Exercise 1:[Corrected] Prove that $\frac{x}{2} + \frac{y}{3} + \frac{z}{6} \le \frac{x^2}{2} + \frac{y^2}{3} + \frac{z^2}{6}$ holds for $x, y, z \in \mathbb{R}$.

Exercise 2: For a matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{pmatrix}$$

find a non-zero vector perpendicular

- 1. to all rows of A,
- 2. to all vectors in $\mathcal{R}(A)$,
- 3. to all vectors in $\mathcal{C}(A)$.

Exercise 3: Prove that $5a_1 + a_2 + 3a_3 + a_4 \le 6\sqrt{a_1^2 + a_2^2 + a_3^2 + a_4^2}$ holds for all $a_1, a_2, a_3, a_4 \in \mathbb{R}$.

Exercise 4: [A-G inequality] Prove that

$$\frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}$$

hold for every $a_1, \ldots, a_n \in \mathbb{R}$.

Exercise 5: Prove that $||A|| := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{1} a_{i,j}^2}$ is a norm in the space of real $m \times n$ matrices.

Exercise 6: Find orthonormal basis of a vector space generated by x = (1, 0, 1, 0), y = (1, 1, 1, 1), z = (1, 0, 0, 1).

Exercise 7: What happens during Gramm-Schmidt process when we input

- 1. linear dependent vectors,
- 2. orthogonal vectors,
- 3. orthonormal vectors,
- 4. $-x_i$ instead of x_i ? Inspect the change in the output of the procedure.

Exercise 8: Let $x_1 = (1, 1, 0), x_2 = (1, 1, 1)$. Find the result of G-S process when the input is x_1, x_2 and when the input is x_2, x_1 . Find a projection of vector x = (0, 1, 1) onto space $U = \text{span}\{x_1, x_2\}$.

Exercise 9: Run G-S process on vectors (i, i, i), (0, i, i), (0, 0, i) in \mathbb{C} .

Exercise 10: Use the projection to find the best approximate solution of the system Ax = b, where

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 4 & 2 & 0 \\ 2 & -4 & -1 \\ 1 & -2 & 2 \end{pmatrix}, \qquad \mathbf{b} = (10, 5, 13, 9)^T$$

Observe that the columns of **A** are mutually perpendicular.