=w1 x2=w2

y1 z2

(h) Configuration 8

x2=w2

y2=z2y1=z1

x1=w1

(i) Configuration 9

Figure 7: In (a) is depicted the unique subgraph that arises when vertices x, y, z, w ∈ V3(Gi) are all

distinct. From (b) to (d) the three possible subgraphs that arise when |{sx, sy, sw, sz}| = 3. Figures from

(e) to (i) depict all the possible situations when |{sx, sy, sw, sz}| = 2.

If situation a.1) holds, then S is isomorphic to configuration 2, see Figure 7(b). If situation a.2) holds,

then S is isomorphic to configuration 3, see Figure 7(c), and if situation a.3) holds, then S is isomorphic

to configuration 4, see Figure 7(d).

We finally suppose that |{x, y, w, z}| = 2. Without loss of generality we assume that x = w and

y = z. If p(x, y) = p(w, z), then S is isomorphic to the graph depicted in Figure 7(i), this graph is called

configuration 9. Otherwise, in the graph S several distinct situations depending on the location of the

supporting edges ex and ew of p(x, y) and p(w, z) in sx and of the supporting edges ey and ez of p(x, y)

and p(w, z) in sy may arise:

b.1) either |ex ∩ ew| = 1 and |ey ∩ ez| = 1, or

b.2) ex ∩ ew = ∅ and ey ∩ ez = ∅, or

b.3) |ex ∩ ew| = 1 and ey ∩ ez = ∅, or

b.4) ex = ew and ey ∩ ez = ∅, or

b.5) |ex ∩ ew| = 1 and ey = ez, or ex = ew and ey = ez.

If situation b.1), b.2), b.3) or b.4) holds, then S is isomorphic to configuration 5, 6, 7, or 8, respectively.

Those configurations are depicted in Figure 7). Situations described in b.5) do not occur in Qi given that

Qi does not have multiple edges. We clarify the last statement in the following paragraph.
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If we suppose that |ex ∩ ew| = 1 or ex = ew then, there exists a vertex, without loss of generality we

assume that such a vertex is x1 ∈ ex ∩ ey such that x1y1 and x1z1 are edges of S. We recall that Qi does

not have multiple edges. Since ey = ez, we have y1 = z1 and S has a double edge, a contradiction.

4.1 Generating ear square graphs

This section is devoted to prove Lemma 9.

Proof of Lemma 9, part 1

We need to prove that we can generate a (G1,M)-ear square graph from L8 using type-1 augmentations

(addition of new edges). We consider the vertex-labeling of L8 depicted in Figure 8(a). Let p(u, v), p(x, y)

and p(w, z) be the only three paths in P(G1), where u = x = w, v = y = z and P1 = p(u, v). We have

that G1 satisfies one of the following properties:

1) either p(x, y) is the matching-path of v and of u in G1, or

1′) p(w, z) is the matching-path of v and of u in G1, or

2) p(x, y) is the matching-path of v in G1 and p(w, z) is the matching-path of u in G1, or

2′) p(w, z) is the matching-path of v in G1 and p(x, y) is the matching-path of u in G1.

By symmetry, it suffices to prove that for each i ∈ {1, 2}, we can generate from L8 a (G1,M)-ear square

graph, where G1 and M satisfies i). We first claim that if 1) holds, then the bipartite graph obtained from

L8 by adding the new edges v0u2 and v3u1 is a (G1,M)-ear square graph (see Figure 8(b)). The validity

of this claims follows from considering {v0u2, v3u1} to be the projected path of p(x, y), {v2u2, v3u3} to

be the projected path of p(w, z) and {v0u0, v1u1} to be the projected path of p(u, v).

