Exercise 1 (5 points) Write down the Gramm-Schmidt orthonormalization algorithm.
Exercise 2 (10 points) Use Gramm-Schmidt algorithm on vectors $u_{1}=(0,3,0,4,0)^{T}, u_{2}=$ $(0,0,0,5,0)^{T}, u_{3}=(2,1,2,0,0,)^{T}, u_{4}=(4,5,4,9,7)^{T}$. Then extend the resulting basis by a vector v to a basis of the space \mathbb{R}^{5}.

Exercise 3 (5 points) Find the distance between the point $[0,0,2,0,0]$ and the hyperplane spanned by vectors u_{1}, \ldots, u_{4} from Exercise 2 .

Exercise 4 (5 points) Find an inverse matrix A^{-1} to matrix

$$
A=\left(\begin{array}{cccc}
0 & 3 & 4 & 0 \\
0 & -4 & 3 & 0 \\
6 & 0 & 0 & -2 \\
2 & 0 & 0 & 6
\end{array}\right)
$$

Exercise 5 (5 points) Find a projection of vector $(2,2,1,5)^{T}$ onto a row space of matrix

$$
A=\left(\begin{array}{cccc}
0 & \frac{3}{5} & \frac{4}{5} & 0 \\
0 & \frac{-4}{5} & \frac{3}{5} & 0 \\
\frac{\sqrt{2}}{2} & 0 & 0 & \frac{\sqrt{2}}{2}
\end{array}\right) .
$$

Exercise 6 (5 points) Give the definition of norm.
Exercise 7 (5 points) Prove that ℓ_{1}-norm, given by $\|(x)\|_{1}=\sum_{i=1}^{d}\left|x_{i}\right|$ (in a d-dimensional real vector space) is a norm.

