Exercise $1:\left[\right.$ Corrected] Prove that $\frac{x}{2}+\frac{y}{3}+\frac{z}{6} \leq \frac{x^{2}}{2}+\frac{y^{2}}{3}+\frac{z^{2}}{6}$ holds for $x, y, z \in \mathbb{R}$.

Exercise 2: For a matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 3 \\
3 & 6 & 4
\end{array}\right)
$$

find a non-zero vector perpendicular

1. to all rows of A,
2. to all vectors in $\mathcal{R}(A)$,
3. to all vectors in $\mathcal{C}(A)$.

Exercise 3: Prove that $5 a_{1}+a_{2}+3 a_{3}+a_{4} \leq 6 \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}$ holds for all $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}$.
Exercise 4:[A-G inequality] Prove that

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}}
$$

hold for every $a_{1}, \ldots, a_{n} \in \mathbb{R}$.

Exercise 5: Prove that $\|A\|:=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{1} a_{i, j}^{2}}$ is a norm in the space of real $m \times n$ matrices.

Exercise 6: Find orthonormal basis of a vecotr space generated by $x=(1,0,1,0), y=(1,1,1,1), z=$ $(1,0,0,1)$.

Exercise 7: What happens during Gramm-Schmidt process when we input

1. linear dependent vectors,
2. orthogonal vectors,
3. orthonormal vectors,
4. $-x_{i}$ instead of x_{i} ? Inspect the change in the output of the procedure.

Exercise 8: Let $\left.x_{1}=(1,1,0), x_{2}=(1,1,1)\right)$. Find the result of G-S process when the input is x_{1}, x_{2} and when the input is x_{2}, x_{1}. Find a projection of vector $x=(0,1,1)$ onto space $U=\operatorname{span}\left\{x_{1}, x_{2}\right\}$.

Exercise 9: Run G-S process on vectors $(i, i, i),(0, i, i),(0,0, i)$ in \mathbb{C}.

Exercise 10: Use the projection to find the best approximate solution of the system $\mathbf{A x}=\mathbf{b}$, where
$\mathbf{A}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 4 & 2 & 0 \\ 2 & -4 & -1 \\ 1 & -2 & 2\end{array}\right), \quad \mathbf{b}=(10,5,13,9)^{T}$
Observe that the columns of \mathbf{A} are mutually perpendicular.