Secondly, we claim that if 2) holds, then the bipartite graph obtained from L8 by adding the new

edges v1u3 and v0u2 is a (G1,M)-ear square graph (see Figure 8(c)). In this case, if we let {v0u2, v3u1}
be the projected path of p(u, v), {v2u2, v3u3} be the projected path of p(w, z) and {v0u0, v1u1} be the

projected path of p(x, y), then the claim follows.

sv

su

v3

v1 v2

v0

u2

u3u0

u1

p(u, v)

L8

p(u, v)

(a) A ladder L8 on 8 vertices

sv

su

v3

v1 v2

v0

u2

u3u0

u1

Q1 p(x, y)

p(w, z)p(u, v)

(b) G1-ear square graph

sv

su

v3

v1 v2

v0

u2

u3u0

u1

Q1

p(u, v)

p(w, z)

p(x, y)

(c) G1-ear square graph

Figure 8: Generation of Q1 from L8.

Proof of Lemma 9, part 2

For each i ∈ {2, . . . , l}, we need to show that from a (Gi−1,M)-ear square graph we can generate

a (Gi,M)-ear square graph using simple augmentations. For this purpose, the idea is to make local
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changes; we basically replace the projected paths in Qi−1 of the paths that contain αi and βi by two new

squares sαi , sβi , and by the new projected paths incident with them. Moreover, we modify neither any

square in Qi−1, nor the position of the supporting edges of the projected paths incident with them (see

Figure 9). Here, αi, βi denote the end vertices of the path Pi from (G0, Gi, Pi)
l.

Let p(x, y) and p(w, z) be the projected paths in Qi−1 such that αi belongs to V (p(x, y)) in Gi−1

and βi belongs to V (p(w, z)) in Gi−1.

Gi

Gi−1

βi

x

y

αi

y′
ỹ

w

z

Pi

(a) Pi =: αi · · ·βi is a cycle-path

of αi and βi in Gi. Paths p(x, y)

and p(w, z) contain αi and βi in

Gi−1.

sw

sy′

sysỹ

Qi−1 sx

sz
p(w, z)

p(x, y)

(b) p(x, y) and p(w, z) are the pro-

jected paths of p(x, y) and p(w, z) in

Qi−1.

sw

sy′

sysỹ

Qi−1 sx

sz

Qi

sαi

sβi

(c) (Gi,M)-ear square graph. Squares

sαi and sβi are constructed and

also the projected paths incident with

them.

Figure 9: p(x, y) and p(w, z) are the projected paths in Qi−1 such that αi ∈ V (p(x, y)) and βi ∈
V (p(w, z)) inGi−1. In (a), dashed edges represent the perfect matchingM that is absolute in (G0, Gi, Pi)

l.

In (b)-(c), dashed lines represent projected matching-paths.

In what follows, for the sake of simplicity we set u = αi and v = βi. We attempt to generate the two

new squares su and sv and the projected paths p(u, x),p(u, y),p(u, v),p(v, z) and p(v, w). In order to

cover all cases we need to take care of two issues, first the interaction between the projected paths p(x, y)

and p(w, z) in Qi−1, which is described by Proposition 11 and depicted in Figure 7, and the second issue

is the location of the perfect matching M with respect to the edges and paths incident with u and v.

For the second issue, we know that Pi is a cycle-path ( recall that since M is a perfect matching that is

absolute in (G0, Gi, Pi)
l, the path Pi = p(αi, βi) ∈ P(Gi) is always a cycle-path of both u and v in Gi —

see Figure 9(a)), and therefore if p(x, y) 6= p(w, z), then the matching-path of u is either p(u, y) or p(u, x)

and the matching-path of v is either p(v, w) or p(v, z). In Figure 10, we describe the cases and depict

examples for the situation that x = w and y 6= z. The remaining cases, for example when all x,w, y, z

are different, are analogous.

In the case that p(x, y) = p(w, z), without loss of generality we can assume that u and v are placed

(with respect to x and y) as depicted in Figure 11. Then, we have that the matching-path of u is

either p(u, x) or p(u, v) (with p(u, v) 6= Pi) and the matching-path of v is either p(v, y) or p(u, v) (with

p(u, v) 6= Pi). In Figure 11, we describe these situations with a corresponding example.

Summarizing, to prove Lemma 9.2, it suffices to prove that from each configuration of the projected

paths p(x, y) and p(w, z) it is possible to generate all instances i), ii), iii) and iv) in case that p(x, y) 6=
p(w, z) and that it is possible to generate all instances i′), ii′), iii′) and iv′) in case that p(x, y) = p(w, z).

