Exercise 1: Find an orthogonal complement of a space in \mathbb{R}^{3} generated by vectors $\mathbf{u}=$ $(1,2,3)^{T}, \mathbf{v}=(1,-1,0)^{T}$ with respect to the standard inner product.

Exercise 2: Find a projection of a vector $\mathbf{x}=(1,2,3,4,5)^{T}$ to a vector space V generated by vectors $\mathbf{x}_{1}=(1,0,1,0)^{T}, \mathbf{x}_{2}=(1,1,1,1)^{T}, \mathbf{x}_{3}=(1,0,0,1)^{T}$. Find the distance of x from V with respect to the standard inner product.

Exercise 3: The population data are the following:

year	1950	1960	1970	1980	1990	2000
population	2519	2982	3692	4435	5263	6070

Find a linear dependency of the population on time and estimate the population in 2009.

Exercise 4: Suppose A is an $n \times k$ matrix, where $k \leq n$, such that the columns of A are linearly independent. Then the $k \times k$ matrix $A^{T} A$ is invertible.

Exercise 5: Suppose that M is an $n \times n$ matrix such that $M^{T}=M=M^{2}$. Let W denote the column space of M.

1. Suppose that $Y \in W$. Prove that $M Y=Y$.
2. Suppose that v is a vector in \mathbb{R}^{n}. Why is $M v \in W$?
3. If $Y \in W$, why is $v-M v \perp Y$?
4. Conclude that $M v$ is the projection of v into W.

Exercise 6: Use the projection to find the best approximate solution of the system $\mathbf{A x}=\mathbf{b}$, where $\mathbf{A}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 4 & 2 & 0 \\ 2 & -4 & -1 \\ 1 & -2 & 2\end{array}\right), \quad \mathbf{b}=(10,5,13,9)^{T}$.
Observe that the columns of \mathbf{A} are mutually perpendicular.

Exercise 7: Prove (again?) that projection is a linear map.

