Exercise 1: Interpolate plane ax + by + cz + d = 0 through points

a) (6,4,6), (3,5,4) and (5,2,3)
b) (5,4,7), (4,5,5) and (2,2,6) *Exercise 2:* Calculate a) (3+2i)(1-3i)
b) (3+2i)/(1-3i)
c) (1+i)²⁰

Exercise 3: Interpolate a cubic polynomial through points (-2, 5), (-1, 2), (1, -4), and (2, 5).

Exercise 4: Show that a matrix **A** of order $m \times n$ has rank one if and only if it can be written as a product of two nonzero matrices: **B** of order $m \times 1$, and **C** of order $1 \times n$.

(Indeed **B** can be viewed as a vector and **C** as a transpose of some vector.)

Exercise 5: Solve the following matrix equation in the field \mathbb{Z}_5 .

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & 2 & 2 & 1 \\ 1 & 0 & 2 & 0 \\ 2 & 1 & 0 & 2 \\ 2 & 2 & 1 & 1 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\mathbf{D} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}, \ \mathbf{E} = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 0 & 0 \end{pmatrix}$$
a)
$$\mathbf{A}^{T} (\mathbf{X} - 2\mathbf{D})^{-1} + \mathbf{C} = \mathbf{B} - 2\mathbf{E}$$
b)
$$\mathbf{B}^{T} (\mathbf{X} - 2\mathbf{D})^{-1} + \mathbf{C} = 3\mathbf{A} - \mathbf{E}$$

Exercise 6: Decide, whether the following sets of vectors are linearly independent in the space of real functions $\mathbb{R} \to \mathbb{R}$ (over the field \mathbb{R}).

a) $\{2x - 1, x - 2, 3x\}$. b) $\{x^2 + 2x + 3, x + 1, x - 1\}$. c) $\{\ln(x), \log(2x), \log_2(x^2)\}$.

(i.e. the natural, decadic and binary logarithm.)

Exercise 7: In the space of real polynomials of degree at most four with the basis $X = (x^4 + x^3, x^3 + x^2, x^2 + x, x + 1, x^4 + 1)$ determine coordinates $[f]_X$ of the following vectors f:

a)
$$f(x) = x^4 - 1$$
.
b) $f(x) = x^4 + x^3 + x^2 + x$
c) $f(x) = x^4 + x^2 + 1$.
d) $f(x) = x^3 + x$.

Exercise 8: Let the space of polynomials of degree at most 4 over \mathbb{R} be equipped with basis $A = (x^4 + x^3, x^3 + x^2, x^2 + x, x + 1, x^4 + 1)$. Determine the matrix $[D_x]_{AK}$ for the mapping D_x that assigns f(x) its derivative f'(x).

(Consider $K = (x^0, \dots, x^4)$ as the canonical basis.)

+1.