Before we go into the analysis of the configurations we shall present an operation consisting of a

sequence of simple-augmentations that we constantly use in order to construct two new squares; we shall
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v

z

u

y

x

(a) instance i): p(u, y)

matching-path of u and

p(v, z) matching-path of v.

v

z

u

y

x

(b) instance ii): p(u, x)

matching-path of u and

p(v, z) matching-path of v.

v

z

u

y

x

(c) instance iii): p(u, y)

matching-path of u and

p(v, w) matching-path of v.

v

z

u

y

x

(d) instance iv): p(u, x)

matching-path of u and

p(v, w) matching-path of v.

Figure 10: In the subfigures we depicted an example of each instance when the paths p(x, y) and p(w, z)

in Gi−1 intersect in one vertex (see Configurations 2,3 and 4 in Figure 7). Bold edges represent the

perfect matching. Moreover, p(u, v) = Pi.

y

u

v

Pi

x

(a) instance i′):

p(u, x) matching-path

of u and p(v, y)

matching-path of v.

y

u

v

Pi

x

(b) instance ii′):

p(u, x) matching-path

of u and p(u, v)

matching-path of v.

y

u

v

Pi

x

(c) instance iii′):

p(u, y) matching-path

of u and p(v, w)

matching-path of v.

y

u

v

Pi

x

(d) instance iv′):

p(u, v) matching-path

of u and v.

Figure 11: In each figure is depicted an example of the distinct instances in the case that p(x, y) = p(w, z)

(see configuration 9 in Figure 7). Bold edges represent the perfect matching.

call this operation a basic square construction. This operation is very useful and crucial to reduce the

number of cases.

The input of the basic square construction is the bipartite subgraph graph depicted in Figure 12(a)

with distinguished edges ea, eb, ec and ed. The output is the bipartite subgraph depicted in Figure 12(c)

with distinguished edges ea, e′b, e
′
c and e′d. In Figure 12, we depict the sequence of simple-augmentations

that compose the basic square construction. It is clear that if H is the graph obtained by applying the

basic square construction in a subgraph of a brace, then H is a brace. In what follows, we constantly use

this operation and the latter remark.

Let V (sx) = {xj : j ∈ Z4}, V (sy) = {yj : j ∈ Z4}, V (sw) = {wj : j ∈ Z4}, V (sz) = {zj : j ∈ Z4}.
Without loss of generality we assume that p(x, y) = {x1y1, x2y2}, p(w, z) = {w1z1, w2z2}, and that x1,

w1, y2, z2 are in the same partition class, depicted in black in Figure 7. We first study configurations 2,

5, and 7, then 3 and 8, afterwards configurations 4 and 6, and finally configurations 1 and 9.

Configurations 2, 5 and 7 are respectively depicted in Figures 7(b), 7(e) and 7(g). These configura-

tions have a common property, namely: with the notation of Figure 7 each of these configurations

may be obtained from Figure 13(a) by possible identifying y2, z2 (case of Configuration 5). Next

we show how to generate instances i), ii), iii) and iv) of Figure 10.
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ea

eb

ec

ed

type-2

augmentation

(a)

type-2

augmentation

type-2

augmentation

type-2

augmentation

type-1

augmentation

ea

ed

ec

ed

ea e′c ea e′c

e′de′be′b
e′b

(b)

1

ea e′c

e′de′b

(c)

Figure 12: Basic square construction. In subfigure (a) the input subgraph with distinguished edges ea,

eb, ec, ed, in subfigure (b) the steps of the basic square construction and in subfigure (c) the output

subgraph with distinguished edges ea, e′b, e
′
c, e
′
d,

Generation of instances i) and iv): Let Q2
i−1 be the graph obtained from Qi−1 by expanding the

vertex x1 to x11v1x
2
1 in such a way that the partition associated with the vertex x21 is either {x2, z1}

if we are generating instance i), or {w2, z1} if we are generating instance iv). Then, we add the

new edge v1z2 if we are generating instance i), or v1y2 if we are generating instance iv) —see

Figures 13(b) and 13(e) without the bold edges for an ilustration of Q2
i−1 in each case. Then, we

consider the graph Q2,1
i−1 obtained from Q2

i−1 by adding the bold edge. In Figures 13(b) and 13(e),

the graph Q2,1
i−1 is locally depicted for each case. We get the desired instances by applying the

basic square construction. We describe this in more details. For instance i): with the notation of

Figure 12(a) and 13(b), it is enough to consider ea = x11w2, eb = z1z2, ec = x11x2 and ed = y1y2.

