Exercise 1: Let the scalar product over \mathbb{C}^{3} be given as:
$\langle\mathbf{x} \mid \mathbf{y}\rangle=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+2 x_{3} \overline{y_{3}}+x_{3} \overline{y_{2}}+x_{2} \overline{y_{3}}$
Determine for the following vectors \mathbf{x} and \mathbf{y} :

1. the scalar product of \mathbf{x} and \mathbf{y}
2. the Euclidean norms of \mathbf{x} and \mathbf{y}
3. the distance between \mathbf{x} and \mathbf{y}
4. whether vectors \mathbf{x} and \mathbf{y} are orthogonal.
a) $\mathbf{x}^{T}=(4,2,3), \mathbf{y}^{T}=(1,5,-2)$.
b) $\mathbf{x}^{T}=(3,1,-2), \mathbf{y}^{T}=(1,-3,2)$.
c) $\mathbf{x}^{T}=(2,-1,4), \mathbf{y}^{T}=(5,2,-2)$.
d) $\mathbf{x}^{T}=(2+i, 0,4-5 i), \mathbf{y}^{T}=(1+i, 2+i,-1)$.

Exercise 2: Without calculating the integral show that for any $a, b, r \in \mathbb{R}, a, b \neq 0, r>0$, functions $f_{a}(x)=\sin (a x)$ and $g_{b}(x)=\cos (b x)$ are orthogonal.
The product is given as: $\left\langle f_{a} \mid g_{b}\right\rangle=\int_{-r}^{r} f_{a}(x) g_{b}(x) d x$.

Exercise 3: Let be given two perpendicular vectors \mathbf{u} and \mathbf{v} s.t. $\|\mathbf{u}\|=12,\|\mathbf{v}\|=5$. Determine $\|\mathbf{u}+\mathbf{v}\|$ and $\|\mathbf{u}-\mathbf{v}\|$.

Exercise 4: Prove that $\langle\mathbf{A} \mid \mathbf{B}\rangle=\operatorname{tr}\left(\mathbf{B}^{T} \mathbf{A}\right)$, where tr means the sum of the diagonal entries (so called trace), is a scalar product on real matrices of the same order.
(Matrices A, B need not to be square.)
Derive from Cauchy-Schwarz inequality that $\operatorname{tr}\left(A^{2}\right) \leq \operatorname{tr}\left(A^{T} A\right)$.

Exercise 5: Verify, that $\langle\mathbf{x} \mid \mathbf{y}\rangle=2 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+2 x_{2} y_{2}$ defines a scalar product in \mathbb{R}^{2}.

Exercise 6: Find all unit-length vectors perpendicular to vector $(3,-2)$.

Exercise 7: For a matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 3 \\
3 & 6 & 4
\end{array}\right)
$$

find a non-zero vector perpendicular

1. to all rows of A,
2. to all vectors in $\mathcal{R}(A)$,
3. to all vectors in $\mathcal{C}(A)$.

Exercise 8: Prove that $x y+y z+z x \leq x^{2}+y^{2}+z^{2}$ holds for all $x, y, z \in \mathbb{R}$.

