Exercise 1: Interpolate plane $a x+b y+c z+d=0$ through points
a) $(6,4,6),(3,5,4)$ and $(5,2,3)$
b) $(5,4,7),(4,5,5)$ and $(2,2,6)$

Exercise 2: Calculate a) $(3+2 i)(1-3 i)$
b) $(3+2 i) /(1-3 i)$
c) $(1+i)^{20}$

Exercise 3: Interpolate a cubic polynomial through points $(-2,5),(-1,2),(1,-4)$, and $(2,5)$.

Exercise 4: Show that a matrix A of order $m \times n$ has rank one if and only if it can be written as a product of two nonzero matrices: \mathbf{B} of order $m \times 1$, and \mathbf{C} of order $1 \times n$.
(Indeed \mathbf{B} can be viewed as a vector and \mathbf{C} as a transpose of some vector.)

Exercise 5: Solve the following matrix equation in the field \mathbb{Z}_{5}.
$\mathbf{A}=\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{llll}0 & 2 & 2 & 1 \\ 1 & 0 & 2 & 0 \\ 2 & 1 & 0 & 2 \\ 2 & 2 & 1 & 1\end{array}\right), \mathbf{C}=\left(\begin{array}{llll}2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right)$,
$\mathbf{D}=\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 2 & 1\end{array}\right), \mathbf{E}=\left(\begin{array}{llll}1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 0 & 0\end{array}\right)$
a) $\mathbf{A}^{T}(\mathbf{X}-2 \mathbf{D})^{-1}+\mathbf{C}=\mathbf{B}-2 \mathbf{E}$
b) $\mathbf{B}^{T}(\mathbf{X}-2 \mathbf{D})^{-1}+\mathbf{C}=3 \mathbf{A}-\mathbf{E}$

Exercise 6: Decide, whether the following sets of vectors are linearly independent in the space of real functions $\mathbb{R} \rightarrow \mathbb{R}$ (over the field \mathbb{R}).
a) $\{2 x-1, x-2,3 x\}$.
b) $\left\{x^{2}+2 x+3, x+1, x-1\right\}$.
c) $\left\{\ln (x), \log (2 x), \log _{2}\left(x^{2}\right)\right\}$.
(i.e. the natural, decadic and binary logarithm.)

Exercise 7: In the space of real polynomials of degree at most four with the basis $X=\left(x^{4}+\right.$ $\left.x^{3}, x^{3}+x^{2}, x^{2}+x, x+1, x^{4}+1\right)$ determine coordinates $[f]_{X}$ of the following vectors f :
a) $f(x)=x^{4}-1$.
b) $f(x)=x^{4}+x^{3}+x^{2}+x+1$.
c) $f(x)=x^{4}+x^{2}+1$.
d) $f(x)=x^{3}+x$.

Exercise 8: Let the space of polynomials of degree at most 4 over \mathbb{R} be equipped with basis $A=\left(x^{4}+x^{3}, x^{3}+x^{2}, x^{2}+x, x+1, x^{4}+1\right)$. Determine the matrix $\left[D_{x}\right]_{A K}$ for the mapping D_{x} that assigns $f(x)$ its derivative $f^{\prime}(x)$.
(Consider $K=\left(x^{0}, \ldots, x^{4}\right)$ as the canonical basis.)