For instance iv): with the notation of Figure 12(a) and 13(b), it is enough to consider ea = z1z2,

eb = x11w2, ec = y1y2 and ed = x11x2.

For generating instances ii) and iii): Let Q2
i−1 be the graph obtained from Qi−1 by expanding the

vertex x1 to x11v1x
2
1 in such a way that the partition associated with the vertex x21 is {y1, z1}. Then,

we add the new edge v1z2 if we are generating instance ii), or v1y2 if we are generating instance iii).

Then, we consider the graph Q2,1
i−1 obtained from Q2

i−1 by adding the new edge x11y1 if we are

generating instance ii) or x11z1 if we are generating instance iii). In Figures 13(c) and 13(d), the

graph Q2,1
i−1 is locally depicted for each case. For instance ii): with the notation of Figure 12(a)

and 13(b), it is enough to consider ea = x11w2, eb = z1z2, ec = y1y2 and ed = x11x2. For instance

iii): with the notation of Figure 12(a) and 13(b), it is enough to consider ea = x11x2, eb = y1y2,

ec = x11w2 and ed = z1z2.

Configurations 3 and 8 are respectively depicted in Figures 7(c) and 7(h). Note that with the notation

of Figure 7, both configurations may be obtained from Figure 13(a) by identifying x2, w2 and by

removing the double edge. Therefore, the reasoning for configurations 2, 5 and 7 applies also for

configurations 3 and 8.

Configurations 4 and 6. These configurations are respectively depicted in Figures 7(d) and 7(f).

With the notation of Figure 7, both configurations can be locally depicted as in Figure 14(a).

Moreover, using the symmetry of both configurations 4 and 6, without loss of generality we can

assume that either the degree of x1 and w2 in Qi−1 is 4 or the degree of x1 and x2 in Qi−1 is 4.

Therefore, in either case we are allowed to expand x1. Next we show how to generate each instances

i), ii), iii) and iv) of Figure 10.
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x1

x2 w2

z2z1y1y2

(a)

x11

x2 w2

z2z1y1y2

x21

v1

(b) Q2,1
i−1 for i)

x11

x2 w2

z2z1y1y2

x21

v1

(c) Q2,1
i−1 for ii)

x11

x2 w2

z2z1y1y2

v1

x21

(d) Q2,1
i−1 for iii)

x11

x2 w2

z2z1y1y2

x21

v1

(e) Q2,1
i−1 for iv)

Figure 13: Local view of Q2,1
i−1 in the generation of instances i), ii), iii) and iv) for configurations 2, 5

and 7. In each configuration, we may possible have y2 = z2. In (a), for obtaining Configurations 3 and 8

it is enough to identify x2 and w2, and delete multiple edges.

Generation of instance i): Let Q2
i−1 be the graph obtained from Qi−1 by expanding the vertex x1

to x11u1x
2
1 in such a way that the partition associated with the vertex x21 is {w2, y1}. Then, we add

the new edge u1y2. Consider the Figure 14(b) without the bold edge for a local ilustration of Q2
i−1.

Then, we consider the graph Q2,1
i−1 obtained from Q2

i−1 by adding the new edge x11w2, namely, the

bold edge of Figure 14(b). We finally obtain the desired instance i) by applying the basic square

construction in the same fashion as for the case of Configurations 2, 5, and 7.

Generation of instances ii) and iv): Let Q2
i−1 be the graph obtained from Qi−1 by expanding the

vertex x1 to x11u1x
2
1 in such a way that the partition associated with the vertex x21 is {x2, y1}. Then

we add the new edge u1w1 if we are generating instance ii), or u1z2 if we are generating instance

iv). Then, we consider the graph Q2,1
i−1 obtained from Q2

i−1 adding the new edge x11x2 (bold edge

in Figures 14(c) and 14(e)). In Figures 14(c) and 14(e), the graph Q2,1
i−1 for the generation of both

instances is locally depicted. Again, we get the desired instances ii) and iv) by applying the basic

square construction in the same fashion as for the case of Configurations 2, 5, and 7.

x2 w1

y1y2 z1z2

w2x1

(a)

x2 w1

y1y2 z1z2

w2

x21

u1

x11

(b) Q2,1
i−1 for i)

x2 w1

y1y2 z1z2

w2

x21

u1

x11

(c) Q2,1
i−1 for ii)

w1

y1y2 z1z2

w2

u1

x22

x1

x12

(d) Q2,1∗

i−1 for iii)

x2 w1

y1y2 z1z2

w2

x21

u1

x11

(e) Q2,1
i−1 for iv)

Figure 14: Local view of Q2,1
i−1 or Q2,1∗

i−1 in the generation of instances i), ii), iii) and iv) for configurations

4 and 6. In each configuration, we have that y2 6= z2 and y1 6= z1. In case (d), the edge x12z2 may exist.

Generation of instance iii): If the edge x2z2 /∈ E(Qi−1), then add x2z2. We denote by Q1
i−1 either

the graph obtained from Qi−1 by adding x2z2 or, the graph Qi−1 such that x2z2 ∈ E(Qi−1). Hence,

z2, y2 are neighbors of x2 in Q1
i−1 and clearly y2 6= z2 (see Figures 7(d) and 7(f)). Let Q2,1

i−1 be the

graph obtained from Q1
i−1 by expanding the vertex x2 to x12u1x

2
2 in such a way that the partition

associated with the vertex x22 is {z2, y2}. Then, we add the new edge u1y1. Then we obtain Q2,1∗

i−1 in

the following way: if the edge x2z2 ∈ E(Qi−1), then we obtain Q2,1∗

i−1 from Q2,1
i−1 by adding the new

edge x12z2. Otherwise, Q2,1∗

i−1 = Q2,1
i−1. In Figure 14(d) the graph Q2,1∗

i−1 is locally depicted. Again,

we use the basic square construction to complete the generation.
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Configuration 1. This configuration is depicted in Figure 7(a). By the symmetry of configuration 1 it

suffices to show that we can generate instance iii); this can be generated in the same fashion as the

previous instance iii) for configurations 4 and 6.

Configuration 9 is depicted in Figure 7(i). To make things easier, we depict in Figure 15 the subgraphs

that we want to generate from Configuration 9; they correspond to the instances i′), ii′), iii′) and

iv′) of Figure 11.

x1 x2

y2y1

sv

su

(a) Instance i’)

x1 x2

y2y1

sv

su

(b) Instance ii’) and iv’)

x1 x2

y2y1

sv

su

(c) Instance iii’) and iv’)

Figure 15: Instances i’), ii’), iii’) and iv’) of Figure 11 for configuration 9.

We first focus on the generation of the configurations depicted in Figure 15(b) and Figure 15(c).

By symmetry, it suffices to generate only one of them, say we generate the configuration depicted

in Figure 15(c).

We split this case into two subcases: (*) at least one vertex of {x1, x2} has degree 4 in Qi−1 and

(**) x1 and x2 have degree 3 in Qi−1.

subcase (*): without loss of generality we assume that x1 has degree 4 in Qi−1. Consider the

graph Q2,1
i−1 obtained from Qi−1 by expanding x1 to x11ux

2
1 in such a way that the partition

associated with the vertex x21 is {x2, y1}. Then we add the new edges uy2 and x2x
1
1. Next,

we consider the graph Q2,1,2
i−1 obtained from Q2,1

i−1 by expanding y2 to y12vy
2
2 in such a way

that the partition associated with the vertex y22 is {u, x2}. Then we add the new edge vx21.

Furthermore, let Q2,1,2,2
i−1 be the graph obtained from Q2,1,2

i−1 by expanding x2 to x12u
′x22 in such

a way that the partition associated with the vertex x22 is {y22 , x21}. Then we add the new edge

uu′. We finally consider the graph Q2,1,2,2,2,1
i−1 obtained from Q2,1,2,2

i−1 by expanding u to u1wu2

in such a way that the partition associated with the vertex u2 is {u′, x11}. Then we add the

new edges wx22 and wv. The graph Q2,1,2,2,2,1
i−1 is locally equal to the subgraph depicted in

Figure 15(c).

subcase (**): we recall that the set of vertices of the square sx is given by {xi : i ∈ Z4}. Then,

by Proposition 10 the vertices x0 and x3 have degree 4. Let Q2,1
i−1 be the graph obtained from

Qi−1 by expanding x3 to x13ux
2
3 in such a way that the partition associated with the vertex

x23 is {x0, x2}. Then we add the new edges ux1 and x13x0. Next, we consider Q2,1,2
i−1 the graph

obtained from Q2,1
i−1 by expanding x0 to x10vw in such a way that the partition associated with

the vertex w is {x1, x23}. Then we add the new edge vu. Then, we consider Q2,1,2,2
i−1 the graph

obtained from Q2,1,2
i−1 by expanding u to u1zu2 in such a way that the partition associated

with the vertex u2 is {x23, x1}. Then we add the new edge zw. We now consider Q2,1,2,2,2,1
i−1
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the graph obtained from Q2,1,2,2
i−1 by expanding w to w1v′w2 in such a way that the partition

associated with the vertex w2 is {v, z}. Then we add the new edges u2v′ and x2v
′. The graph

Q2,1,2,2,2,1
i−1 contains the desired instance (see Figure 15(c)).

We now show the generation of the configuration depicted in Figure 15(a). Again we split this

case into two subcases: (*) at least one vertex in {x1, x2, y1, y2} has degree 4 in Qi−1 and (**) all

vertices in {x1, x2, y1, y2} have degree 3 in Qi−1.

subcase (*): without loss of generality we suppose that x1 has degree 4 in Qi−1. We now consider

Q2,1
i−1 the graph obtained from Qi−1 by expanding x1 to x11ux

2
1 in such a way that the partition

associated with the vertex x21 is {x2, y1}. Then we add the new edges uy2 and x11x2. Let

Q2,1,2
i−1 be the graph obtained from Q2,1

i−1 by expanding x2 to x12u
′x22 in such a way that the

partition associated with the vertex x22 is {x21, y2}. Then we add the new edge uu′. We shall

consider Q2,1,2,2
i−1 obtained from Q2,1,2

i−1 by expanding y2 to y12vy
2
2 in such a way that the partition

associated with the vertex y22 is {u, x22}. Then we add the new edge vx21. Let Q2,1,2,2,2,1
i−1 be the

graph obtained from Q2,1,2,2
i−1 expanding u to u1v′u2 in such a way that the partition associated

with the vertex u2 is {u′, y22}. Then we add the new edges v′v and u1u′. The graph Q2,1,2,2,2,1
i−1

contains the desired instance (see Figure 15(a)).

subcase (**): by Proposition 10 we have that all vertices in {x0, x3, y0, y3} have degree 4 in Qi−1.

We consider Q2
i−1 the graph obtained from Qi−1 by expanding x0 to x10ux

2
0 in such a way that

the partition associated with the vertex x20 is {x1, x3}. Then we add the new edges ux2 and

x10x3. We consider Q2,1,2
i−1 the graph obtained from Q2,1

i−1 by expanding x3 to x13u
′x23 in such a

way that the partition associated with the vertex x23 is {x20, x2}. Then we add the new edge

uu′. Let Q2,1,2,2
i−1 be the graph obtained from Q2,1,2

i−1 by expanding u to u1vu2 in such a way

that the partition associated with the vertex u2 is {x20, x2}. Then we add the new edge vx23.

We consider Q2,1,2,2,2,1
i−1 the graph obtained from Q2,1,2,2

i−1 by expanding x2 to x12v
′x22 in such a

way that the partition associated with the vertex x22 is {u2, x1}. Then we add the new edge

vv′ and x1x
1
2. The graph Q2,1,2,2,2,1

i−1 contains the desired instance.
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